首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
秸秆生物炭对玉米农田温室气体排放的影响   总被引:7,自引:0,他引:7  
通过大田试验,采用静态暗箱-气象色谱法研究玉米农田不施生物炭(C0),施生物炭分别为15 t/hm2(C15)、30 t/hm2(C30)和45 t/hm2(C45)后温室气体(CO_2、CH_4和N_2O)的排放特征,并估算CH_4和N_2O的综合增温潜势(GWP)及排放强度(GHGI)。结果表明:添加生物炭显著降低CO_2和N_2O的季节累积排放总量,与C0处理相比,CO_2最大降幅为24.6%(C15),N_2O最大降幅为110.35%(C45),且其随着生物炭施用量的增加而降低;CH_4的季节累积排放总量由小到大依次为:C15、C30、C0、C45,其中,C15处理较C0处理降低幅度最大为259.62%,添加生物炭同时也降低CH_4和N_2O的综合增温潜势(GWP)及排放强度(GHGI),处理C15、C30和C45的GWP值较对照C0分别降低88.2%、123.2%和109.9%,GHGI分别降低88.86%、121.60%和100.03%。施用适量的生物炭可以有效增加玉米产量,处理C15、C30和C45的增幅分别为6.28%、7.27%和1.69%。处理C30显著降低CH_4和N_2O的综合增温潜势及其排放强度,并且产量的增幅最大。因此,在当前玉米农田管理措施下,生物炭施用量为30 t/hm2时可实现玉米增产和固碳减排的目标。  相似文献   

2.
废煎炸油制生物柴油全生命周期分析   总被引:1,自引:0,他引:1  
运用生命周期评价方法对一种以废煎炸油为原料制取的生物柴油生命周期能耗和排放进行了分析,并将其全生命周期各项指标与传统柴油路线进行了对比,结果显示其化石能源消耗比柴油减少了65.7%,石油消耗较柴油全生命周期减少91.8%,常规排放也都明显降低,温室气体排放中CO_2排放下降88.1%,总的温室气体排放按全球变暖潜值折算后下降86.6%.表明废煎炸油制生物柴油是符合循环经济的环境友好型代用燃料.  相似文献   

3.
全球气候不断变暖已是不争的事实,而农田土壤所排放的温室气体为其做出了很大贡献,同时土壤盐渍化亦成为制约目前农田发展的重要颈瓶,为农田土壤盐渍化并同步缓解农田温室气体排放和发展可持续低碳农业,推进废弃物资源综合利用。本文选用秸秆生物炭、石膏、石膏+有机肥作为土壤改良剂,采用静态暗箱-气相色谱法对盐渍化农田土壤温室气体(CO_2、CH_4、N_2O)进行原位采集,分析不同处理对土壤温室气体排放的影响,为抑制和降低农业领域温室气体的排放提供理论依据。本研究共设4个试验处理,即生物炭(DC)、石膏(DS)、石膏+有机肥(DSF)和空白(CK),每个处理设3个重复,同时辅以相同的灌溉与施肥措施。结果表明:各处理的CO_2平均排放通量差异性显著(p0.05),石膏对抑制CH_4和N_2O排放通量的效果最好。DC、DSF、CK处理温室气体排放强度(GHGI)差异性不显著,但与DS差异性显著。与对照相比,DSF、DC、DS温室气体排放强度(GHGI)均表现为降低趋势,分别降低了5.57%、16.77%、34.93%。施加生物炭和石膏对降低盐渍化土壤pH和EC有明显效果。盐渍化农田施加生物炭和石膏加有机肥可显著提高有机质、碱解氮、速效磷含量改善土壤理化性。综合分析各处理对温室气体指标的影响,石膏对抑制温室气体排放的效果最佳,生物炭效果次之。而对土壤改良效果生物炭较优。  相似文献   

4.
灌溉影响土壤微生物活动和作物根系生长,进而影响土壤CO_2的产生和排放。为揭示亏缺灌溉夏玉米地土壤CO_2的排放特征,于2015年6-10月在西北农林科技大学中国旱区节水农业研究院农田水分转化试验场,采用静态暗箱-气相色谱法对夏玉米地土壤CO_2排放进行了原位观测。试验设置3个处理,分别为充分灌溉(CK),亏水20%(T1)和亏水40%(T2)。结果表明:夏玉米地土壤CO_2排放通量在播种后达到峰值并急剧下降至低谷,直到在灌水后出现短暂的次高峰期,随后一直维持在较低排放水平直到玉米收获。在灌水后,土壤CO_2的排放通量表现为CKT1T2,且CK与T2,T1与T2处理间有显著差异(P0.05)。不同灌溉水平下,夏玉米地土壤CO_2排放通量与土壤充水孔隙率呈指数正相关关系,相关性达显著水平(P0.05)。亏缺灌溉在一定程度上抑制了土壤CO_2的排放,土壤充水孔隙率低于50%时,CO_2排放通量维持在较低水平,但当土壤充水孔隙率高于50%时,CO_2排放通量随着土壤充水孔隙率的增加而有大幅度增加。该研究结果可为农田的节水减排提供参考。  相似文献   

5.
共轨柴油机燃用生物柴油限制与非限制排放特性   总被引:4,自引:1,他引:3  
在高压共轨柴油机上对生物柴油混合燃料(源自食用废油)的排放物进行了研究.结果表明,限制性气体排放中,随着生物柴油混合比例的增加,Nox的排放量明显升高,同时在氧化催化器后Nox中的NO2体积分数也逐步增大;烟度则随着燃料混合比例的增加呈线性下降.非限制性气体排放中,外特性工况下的生物柴油混合燃料的乙醛排放量随混合比的增加而降低;SO2气体排放量也随着燃料混合比例的增加逐步下降,纯生物柴油可降低20%~60%.生物柴油的颗粒粒径分布表明,生物柴油的核态纳米颗粒对混合燃料的硫含量非常敏感,由于纯生物柴油硫含量低,故可以有效降低颗粒的总数量浓度.  相似文献   

6.
为研究加气条件下土壤过氧化氢酶活性(CAT)和番茄生长对土壤CO_2排放的影响,试验于2017年4月至7月采用静态暗箱/气相色谱法对加气灌溉(AI)和常规膜下滴灌(CK)两个处理下的温室番茄地土壤CO_2排放进行原位监测;并同时测定各处理CAT、土壤充水孔隙率(WFPS)、土壤温度和番茄株高。结果表明:在番茄整个生育期内,各处理土壤CO_2排放通量均呈现先增加后减小的趋势; CAT呈现波动性变化,在生育末期达到最大值。AI处理CO_2累积排放量(9 031.08 kg/hm2)较CK处理增加了2.4%,但不显著(P0.05)。此外,加气灌溉促进了番茄的生长,增加了CAT和土壤温度,但降低了WFPS,且处理间各指标差异性均不明显(P0.05)。土壤CO_2排放通量与CAT、土壤温度和番茄株高均呈正相关(P0.05),与WFPS呈极显著负相关(P0.01)。  相似文献   

7.
采用静态箱-气相色谱法对不同灌溉方法(滴灌、沟灌)及相应施肥管理下的葡萄园土壤CO_2和CH_4排放进行了原位观测。结果表明,2012年与2013年生长季之中,不同灌溉方法显著影响葡萄园土壤CO_2和CH4的排放。以滴灌替换沟灌后,2012年CO_2与CH4减排量分别达到(3 530.34±1 611.97)kg/(hm2·a)和(0.392±0.424)kg/(hm~2·a),2013年则分别达到(2 198.43±713.97)kg/(hm~2·a)和(0.136±0.192)kg/(hm2·a),且2012年与2013年不同灌溉处理间CO_2排放量均差异显著;若将宁夏全区沟灌葡萄园全部改造为滴灌葡萄园,则2012年和2013年GWP减排总量(以CO_2计)将达到7 077.14万kg与4 402.58万kg。滴灌能有效抑制土壤CO_2与CH_4的排放损失,更具温室气体减排潜力。  相似文献   

8.
不同灌水水平对温室番茄地土壤CO_2排放影响   总被引:1,自引:0,他引:1  
为分析不同灌水水平对温室番茄地土壤CO_2排放的影响,采用静态箱气相色谱法对2014年秋冬季和2015年春夏季番茄地土壤CO_2排放进行原位观测。试验设置2个灌水水平分别为:充分灌溉(FI)和亏缺灌溉(DI)。结果表明:番茄两个生长季中,不同灌水处理下土壤CO_2排放通量均呈波动性变化。2015年春夏季试验各处理土壤CO_2平均排放通量和排放量高于2014年秋冬季试验对应的各处理土壤CO_2平均排放通量和排放量,且两个生育期内高灌水处理的土壤CO_2排放在番茄生育期绝大多数时间内均高于低灌水处理。以2015年FI处理土壤CO_2累积排放量最大(5 641.57kg/hm~2),分别较2014年FI处理、2014年DI处理和2015年DI处理增加了3.9%、54.2%和16.7%。此外,研究还发现春夏茬试验中不同灌水处理下,土壤CO_2排放通量与土壤水分呈显著负相关关系。这为评估设施菜地温室气体减排提供一定的科学依据。  相似文献   

9.
在高压共轨柴油机上对生物柴油混合燃料(源自食用废油)的排放物进行了研究。结果表明,限制性气体排放中,随着生物柴油混合比例的增加,NOx的排放量明显升高,同时在氧化催化器后NOx中的NO2体积分数也逐步增大;烟度则随着燃料混合比例的增加呈线性下降。非限制性气体排放中,外特性工况下的生物柴油混合燃料的乙醛排放量随混合比的增加而降低;SO2气体排放量也随着燃料混合比例的增加逐步下降,纯生物柴油可降低20%~60%。生物柴油的颗粒粒径分布表明,生物柴油的核态纳米颗粒对混合燃料的硫含量非常敏感,由于纯生物柴油硫含量低,故可以有效降低颗粒的总数量浓度。  相似文献   

10.
通过2年田间试验,采用静态暗箱-气象色谱法监测冬小麦田CO_2排放速率和通量,并计算了生态系统净交换和收获指数。试验设置无覆盖对照(CK)、无覆盖补灌对照(WCK)、砾石覆盖(GM)和砾石覆盖补灌(WGM)4个处理。结果表明:2个生长季内砾石覆盖补灌处理各阶段土壤含水率和温度平均最高,其次为砾石覆盖处理,说明砾石覆盖的保水保温效果明显;土壤温度的变化规律与CO_2排放规律相同,土壤含水率变化规律与CO_2排放规律相反,土壤温度和含水率变化对CO_2排放具有显著的交互作用(P0.05);对影响农田生态系统CO_2排放的冬小麦生长参数和土壤理化特性进行相关矩阵和主成分分析,CO_2排放的分布与CK和WCK对照处理分布相似度较高,与GM和WGM砾石覆盖处理则完全相反;产量、收获指数、生态系统净交换的分布与WGM处理最为接近,其次为GM处理,说明砾石覆盖处理提高了产量,促进了生态系统净交换,降低了CO_2排放量。砾石覆盖结合关键生育期补充灌水的田间管理方式能有效改善土壤水热状况,减少农田生态系统CO_2排放。  相似文献   

11.
添加过磷酸钙的猪粪堆肥污染气体减排工艺优化   总被引:6,自引:0,他引:6  
过磷酸钙作为农业生产中常用肥料添加到堆肥中一方面能够显著降低堆肥过程中氨挥发,减少甲烷、氧化亚氮等温室气体的排放,另一方面可以提高磷的生物有效性,对于降低堆肥环境污染风险提高堆肥品质具有重要意义。为研究不同工艺参数对堆肥污染气体排放的影响,研究了添加过磷酸钙条件下不同通风率(0.12、0.24、0.36 L/(kg·min))、含水率(55%、60%、65%)和碳氮比(15、18、21)对堆肥典型污染气体CO_2、CH_4、NH_3和N_2O排放的影响。结果表明:含水率65%和通风率0.36 L/(kg·min)条件下会显著降低过磷酸钙的固氮效果,低通风率更有利于减少NH_3挥发控制氮素损失。过磷酸钙能够有效控制猪粪堆肥N_2O的排放,低通风率有利于堆肥高温期N_2O减排。过磷酸钙对CH_4的减排效果显著,受工艺参数影响较小。不同工艺参数均不会影响添加过磷酸钙堆肥达到稳定和腐熟,从CO_2、CH_4、NH_3和N_2O总温室效应减排效果来看,含水率60%、通风率0.12 L/(kg·min)、碳氮比18是最优堆肥工艺参数方案。  相似文献   

12.
为了研究生物油/柴油乳化燃料的燃烧特性,利用非离子表面活性剂复配,对热解生物油/柴油混合液进行了乳化,测量了乳化燃料的密度、热值、动力黏度及pH值。在SD1110型柴油机台架上进行4种不同配比的生物油/柴油乳化燃料的发动机台架试验,得出了柴油机燃用生物油/柴油乳化燃料和纯柴油的负荷特性和排放特性曲线,并且对乳化燃料和纯柴油的排放特性进行了对比。研究结果表明:生物油体积分数为20%的乳化燃料当量油耗率最低,乳化燃料CO的排放高于柴油的排放,且生物油含量越高CO排放越大,而乳化燃料的NO及碳烟的排放则优于纯柴油的排放。由于生物油/柴油乳化燃料的理化特性与柴油接近,可以作为普通柴油机的燃油使用。  相似文献   

13.
施肥对河套灌区土壤CO_2和N_2O排放的影响   总被引:1,自引:0,他引:1  
以河套灌区草甸碱化土为研究对象,设缓控肥(HK)、颗粒有机肥(F)、微生物菌肥(W)和农民习惯施肥(CK)4个处理,于2015年5—10月,利用静态箱-气相色谱法监测玉米整个生育期土壤CO_2和N_2O的排放量,并对玉米季农田温室气体排放量和产生的综合温室效应进行测算,研究了农田表层土壤温室气体的排放量和增温潜势。结果表明,(1)各处理N_2O的排放峰值均出现在施肥10 d后。玉米整个生育期HK处理的单位时间排放量最少(0.25 mg/(m2?h)),F处理的排放量最多(0.67 mg/(m2?h)),F处理N_2O累计排放量比CK高出62.40%;CK分别比W、HK处理N_2O排放量高出19.71%、54.26%。(2)各处理间CO_2排放差异显著(P0.05)。玉米整个生育期,W处理累积排放量最少(14 639.26 kg/hm2),F处理的排放量最多(18 603.4 kg/hm2),CK比W处理CO_2排放量高16.75%。(3)各施肥处理综合增温效应表现为HK处理W处理CKF处理。HK处理温室气体排放强度(GHGI)值最低,比CK低96%,同时保持了较高的产量水平;F处理氮肥量最大,且有较高的GHGI值,达到CK的1.70倍,同时产量较CK无显著变化;W处理氮肥量次之,且GHGI值较高,可产量较低。大量施用颗粒有机肥(F)会产生较多的温室气体,同时也会导致较强的温室效应。缓控肥(HK)处理氮肥量最小,作物产量增加,GHGI值最低,对农田温室气体减排具有较好的应用前景。  相似文献   

14.
摈弃了传统的以常规angguim iudrop had reached 50%柴油为基础油的掺混方法,而直接将生物柴油和F-T柴油进行掺混,并将其混合燃料应用于4100QBZL柴油机上.在未对原机做任何改动的情况下,研究了该机燃用不同体积配比混合燃料时的动力性、经济性及NOx和烟度排放性能.研究表明:与0#柴油相比,该机的动力性稍有下降,燃油消耗率上升;燃油消耗率和NOx#放均随着生物柴油掺混比例的增大而升高;碳烟排放显著下降,较0#柴油的降低幅度高达52%;低比例的混合燃料对NOx排放和碳烟排放的trade-off关系有明显改善;生物柴油与F-T柴油混合燃料宜在较低的生物柴油掺混比例范围内使用.  相似文献   

15.
为研究高压共轨柴油机在高原地区使用纯柴油和乙醇—生物柴油—柴油(BED)燃料时的常规排放,模拟平原地区大气压力,与单组BED燃料和纯柴油在高原地区的常规排放进行对比。试验表明,增大空气压力,过量空气系数增加。使用纯柴油时,CO和HC在高转速时明显降低,中等转速时升高,而NOx和PM明显降低;使用BED燃料时,CO排放量降低,NOx增多,而PM值大幅度下降。某些工况下,使用BED燃料可以降低HC和PM的排放量。  相似文献   

16.
为探究生物柴油对柴油机燃用F-T柴油燃烧过程和排放性能的影响,配制F-T柴油/生物柴油混合燃料(B10F-T、B20F-T、B30F-T),在柴油机上进行试验。结果表明:随着生物柴油掺混比增大,缸内最大爆发压力逐渐增加。与F-T柴油相比,生物柴油掺混比分别为10%、20%、30%时,缸内最大爆发压力分别增加1.9%、5.1%、6.9%,对应的时刻轻微滞后,且放热始点后移,放热率峰值增大。生物柴油掺混比由0增加到30%,燃烧过程滞燃期延长1 ℃A,燃烧始点后移,燃烧持续期略微升高,由35.4 ℃A增加到36.1 ℃A,燃烧重心由4.8 ℃A后移到5.9 ℃A,缸内最大燃烧温度由1 872 K升高到1 951 K。在中高负荷时,碳烟排放随生物柴油掺混比增大而明显降低。在F-T柴油中掺混生物柴油可以有效地降低HC和CO排放,HC和CO排放随生物柴油掺混比增大几乎呈线性下降趋势。随着负荷继续增加,混合燃料的HC和CO排放均逐渐下降,在75%负荷时,与燃用F-T柴油相比,生物柴油掺混比分别为10%、20%、30%时,CO排放分别降低2.9%、7.8%、12.1%。在不同负荷工况下,随着生物柴油掺混比例的增加,NOX排放均呈上升的趋势,且在高负荷工况下NOX排放上升更加明显。  相似文献   

17.
柴油机燃用生物油/柴油乳化燃料的性能试验   总被引:3,自引:0,他引:3  
采用乳化原理和方法将生物燃油与柴油乳化,制取了可直接用作柴油机燃料的乳化型生物柴油燃料,并进行了柴油机应用台架试验,以期把以农林生物质废弃物为原料的生物燃油加工成柴油机的可再生替代燃料.试验结果表明:生物燃油与柴油按照适当的比例进行乳化后在柴油机上均能够正常燃烧,在试验过程中未发现柴油机有任何异常现象;柴油机燃用乳化型生物燃油与柴油相比,燃油消耗率有所增加,但折算成当量柴油消耗率基本相当;NOx的排放明显降低;烟度排放值k不超过2,远远低于国家标准(颗粒k<3).  相似文献   

18.
以高压共轨柴油机为研究机型,运用AVL Fire构建其燃用纯柴油(B0)、纯生物柴油(B100)和B70N30(体积70%生物柴油+30%正丁醇)的三维CFD模型并进行验证。利用该模型模拟研究不同EGR率和喷油定时条件下三种燃料对发动机排放特性的影响。研究表明:同一EGR率下,与B0相比,B100和B70N30燃空当量比减小,缸内活性基(OH、O)浓度升高,NOx排放增大而碳烟(Soot)和CO排放降低;与B100相比,B70N30含氧量增加,滞燃期延长,导致Soot和CO排放降低。在相同喷油时刻下,相比B0和B100,燃用B70N30时局部高燃空当量比区域减少,CO与Soot生成降低,NOx排放高于B0;随喷油时刻过度提前至24°CA BTDC时,三种燃料的理化特性对Soot排放影响较小。  相似文献   

19.
随着晋城市设施栽培面积急剧扩大,大型连栋温室与现代栽培配套技术的引进和消化吸收,设施内CO_2施肥作为一项高产、优质、抗病的技术措施,越来越受到园艺工作者和广大菜农的关注。1.设施内CO_2施肥的效应(1)有利于培养壮苗。增施CO_2后可增强作物的光合作用,促进幼苗叶片叶绿素含量的提高,使叶片增厚浓绿。如黄瓜增施CO_2后其叶片叶绿素含量由0.93mg.g~(-1)增加到1.1mg.g~(-1),提高18.75%,叶片干样质量增加23.73%。增施CO_2还明显促进营养器官的生长,如使根系发达、茎粗增大、花芽分化节位降低、有利于壮苗的形成。例如:大棚内育苗CO_2浓度  相似文献   

20.
生物油/乙醇/柴油混合燃料(BE-diesel)互溶性好、稳定性高,能有效地降低发动机有害物排放;当柴油含量一定时增加生物油的添加量可以提高混合燃料的低热值和十六烷值,有助于提高动力性能,是较有发展潜力的替代燃料。本文主要从理化性质、稳定性、动力性能和排放等方面介绍BE-diesel应用于柴油发动机的研究进展,并指出其发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号