首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study on the preparation of activated carbon from Acacia mangium wood was conducted, and the operating factors, such as activating agent concentration, activation temperature and activation time, were optimized using response surface methodology. In order to determine the effects of the operating factors namely H3PO4 concentration (6.48–48.5 %), activation temperature (364–1,036 °C) and activation time (19–146 min) on the characteristics of activated carbon, a three-level rotatable central composite design was used. The second-order mathematical model was proposed by regression analysis of the experimental data gathered from 20 batch runs. The optimum H3PO4 concentration, activation temperature and activation time were found to be 40 %, 900 °C and 45 min, respectively. At optimum conditions of the operating factors, the percent yield and surface area were 20.3 % and 1,767 m2/g, respectively. The activated carbon was found to be largely composed of mesopores. About 95 % of the total surface area was attributed to mesopores.  相似文献   

2.
Vanillin is one of the industrially important compounds that can be produced from lignin. This study presents production of vanillin and vanillic acid (oxidized form of vanillin) through aerobic oxidation of Japanese cedar (Cryptomeria japonica) at 120 °C for 72 h in aqueous alkali solutions with several Bu4N+ and OH? concentrations (1.25, 2.50, and 3.75 mol/L), where Bu4N+ is an enhancer of the vanillin formation reported in our previous study. The concentrations of Bu4N+ and OH? were adjusted by the additions of Bu4NCl and solid NaOH into the base medium Bu4NOH·30H2O, which forms 1.25 mol/L aqueous solution of Bu4NOH at the elevated temperature. Vanillin and vanillic acid were produced with the maximum yields of 21.0 and 1.7 wt% (lignin-base), respectively, at the 1.25 mol/L Bu4N+ and 3.75 mol/L OH? concentrations. This vanillin yield is close to that obtained by the alkaline nitrobenzene oxidation (26.5 wt%), indicating significantly high selectivity of our lignin degradation with Bu4N+ toward vanillin formation. We also proposed a novel Bu4NOH·30H2O-free reaction medium, where Bu4NOH·30H2O as the base medium were substituted with an aqueous solution of Bu4NCl and NaOH to avoid using expensive Bu4NOH·30H2O. The treatment of the Japanese cedar with this alternative medium exhibited the moderately decreased vanillin yield of 14.6 wt%, which is, however, much higher than the vanillin yield obtained with a simple 1.25 mol/L NaOH solution.  相似文献   

3.
Authors established a new manufacturing technology for crack-free carbonized boards by pressing and carbonizing the medium-density fiberboard. Industrialization of new functional carbon materials was performed by investigating the fundamental properties of the carbonized boards. To be used as a construction material, the carbonized board needs to satisfy the fire performance regulation. In this study, the carbonized boards were manufactured from medium-density fiberboard (c-MDF) at different temperatures and then fire performance including flame retardancy and smoke toxicity was analyzed using a cone calorimeter and noxious gas analyzer. The results show that as the carbonization temperature increases, weight loss ratio decreases and flame retardancy increases. In the c-MDF at 800 and 1000 °C, no external damage was observed after combustion. These c-MDFs satisfy the total heat release (standard below 8 MJ/m2) and heat release rate (standard below 200 kW/m2) regulations according to the Building Standard Law of Korea and Japan. In addition, the c-MDFs showed the lower total smoke release (TSR, 0.213 m2/m2) than that of virgin MDF (94.281 m2/m2). The c-MDF at 800 and 1000 °C were, therefore, classified as a class III flame retardancy material and can be used as indoor finishing material.  相似文献   

4.
Raw moso bamboo (Phyllostachys pubescens) was examined to optimize the carbonization and the consecutive air activation procedure. Influence of sample size, nitrogen flow rate, heating rate and final temperature on the carbon yield and the pore structure was investigated for the raw bamboo. The short length cutting along bamboo trunk and the increase in heating rate to 40°C/min and nitrogen flow rate up to 500 ml/min was found to be advantageous for the carbonization of raw bamboo at 500°C, resulting in a surface area of 230 m2/g with a bamboo char yield of 25% on dry base. In the next step, effects of air treatment temperature, ash content and its composition on the pore development were studied for the prepared bamboo char in comparison with coconut shell char. Additional increase in surface area by 200 m2/g with 97% yield could be achieved conducting the 2-hour air treatment at 280°C for the bamboo char, whereas only a 100 m2/g rise in surface area was attained for the coconut shell char, partly due to the difference in K2CO3 content in the char.  相似文献   

5.
Rhizosphere-induced changes of Pinus densiflora (S. and Z.) grown at elevated atmospheric temperature and carbon dioxide are presented based on experiments carried out in a two-compartment rhizobag system filled with forest soil in an environmentally controlled walk-in chamber with four treatment combinations: control (25°C, 500 μmol mol?1 CO2), T2 (30°C, 500 μmol mol?1 CO2), T3 (25°C, 800 μmol mol?1 CO2), and T4 (30°C, 800 μmol mol?1 CO2). Elevated temperature and atmospheric carbon dioxide resulted in higher concentration of sugars and dissolved organic carbon in soil solution, especially at the later period of plant growth. Soil solution pH from the rhizosphere became less acidic than the bulk soil regardless of treatment, while the electrical conductivity of soil solution from the rhizosphere was increased by elevated carbon dioxide treatment. Biolog EcoPlate? data showed that the rhizosphere had higher average well color development, Shannon–Weaver index, and richness of carbon utilization compared with bulk soil, indicating that microbial activity in the rhizosphere was higher and more diverse than in bulk soil. Subsequent principal component analysis indicated separation of soil microbial community functional structures in the rhizosphere by treatment. The principal components extracted were correlated to plant-induced changes of substrate quality and quantity in the rhizosphere as plants’ response to varying temperature and atmospheric carbon dioxide.  相似文献   

6.
The effects of chemical treatments (H2O2 + CH3COOH, acidified NaClO2, and NaOH) and freeze-drying on bamboo fibers were studied at a submicron level, to characterize chemical and mechanical changes to the secondary cell wall. Specifically, a field emission environmental scanning electron microscope (FE-ESEM) and imaging fourier transform infrared spectroscopy (FTIR) were used to demonstrate degradation in morphology and molecular structure, and nanoindentation was used to track changes in micromechanical properties. The results showed that cellular structures after chemical treatments clearly displayed wrinkles, pores, and microfibrils. The decreased bands at 1508 cm-1 and 1426 cm?1 showed that lignin was degraded on treatment of H2O2 + CH3COOH and acidified NaClO2, which directly resulted in a decrease in hardness (H) in the secondary cell wall for treated fibers. In addition, a diminishing peak at 1733 cm?1 caused by NaOH solution indicated that hemicellulose was seriously degraded. It resulted in a decreased modulus (E r) by 13.71 % in bamboo fibers, while no obvious reduction was observed in the first two steps.  相似文献   

7.
Nitrogen-containing bamboo charcoals were prepared using bamboo processing residues, and modified by melamine or urea. The iodine value of the products we obtained was analyzed, and two samples were chosen for the Cr(VI) adsorption. The experimental results show that under the KOH and carbon ratio of 3:1 (w1/w2), activation temperature 800 °C and activation time 1 h, the activated carbons modified by melamine boasted the iodine value of 1144 mg/g and the activated carbons modified by urea boasted the iodine value of 1263 mg/g. In addition, the equilibrium adsorption capacity is 95.3 mg/g for the activated carbons modified by melamine with the adsorbent dosage of 1.0 g/L at an initial pH 2 in the presence of 100 mg/L K2Cr2O7 at 30 °C for 180 min and it is 94.2 mg/g for the activated carbons modified by urea in the same reaction condition. The pseudo-second-order kinetic model can better reflect the two kinds of nitrogen-containing activated carbons adsorption kinetic process of Cr(VI). The adsorption process conforms to the Langmuir model, indicating that the process is single molecular layer adsorption.  相似文献   

8.
The influence of various alkali and alkaline earth metal chlorides (LiCl, NaCl, KCl, MgCl2, and CaCl2) on primary and secondary char formation from cellulose was studied at 400°C. Secondary char was formed through carbonization of the volatile products. All chlorides increased the primary char yield while decreasing the secondary char formation, and this situation was promoted in the order of alkaline earth Mg, Ca, alkali Li > alkali Na, K. Levoglucosan yield also decreased along with the secondary char yield. These results indicate that the reduced formation of volatile levoglucosan was related to the decreasing yield of secondary char. A model experiment at 250°C revealed that these chlorides, especially the two alkaline earth metals, had catalytic action on the polymerization of levoglucosan, which serves to reduce the formation of volatile levoglucosan.  相似文献   

9.
In order to enlarge the utilization field of wood and decrease the costs of carbon fibers, carbon fiber precursors from liquefied wood were prepared by soaking liquefied wood in a solution containing hydrochloric acid and formaldehyde, after melt-spinning by adding hexamethylenetetramine. The microstructure evolution of the precursor during carbonization was studied by FTIR, X-ray analysis and Raman spectroscopy. The results show that precursors from liquefied wood above 400°C had diffraction peaks corresponding to the (100) crystal plane. When the carbonization temperature reached 500°C, Raman spectroscopy showed the D peak at wave number of 1360 cm–1 and the G peak at 1595 cm–1. By increasing the carbonization temperature, the microstructure of the precursors became more ordered. Although the structure of the precursor changed at 500 and 800°C, the peaks at 1632 and 1454 cm–1 corresponding to the characteristic vibrations of aromatic rings, remained during carbonization. This implies that the precursor from liquefied wood cannot be easily formed into graphite.  相似文献   

10.
This study examined effects of surface modification with hydrogen peroxide (H2O2) on adhesive bond performance in birch veneer bonded with phenol–formaldehyde resin. The veneer was treated with 5% of H2O2 at 80 °C in the presence of alkali with the objective of improving adhesive bond performance and reducing the resin demand. The effects of the surface modification were determined by surface color measured with a spectrophotometer, bond performance tests with ABES (automated bonding evaluation system) and surface hydrophobicity with sessile contact angle measurements. Results demonstrated that veneer surface became significantly whiter, which also increased in lightness and decreased in redness and yellowness. ABES test revealed that a remarkable increase in bond performance in the treated veneer and the maximum bond strength with the treatment at 60 min, which was nearly twice as high as reference sample (5.42 → 9.94 N/mm2), was obtained. A notable decrease in contact angle measurements was also observed in the treated veneers (0° in 0.5 s). The surface modification of birch veneer with H2O2 + alkali demonstrated greater potential for the improvement of physical characteristics in veneer surface. Other aspects of H2O2 consumption during the treatment are also discussed.  相似文献   

11.
对3株绿僵菌菌株通过不同温度水浴处理,发现了孢子的萌发条件;并开展了3菌株对松褐天牛成虫的毒力测定,筛选出Ma789菌株的致病力较强。通过正交试验对其液体振荡培养条件进行了分析,选出了菌丝体生长最适培养基为蔗糖20 g·L-1,酵母粉10 g·L-1,KH2PO4 3.0 g·L-1,MgSO4·7H2O 1.0 g·L-1,CaCl2 0.5 g·L-1;培养液生孢子最适培养基为蔗糖20 g·L-1,蛋白胨10 g·L-1,KH2PO4 1.5 g·L-1,MgSO4·7H2O 2.0 g·L-1,CaCl2 0.5 g·L-1。  相似文献   

12.
用 BR、GA3 、PP3 3 3 、KH2 PO4 、H3 BO3 共 5种化学调节物质进行了叶面喷布试验 ,观察它们在板栗开花结果上的效应。结果表明 ,不同药剂、浓度及药剂组合对板栗母枝平均结果枝数、长度、每结果枝雌花序数 ,母枝平均雄花枝数 ,单果质量 ,三果率和空苞率的影响有明显的差异。综合考虑化学调节物质在提高板栗雌花量和果实产量 ,以及降低空苞率上的试验效果 ,最佳的化学处理为 BR0 .0 1mg· L-1 PP3 3 3 1g· L-1 KH2 PO4 7.5g· L-1 H3 BO3 5.0 g· L-1,可使板栗结果枝数目平均由 1.2个增加至 2 .833个 ,结果枝平均雌花数由 1.56 7个增加到 1.8个 ,平均空苞率由 30 .70 %降至 9.0 3%  相似文献   

13.
The behaviors of cellulose (commercially available filter paper) were investigated in glow-discharge plasma, where pyrolysis does not occur because of low temperatures. Cellulose filter papers were decomposed in a glow-discharge plasma with nitrogen flow even at low temperatures of around 50 °C and disappeared completely after a treatment of approximately 90 h without char formation. Tar formation was not observed on any surfaces inside the plasma chamber and vacuum lines. Hence, it was concluded that all cellulose was decomposed into gaseous products. An in-situ analysis of gaseous products by quadrupole mass spectrometry suggested the formation of H2, H2O, CO and CO2 from cellulose. These findings indicate that a clean and complete gasification of cellulose can be achieved with glow-discharge plasma.  相似文献   

14.

Context

Black poplar (Populus nigra L.) is an alluvial forest tree species whose genetic pool is decreasing in Europe. Poplar trees produce short-lived seeds that do not store well.

Aim

The feasibility of seed storage in conventional and cryogenic conditions after their desiccation from water content (WC) of 0.15 to 0.07 g H2O g?1 dry mass (g g?1) was investigated.

Methods

Seed germinability was evaluated (seeds with a radicle and green cotyledons were counted) after storage of seeds for a period of 3 to 24 months at different temperatures: 20°, 10°, 3°, ?3°, ?10°, ?20° or ?196°C.

Results

Seeds desiccated to a 0.07 g g?1 WC can be stored successfully at ?10 °C and ?20 °C for at least 2 years. A significant decrease in germination was observed only after 12 months of seed storage (WC 0.15 g g?1) at temperatures above 0 °C. We demonstrated that both fresh (0.15 g g?1 WC) and desiccated (0.07 g g?1 WC) seeds can be preserved at ?196 °C for at least 2 years.

Conclusions

Seed storage temperature and time of storage were statistically significant factors affecting seed storability. The presented data provide a foundation for the successful gene banking of P. nigra seeds.  相似文献   

15.
为提高微生物油脂产量,以产油微生物深黄被孢霉为试验菌株,采用单因素试验设计,通过摇瓶培养,研究了产脂培养基中碳源、氮源种类及其浓度、接种量、初始pH值、无机盐离子对菌体生长和油脂积累的影响,确定了深黄被孢霉摇瓶发酵产油脂的优化培养条件为:葡萄糖100 g.L-1,酵母粉3.0 g.L-1,接种量为20%,pH值为5.0~6.0,硫酸镁(MgSO4.7H2O)0.5 g.L-1,磷酸二氢钾(KH2PO4)2.0 g.L-1。在优化培养条件下菌体生物量为20.62 g.L-1,油脂含量为43.02%,油脂产量为8.87 g.L-1。  相似文献   

16.
A novel and simple electroless Ni–Cu–P plating process was used for preparing corrosion-resistant and electromagnetic interference shielding wood-based composite. The effects of CuSO4·5H2O concentration, pH value in the plating solution and operation temperature on the metal deposition, surface resistivity, chemical composition, corrosion resistance and surface morphology of the composite were investigated. The surface morphologies were observed by using scanning electron microscopy and the chemical compositions were analyzed by X-ray energy dispersive spectrometer. The electromagnetic shielding effectiveness (ESE) was measured by spectrum analyzer. The corrosion resistance was evaluated by potentiodynamic corrosion measurement. The results show that metal deposition increases with pH value and temperature increase; however, it decreases with CuSO4·5H2O concentration increase. The corrosion resistance of the plated Ni–Cu–P coatings obviously depends on the total content of Cu and P in the coating. Higher total content of Cu and P leads to higher corrosion resistance. The optimum conditions are as follows: CuSO4·5H2O concentration of 1.0 g/L, pH value of 9.5, and operation temperature of 90 °C. The obtained coating contains 77.41 % Ni, 8.96 % Cu, and 13.63 % P. The wood-based composite exhibits higher corrosion resistance and ESE of around 60 dB in frequencies ranging from 9 kHz to 1.5 GHz. In this paper, a promising process for corrosion-resistant and electromagnetic shielding wood-based composites was developed.  相似文献   

17.
The effect of different planting densities (100,000 and 167,000 plants ha?1) and levels of nitrogen fertilization (0, 261, 521, and 782 kg N ha?1 year?1) on biomass production and chemical composition of Moringa oleifera was studied in a split-plot design with four randomized complete blocks over 2 years with eight cuts year?1 at the National Agrarian University farm in Managua, Nicaragua (12°09′30.65″N, 86°10′06.32″W, altitude 50 m above sea level). Density 167,000 plants ha?1 produced significantly higher total dry matter yield (TDMY) and fine fraction yield (FFDM), 21.2 and 19.2 ton ha?1 respectively, compared with 11.6 and 11 ton ha?1 for 100,000 plants ha?1. Growth rate in 167,000 plants ha?1 was higher than in 100,000 plants ha?1 (0.06 compared with 0.03 ton ha?1 day?1). Average plant height was 119 cm irrespective of planting density. Fertilization at the 521 and 782 kg N ha?1 year?1 levels produced the highest TDMY and FFDM in both years of the study and along all cuts. The interaction between cut and year was significant, with the highest TDMY and FFDM during the rainy season in the second year. Chemical composition of fractions showed no significant differences between planting densities. Significantly higher crude protein content was found in the coarse fraction at fertilizer levels 521 and 782 kg N ha?1 year?1 (87.9 and 93.7 g kg?1 DM) compared with lower levels. The results indicate that Moringa can maintain up to 27 ton ha?1 dry matter yield under dry tropical forest conditions over time at a planting density of 167,000 plants ha?1 if the soil is regularly supplied with N at a level of approximately 521 kg ha year?1 in conditions where phosphorus and potassium are not limiting.  相似文献   

18.
Preparation of carbon fibers from liquefied wood   总被引:1,自引:1,他引:0  
Carbon fibers are prepared from liquefied wood by adding hexamethylenetetramine and soaking in a solution containing hydrochloric acid and formaldehyde as main components. Structure evolution of carbon fibers from liquefied wood (LWCFs) is investigated by using FTIR and XRD. The results show that the structure of the precursor fibers from liquefied wood has been completely changed after carbonization. The apparent crystallite size (L c(002)) and the apparent layer-plane length parallel to the fiber axis (L a(100)) gradually increase during carbonization. Carbon fibers with the maximum tensile strength of 1.7 GPa are obtained under certain carbonization conditions. At the same time, it is also found that 600–800°C is the critical stage at which the specific surface area of LWCFs changes.  相似文献   

19.
Japanese beech (Fagus crenata) was treated with semi-flow hot-compressed water at various temperatures of 150–230 °C under 10 MPa. The obtained various products were then analyzed with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS). In a temperature range of 150 °C up to 210 °C, however, no hydrolyzed products were found, and at 210 °C/10 MPa, O-acetyl-4-O-methylglucuronoxylo-oligosaccharides (X n Ac m MG i ) and O-acetyl-xylo-oligosaccharides (X n Ac m ) were obtained, indicating the first cleavage of native xylan β-1,4-glycosidic linkages followed by a cleavage of α-1,2-glycosidic linkage in 4-O-methylglucuronic acid (MG) residue at mainly 220–230 °C under 10 MPa. At subsequent stage of 230 °C/10 MPa, X n Ac m were predominantly recovered. As the treatment was prolonged at 230 °C, X n Ac m were reduced, but remained to some extent, indicating that the acetyl group which is hydrolyzed to be acetic acid is more resistant than MG residue. In such a stage of treatment, cellulose started to hydrolyze to cello-oligosaccharides. These lines of evidence can clearly indicate the hydrolysis pathway of native O-acetyl-4-O-methylglucuronoxylan as treated by hot-compressed water. Thus, xylo-oligosaccharides recovered in a very early stage of the semi-flow hot-compressed water treatment preserve native O-acetyl-4-O-methylglucuronoxylan.  相似文献   

20.
The influence of inorganic matter on the pyrolysis of Japanese cedar (Cryptomeria japonica) wood was studied at a gasification temperature of 800°C with demineralization through acid washing. Some influences on the formation of char, tar, and low molecular weight products coincided with results reported at temperatures lower than the gasification temperature. However, the carbonization behavior of the volatile products and the yield of polysaccharide fraction were not able to be explained as a sum of the pyrolysis of cellulose, hemicellulose, and lignin even after demineralization. These results suggest some interactions between wood constituent polymers other than the influence of inorganic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号