首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Estimates of the effects of alternative discrete irrigation water scheduling options on consumptive use or evapotranspiration and on crop yield are developed for a northeastern Colorado case study. The analysis proceeds from the premise that farmers, rather than considering irrigation water as a continuously variable input, tend to treat irrigations as discrete events, and make scheduling decisions as choices among numbers of irrigations of approximately equal volume. The van Genuchten-Hanks model is employed to develop a transient-state water-crop production function model. Results for two crops – corn grain and edible dry beans – are presented here. Findings are that the effect of the number of irrigations on evapotranspiration and yield per hectare varies widely, depending upon the timing of applications. When farmers can choose the optimal timing of irrigations, a reduced number of irrigations has a relatively limited adverse effect on crop production until irrigations are reduced to less than four per season. However, there are many situations in which an inability to apply water can result in a very large reduction from potential maximum yield, particularly if water is withheld early in the season and/or during the rapid growth period of the crops. In many contexts of irrigation water management, water policy analysts will wish to consider the more realistic discrete-input simulation model for policy evaluation. Received: 1 November 1996  相似文献   

2.
Drip irrigation is widely recognized as potentially one of the most efficient irrigation methods. However, this efficiency is often not achieved because systems are not always well designed or maintained and many farmers lack the tools to assess the crop water requirements and to monitor the soil moisture conditions in the field. There is a vast amount of literature on irrigation scheduling but little literature takes scientific information the next step by preparing practical guidelines for smallholder farmers. There is a large and widening gap between the state of the art irrigation scheduling tools and current on-farm irrigation practices. Most farmers find current irrigation scheduling tools overwhelming and lack the means and skills to install and operate them. It is suggested that farmers need simple, cheap and more comprehensive support tools to achieve improved irrigation management at the farm level. Wageningen University and Research Centre (WUR) developed the Drip Planner Chart (DPC) to provide smallholder farmers with a simple tool to schedule drip irrigation to the crops?? needs. DPC is a manual disk calculator to calculate daily irrigation requirement. Farmers?? feedback was the basis for developing the DPC. Using DPC over a three-year period in Spain resulted in a 14 % water saving and improved irrigation timing. Trials at smallholder farmer fields in Nepal and Zambia showed DPC advice is more adapted to the changing demands of the crop over the different growth stages and responds to the farmer??s quest for practical drip scheduling advice. This paper presents the Drip Planner Chart and the scientific validation of the accuracy of the DPC. Experiments on farmers?? fields show water saving in Nepal and improved yield in Zambia. In both countries an improved scheduling over the growing seasons was found using DPC.  相似文献   

3.
A 4-year field experiment was conducted in a semi-arid area to evaluate the response of each furrow and alternate furrow irrigation in wheat-cotton system using irrigation waters of different qualities in a calcareous soil. Irrigation was applied to each and alternate furrow of bed-planted wheat followed by ridge-planted cotton for comparison with standard check-basin method of irrigation to both the crops. These methods of irrigation were evaluated under three water qualities namely good quality canal water (CW), poor quality tube well water (TW) and pre-sowing irrigation to each crop with CW and all subsequent irrigations with TW (CWpsi + TW). The pooled results over 4 years revealed that wheat grain yield was not affected significantly with quality of irrigation water, but significant yield reduction was observed in alternate bed irrigation under canal water and tube well water irrigations. In cotton, poor quality tube well water significantly reduced the seed cotton yield in all the three methods of planting. The pre-sowing irrigation with canal water and all subsequent irrigations with tube well water improved the seed cotton yield when compared with tube well water alone. However, this yield increase was significant only in alternate furrow irrigation, and the yield obtained was on a par with yield under alternate furrow in CW. When compared to check-basin irrigation, each furrow and alternate furrow irrigation resulted in a saving of 30 and 49% of irrigation water in bed-planted wheat, whereas the corresponding savings in ridge-planted cotton were 20 and 42%, respectively. Reduced use of irrigation water under alternate furrow, without any significant reduction in yield, resulted in 28.1, 23.9 and 43.2% higher water use efficiency in wheat under CW, TW and CWpsi + TW, respectively. The corresponding increase under cotton was 8.2, 2.1 and 19.5%. The implementation of alternate furrow irrigation improved the water use efficiency without any loss in yield, thus reduced use of irrigation water especially under poor quality irrigation water with pre-sowing irrigation with canal water reduced the deteriorating effects on yield and soil under these calcareous soils.  相似文献   

4.
Access to irrigation water is a critical element in meeting the food demands of a rapidly increasing population in the Middle Mountains of Nepal. The recent introduction of low-cost drip irrigation (LCDI) to Nepal represents an affordable means of expanding irrigation into rainfed areas, thereby increasing land productivity. This study presents a comparison of the effects on soil volumetric water content and cauliflower yield of three irrigation methods (LCDI, conventional drip irrigation (CDI), and hand watering) operated under three different irrigation regimes in the Jhikhu Khola Watershed, Nepal. Irrigation regime R1 supplied only half of the estimated crop water requirement, characterized by small volumes applied on alternate days. The other two irrigation regimes (regimes R2 and R3), supplied the full estimated crop water requirement, however differed in application timing. Small volumes were applied frequently (daily) under regime R2, whereas in regime R3, greater water volumes were applied less frequently (alternate days for the majority of experiment). Although differences in the soil volumetric water content (SVWC) were present between the irrigation methods, differences were not consistent between the three irrigation regimes. Regardless of irrigation regime, cumulative cauliflower yields were lowest under conventional drip irrigation. In contrast, there were significant differences in cauliflower yield between LCDI and hand watering between irrigation regimes. Irrigation regime R1 resulted in lower SVWC and lower cumulative yields than regimes R2 and R3, however, water-use efficiency was greater under regime R1 than under regimes R2 and R3. These results suggest that LCDI and hand watering are both viable options to increase food production in water scarce, small-scale farming in Nepal, however, long-term economic and labour benefits are greater under LCDI.  相似文献   

5.
Evaluating irrigation performance in a Mediterranean environment   总被引:3,自引:0,他引:3  
Assessment of irrigation performance is a prerequisite for improving water use in the agricultural sector to respond to perceived water scarcity. Between 1996 and 2000, we conducted a comprehensive assessment of the performance of the Genil–Cabra irrigation scheme (GCIS) located in Andalusia, southern Spain. The area has about 7,000 ha of irrigated lands distributed in 843 parcels and devoted to a diverse crop mix, with cereals, sunflower, cotton, garlic and olive trees as principal crops. Irrigation is on demand from a pressurized system and hand-moved sprinkler irrigation is the most popular application method. Six performance indicators were used to assess the physical and economic performance of irrigation water use and management in the GCIS, using parcel water-use records and a simulation model. The model simulates the water-balance processes on every field and computes an optimal irrigation schedule, which is then checked against actual schedules. Among the performance indicators, the average irrigation water supply:demand ratio (the ratio of measured irrigation supply to the simulated optimum demand) varied among years from 0.45 to 0.64, indicating that the area is under deficit irrigation. When rainfall was included, the supply:demand ratio increased up to 0.87 in one year, although it was only 0.72 in the driest year, showing that farmers did not fully compensate for the low rainfall with sufficient irrigation water. Nevertheless, farmers in the area made an efficient use of rainfall, as indicated by the relatively high values (0.72–0.83) for the ratio of actual:attainable crop yields. Water productivity (WP) in the GCIS oscillated between 0.72 €/m3 and 1.99 €/m3 during the 4 years and averaged 1.42 €/m3 of water supplied for irrigation, while the irrigation water productivity (IWP) averaged 0.63 €/m3 for the period studied. WP is higher than IWP because WP includes production generated by rainfall, while IWP includes only the production generated by irrigation.Communicated by A. Kassam  相似文献   

6.
About half of the total fresh water used for irrigation in Asia is used for rice production. Decreasing water resources and increasing water costs necessitates increasing water use efficiency for rice. The most common method of irrigation in northwestern India is through alternate wetting and drying with a fixed irrigation interval, irrespective of soil type and climatic demand resulting in over-irrigation or under-irrigation under different soil and weather situations. Soil matric potential may be an ideal criterion for irrigation, since variable atmospheric evaporativity, soil texture, cultural practices and water management affect rice irrigation water requirements. A 4-year field study was conducted to assess the feasibility of rice irrigation scheduling on the basis of soil matric potential and to determine the optimum matric potential so as to optimize irrigation water without any adverse effect on the yield. The treatments included scheduling irrigation to rice with tensiometers installed at 15–20 cm soil depth at five levels of soil matric suction viz. 80, 120, 160, 200 and 240±20 cm, in addition to the recommended practice of alternate wetting and drying with an interval of 2 days after complete infiltration of ponded water. The grain yield of rice remained unaffected up to soil moisture suction of 160±20 cm each year. Increasing soil matric suction to 200 and 240±20 cm decreased rice grain yield non-significantly by 0–7% and 2–15%, respectively, over different years compared to the recommended practice of the 2-day interval for scheduling irrigation. Irrigation at 160±20 cm soil matric suction helped save 30–35% irrigation water compared to that used with the 2-day interval irrigation. With a soil matric potential irrigation criterion the total amount of irrigation water used was a function of the number of rainy days and evaporation during the rice season.  相似文献   

7.
Improving on-farm water management through an irrigation scheduling service   总被引:1,自引:1,他引:0  
Irrigation scheduling services (ISS) provide farmers with recommendations on timing and amount of irrigation, thus contributing to improving on-farm water management. There are wide variations in the level of services, from providing regional water use guidelines to local, on-farm advisory services. An ISS (ISS-ITAP) was created in 1988 in Albacete, Central Spain, a province encompassing 100,000 ha which are irrigated mostly with groundwater. The ISS-ITAP first offered general information on crop water requirements (ET), and after 1994 field-specific scheduling services were provided to growers. By 2005 the ISS-ITAP had expanded its services to over 33,500 ha, corresponding to about 30% of the irrigable area. The evolution of irrigation performance in a number of individual farms was followed over 10 years, and it was found that the proportion of fields which were adequately irrigated increased from 50 to over 70% in that period. Meanwhile, the proportion of deficit-irrigated fields declined from 20 to 10%, while the proportion of over-irrigated fields which also had initially decreased from 20 to 10%, went back to 20% at the end of the study period. To assess the benefits and costs of the ISS-ITAP, a comparison of the yields achieved in the scheduled farms against those obtained in the rest of the province was carried out. When the Service was evaluated in economic terms, using information from 2003, the pay-back was 2 years and the internal rate of return was 59.1%, highlighting the high returns on the public funds invested by ISS-ITAP to provide irrigation advisory service to growers in the Albacete province.  相似文献   

8.
The principal finding of the study is that social power positions held by Egyptian farmers sharings a common watercourse do not have significant influence in the farmer's ability to control irrigation water distribution. Other variables used to describe irrigation management; location on the water course and farmers' use of more than one source of water to irrigate; also do not yield any explanations as to why particular farmers have more control over their irrigation than others. Farmers who have more control are less likely to be affected by other farmers' actions, physical problems on delivery canals, breakdown in pumps, and government officials actions. While differences in irrigation control among farmers exist, no single cause is identified. Two explanations for the findings are (1) water control is sufficient for a large percentage of Egyptian farmers, and (2) adequately explaining irrigation behavior cannot be done with separate variables.Deceased  相似文献   

9.
Many farmers in West Central Nebraska have limited irrigation water supplies, and need to produce crops with less water. This study evaluated the impact of four water management strategies on grain yield of surface-irrigated corn (Zea mays L.) at North Platte, Nebraska. Treatments included: (1) no irrigation (DRYLAND), (2) one irrigation prior to tassel formation (EARLY), (3) one irrigation during the silk stage (LATE), and (4) irrigation following farmer’s practices (FARMER). The study included three wet years (1992, 1993, and 1996) and 2 years with average annual rainfall for the area (1994 and 1995). Significant yield differences among treatments, and a yield response to irrigation, were only observed during the 2 years with average rainfall. During all years, the FARMER treatment was over-irrigated and resulted in considerable water losses by runoff and deep percolation. Grain yield response to irrigation during the three wet years was insignificant among the treatments, but significant during the dry years. The results of this study suggest that inducing stress is not a good strategy for increasing crop water productivity (yield per unit ETd) for corn and point out the need to minimize irrigation water losses and improve irrigation scheduling.  相似文献   

10.
11.
This paper reports on results from a case study on water management within a traditional, falaj irrigation system in northern Oman. In the planning and design of regional irrigation development programs, generalized assumptions are frequently made as to the efficiency of traditional surface irrigation systems. Although qualitative accounts abound, very little quantitative research has been conducted on on-farm water management within falaj systems. Daily irrigation applications and crop water use was monitored during an 11-month period among 6 farm holdings at Falaj Hageer in Wilayat Al-Awabi. Contrary to the frequent assumptions that all surface irrigation systems incur unnecessarily high water losses, on-farm ratios of crop water demand to irrigation supply were found to be relatively high. Based on actual crop water use, irrigation demand/supply ratios among monitored farms varied from 0.60 to 0.98, with a mean of 0.79. Examination of the soil moisture budget indicates that during most irrigations of wheat (cultivated in the low evapotranspiration months of October–March) sufficient water is applied for the shallow root zone to attain field capacity. With the exception of temporary periods of high falaj delivery flows or periods of rainfall, field capacity is usually not attained during irrigations within the more extensive root zones of date palm farms. The data presented in this paper should provide a better understanding of water use performance by farmers within traditional falaj systems. Moreover, these data should also serve to facilitate more effective development planning for irrigation water conservation programs in the region.  相似文献   

12.
Improvement of irrigation management in areas subjected to periods of water scarcity requires good knowledge of system performance over long time periods. We have conducted a study aimed at characterizing the behaviour of an irrigated area encompassing over 7000 ha in Southern Spain, since its inception in 1991. Detailed cropping pattern and plot water use records allowed the assessment of irrigation scheme performance using a simulation model that computed maximum irrigation requirements for every plot during the first 15 years of system operations. The ratio of irrigation water used to maximum irrigation requirements (Annual Relative Irrigation Supply, ARIS) was well below 1 and oscillated around 0.6 in the 12 years that there were no water supply restrictions in the district. The ARIS values varied among crops, however, from values between 0.2 and 0.3 for sunflower and wheat, to values approaching 1 for cotton and sugar beet. Farmer interviews revealed some of the causes for the low irrigation water usage which were mainly associated with the attempt to balance profitability and stability, and with the lack of incentives to achieve maximum yields in crops subsidized by the Common Agricultural Policy (CAP) of the European Union. The response to water scarcity was also documented through interviews and demonstrated that the change in crop choice is the primary reaction to an anticipated constraint in water supply. Water productivity (value of production divided by the volume of irrigation water delivered; WP) in the district was moderate and highly variable (around 2€ m−3) and did not increase with time. Irrigation water productivity (increase in production value due to irrigation divided by irrigation water delivered) was much lower (0.65€ m−3) and also, it did not increase with time. The lack of improvement in WP, the low irrigation water usage, and the changes in cropping patterns over the first 15 years of operation indicate that performance trends in irrigated agriculture are determined by a complex mix of technical, economic, and socio-cultural factors, as those that characterized the behaviour of the Genil-Cabra irrigation scheme.  相似文献   

13.
As water resources are limited and the demand for agricultural products increases, it becomes increasingly important to use irrigation water optimally. At a farm scale, farmer's have a particularly strong incentive to optimize their irrigation water use when the volume of water available over a season is production limiting. In this situation, a farmer's goal is to maximize farm profit, by adjusting when and where irrigation water is used. However, making the very best decisions about when and where to irrigate is not easy, since these daily decisions require consideration of the entire remaining irrigation season. Future rainfall uncertainty further complicates decisions on when and which crops should be subjected to water stress. This paper presents an innovative on-farm irrigation scheduling decision support method called the Canterbury irrigation scheduler (CIS) that is suitable when seasonal water availability is limited. Previous optimal scheduling methods generally use stochastic dynamic programming, which requires over-simplistic plant models, limiting their practical usefulness. The CIS method improves on previous methods because it accommodates realistic plant models. Future farm profit (the objective function) is calculated using a time-series simulation model of the farm. Different irrigation management strategies are tested using the farm simulation model. The irrigation strategies are defined by a set of decision variables, and the decision variables are optimized using simulated annealing. The result of this optimization is an irrigation strategy that maximizes the expected future farm profit. This process is repeated several times during the irrigation season using the CIS method, and the optimal irrigation strategy is modified and improved using updated climate and soil moisture information. The ability of the CIS method to produce near optimal decisions was demonstrated by a comparison to previous stochastic dynamic programming schedulers. A second case study shows the CIS method can incorporate more realistic farm models than is possible when using stochastic dynamic programming. This case study used the FarmWi$e/APSIM model developed by CSIRO, Australia. Results show that when seasonal water limit is the primary constraint on water availability, the CIS could increase pasture yield revenue in Canterbury (New Zealand) in the order of 10%, compared with scheduling irrigation using current state of the art scheduling practice.  相似文献   

14.
A field experiment was conducted for 3 consecutive years to study the effects of water deficit on yield, water productivity and net return of wheat. Yield attributes were affected by deficit irrigation treatments although they are not statistically different in all cases. The grain and straw yields were significantly affected by treatments. The highest grain yield was obtained with the no-deficit treatment. Differences in grain and straw yield among the partial- (single- or two-stage deficit) and no-deficit treatments are small and statistically insignificant in most cases. The highest water productivity and productivity of irrigation water were obtained in the alternate deficit treatment (T7), where deficits were imposed at maximum tillering (jointing to shooting) and flowering to soft dough stages of growth period, followed by single irrigation at crown root initiation stage. Under both land- and water-limiting conditions, the alternate deficit strategy (T7) showed maximum net financial return. The results will be helpful in policy planning regarding irrigation management for maximizing net financial returns from limited land and water resources.  相似文献   

15.
Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after tuber bulking and lasted for 6 weeks until final harvest. Analysis across the soil textures showed that fresh yields were not significant between the irrigation treatments. However, the same analysis across the irrigation treatments revealed that the effect of soil texture was significant on the fresh yield and loamy sand produced significantly higher fresh yield than the other two soils, probably because of higher leaf area index, higher photosynthesis rates, and “stay-green” effect late in the growing season. More analysis showed that there was a significant interaction between the irrigation treatments and soil textures that the highest fresh yield was obtained under FI in loamy sand. Furthermore, analysis across the soil textures showed that water productivities, WP (kg ha−1 fresh tuber yield mm−1 ET) were not significantly different between the irrigation treatments. However, across the irrigation treatments, the soil textures were significantly different. This showed that the interaction between irrigation treatments and soil textures was significant that the highest significant WP was obtained under DI in sandy loam. While PRD and DI treatments increased WP by, respectively, 11 and 5% in coarse sand and 28 and 36% in sandy loam relative to FI, they decreased WP in loamy sand by 15 and 13%. The reduced WP in loamy sand was due to nearly 28% fresh tuber yield loss in PRD and DI relative to FI even though ET was reduced by 9 and 11% in these irrigation treatments. This study showed that different soils will affect water-saving irrigation strategies that are worth knowing for suitable agricultural water management. So, under non-limited water resources conditions, loamy sand produces the highest yield under full irrigation but water-saving irrigations (PRD and DI) are not recommended due to considerable loss (28%) in yield. However, under restricted water resources, it is recommended to apply water-saving irrigations in sandy loam and coarse sand to achieve the highest water productivity.  相似文献   

16.
A computer program model for pricing irrigation water among beneficiaries was developed and tested. The data used for the purpose was collected from Lower Moshi farmer-managed irrigation scheme (FMIS) in northern part of Tanzania as a case study. The scheme has two intakes; namely Rau and Mabogini irrigation systems. Allam's mathematical model for allocating irrigation water price which was developed in Egypt (Allam, 1987) was adopted and adapted for the purpose. The results indicate that the irrigation water price depends on a number of structures serving the area, their installation costs, amount of water received by each tertiary block and water rights. The prices differ between different tertiary blocks within the same system and also between two systems that exist in Lower Moshi Irrigation Scheme (LMIS). This indicates that the model can be used as a tool by designers and planners for selecting the best designed irrigation system that farmers can afford to pay for its operation, maintenance and management. The mean irrigation water price value for Mabogini is Tshs. 12 151/-1 while that of the Rau system is 10 414/-. To maintain uniformity of irrigation water price in the scheme, it is recommended that a mean value of Tshs. 11 283/- is used. Generally, farmers in Tanzania are used to contribute one bag of paddy which costs about Tshs. 10 000/- for maintenance works. Therefore, the irrigation water price derived from the model is reasonable and one the farmers can afford.  相似文献   

17.
The looming water crisis and water-intensive nature of rice cultivation are driving the search for alternative management methods to increase water productivity in rice cultivation. Experiments were conducted under on-station and on-farm conditions to compare rice production using modified methods of irrigation, planting, weeding and nutrient management with conventional methods of cultivation. Farm surveys were used to evaluate adoption of modified rice cultivation method. On-station experiments showed that, a combination of water-saving irrigation, young seedling or direct seeding, mechanical weeding and green manure application increased the rice water productivity though the largest yields were obtained for a combination of conventional irrigation, young seedling or direct seeding, mechanical weeding and green manure application. On-farm experiments demonstrated a yield advantage of 1.5 t ha−1 for the modified method over conventional method. We found, however, that yield advantages were not the sole factor driving adoption. Associated changes required in management, including the increased labour demand for modified planting, unwillingness of agricultural labourers to change practices, difficulties with modified nursery preparation and the need to replace cheaper women’s labour for hand weeding with more costly men’s labour for mechanical weeding, all reduced the chance of adopting the modified rice cultivation method. Risks associated with water-saving irrigation, such as uncertainty about the timing and amount of water release for irrigation affect adoption adversely as well. There was no incentive for farmers to adopt water-saving irrigation as water from reservoirs and electricity for pumping well-water are both free of charge. To date farmers continue to experiment with the modified cultivation method on a small part of their farms, but are unlikely to adopt the modified method on a large-scale unless policies governing water management are changed.  相似文献   

18.
Agricultural water productivity assessment for the Yellow River Basin   总被引:1,自引:0,他引:1  
Agricultural water productivity (WP) has been recognized as an important indicator of agricultural water management. This study assesses the WP for irrigated (WPI) and rainfed (WPR) crops in the Yellow River Basin (YRB) in China. WPI and WPR are calculated for major crops (corn, wheat, rice, and soybean) using experimental, statistical and empirically estimated data. The spatial variability of WPI and WRR is analyzed with regard to water and energy factors. Results show that although irrigated corn and soybean yields are significantly higher than rainfed yields in different regions of the YRB, WPI is slightly lower than WPR for these two crops. This can be explained by the seasonal coincidence of precipitation and solar energy patterns in the YRB. However, as expected, irrigation stabilizes crop production per unit of water consumption over space. WPI and WPR vary spatially from upstream to downstream in the YRB as a result of varying climate and water supply conditions. The water factor has stronger effects on both crop yield and WP than the energy factor in the upper and middle basin, whereas energy matters more in the lower basin. Moreover, WP in terms of crop yield is compared to that in terms of agricultural GDP and the results are not consistent. This paper contributes to the WP studies by a basin context, a comparison between WPI and WPR, a comparison of WP in terms of crop yield and economic value, and insights on the water and energy factors on WP. Moreover, policy implications based on the WP analysis are provided.  相似文献   

19.
Good water management combined with appropriate soil management is necessary for sustainable crop production in drylands. A pot culture experiment was conducted using sand dune soil under greenhouse conditions to evaluate the response of wheat (Triticum aestivum L.) to the application of farmyard manure (FYM) or poultry manure (PM), and irrigation with water at two salinity levels (0.11 and 2.0 dS m−1) and two irrigation intervals (daily and every second day). The manure was applied at a rate of 20 Mg ha−1. The soil water content, measured 1 h before every irrigation, showed that soil treated with PM retained more water than that treated with FYM, while the control (no manure) contained the least water. FYM treatment resulted in 78 and 21% higher dry matter yield compared to the control and PM treatments, respectively, under daily irrigation using good-quality water. The increase was 29 and 55%, respectively, when saline water was used for daily irrigation. A similar trend was observed with the alternate day irrigation treatment; FYM gave the highest dry matter yield. The number of tillers and plant height showed that FYM was better than PM, which in turn was better than the control under irrigation with good-quality water regardless of the irrigation interval. When water of the highest salinity was used for irrigation, FYM was still always the best, but the control was now better than the PM treatment. The electrical conductivity of the soil measured at the end of the experiment was slightly higher with PM, as compared to the FYM and control treatments. A significant interaction between irrigation water quality and manure application was observed, affecting plant growth. PM aggravated the adverse affect of saline water on plant growth by increasing soil salinity.  相似文献   

20.
This paper evaluates the performance of the first drip irrigation scheme in commercial tea production in Tanzania with a view to making recommendations for improved management and providing data for investment decisions. Uniformity, efficiency and adequacy of irrigation were calculated and the scheduling of irrigation water was reviewed. Operators were interviewed to highlight the main benefits and problems of the system. Investment and recurrent costs of drip and overhead sprinkler systems were quantified and compared. Root development was assessed qualitatively using excavation pits. Irrigation uniformity DU and efficiency ranged between 88 and 95% in the 10 out of 14 irrigation blocks where endline pressures were at least 0.5 bars, and between 77 and 89% in the four blocks were endline pressure was less than 0.5 bars. Scheduling drip irrigation using tensiometers offered potential water savings of 26% in comparison to a water balance schedule, but these are not currently realised. Gross marginal income was very sensitive to tea price and yield. Economically optimal fertilizer rates vary in dependence of tea price and yield and appear to be lower than the current level of 300 kg N ha−1. The higher costs under drip, compared to overhead sprinklers, were mainly for purchase and installation and fertilizer. The costs of labour for applying water and fertilizer were reduced by nearly 50%. At average 2002 tea prices of 1.31 US$ kg−1, drip irrigation would improve the grower’s gross margin if an additional yield of at least 411 kg ha−1 was achieved. The main threats to drip system performance are discussed. Future research efforts should aim at establishing the yield response of tea to water and fertilizer under drip irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号