首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

2.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

3.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

4.
《Field Crops Research》2005,91(2-3):251-261
Winter rainfall in a Mediterranean region varies from year to year. Both release of inorganic N from soil organic matter (SOM) or a legume cover crop (LCC) and subsequent nitrate movement in the soil profile are strongly affected by winter rainfall, through its effects on soil water status and on vertical flux. N accumulation of a LCC also varies over years due to weather effects on growth. Thus, these two factors need to be taken into account for efficient use of SOM-N and LCC-N in a wheat (Triticum aestivum L.) rotation. To determine how winter weather might affect the performance of wheat-fallow rotations that include an LCC grown and incorporated during the fallow year, we used the CERES-wheat model and a 46-season weather record to simulate N dynamics of 2-year unfertilized and irrigated winter-LCC wheat systems with high LCC (236 kg N ha−1) or low LCC (118 kg N ha−1) inputs. Unfertilized and fertilized fallow-wheat controls were also simulated. Within a given LCC input value, coefficients of variation for total seasonal N supply (the sum of predicted wheat N uptake, N leaching and inorganic soil N at wheat maturity) over years were <15%, despite the fluctuating winter rainfall (CV 48%). Average N leaching was predicted to be highest in the high LCC input system (108 kg N ha−1), followed by the low LCC input system (86 kg N ha−1) and midseason-intensive and planting-intensive fertilized wheat-fallow systems (82 and 72 kg N ha−1, respectively), and least in the unfertilized wheat-fallow system (54 kg N ha−1). N leaching exceeded 100 kg N ha−1 in 4, 20, 16, 18, and 29 seasons out of 46 seasons, respectively, in the unfertilized and planting-intensive and midseason-intensive fertilized wheat-fallow rotations and in wheat rotations with low and high LCC inputs. There was no difference in predicted wheat yield among the four systems with N inputs from fertilizer or LCC, but yield was lower in the unfertilized wheat-fallow rotation. If the goal of use of LCC was to attain the same yield level as high LCC input or fertilized wheat system while diminishing the risk of N leaching, the low LCC input case met this goal in the short term. However, a simple balance sheet using the model showed that the N balance of the low LCC input system was −147 kg N ha−1 season−1, if we assumed 50% of LCC-N was derived from atmospheric fixation. The low-LCC-input system could therefore fail to maintain inherent soil N fertility in the long term unless nearly 100% LCC-N was derived from fixation.  相似文献   

5.
《Field Crops Research》2006,96(1):90-97
Low native nitrogen (N) and phosphorus (P) coupled with imbalanced nutrient application is a major constraint limiting productivity of intercropping systems on Vertisols of the semi-arid tropical India. In a 3-year field experiment competition behaviour of component crops for nutrients use in soybean/pigeonpea intercropping system was assessed based on relative yield (RY), relative nitrogen yield (RNY) and relative phosphorus yield (RPY) under three nutrient levels (0 NPK, 100% NPK (N:P:K = 30:26:25 kg ha−1) and 100% NPK + 4 t FYM ha−1). The result showed that before soybean harvest, the RY and RNY of soybean were greater (1.0) than the corresponding values of RY and RNY of pigeon pea (0.6). This implied that competition exists for soil N between the component crops during the first half of the cropping system. It was observed that soybean harvest did not coincide with peak flowering of pigeonpea, the stage when biological nitrogen fixation (BNF) was maximum. Thus, BNF dependency of pigeonpea was low before soybean harvest and the plants suffered from N deficiency more when no fertilizer-N was applied and diminished at a high-N level. Pigeon pea attained its peak flowering after the harvest of soybean and increased its dependency on BNF when soil N was exhausted by soybean. Thus, after the harvest of soybean, RY and RNY of pigeon pea gradually increased and approached 1.0 at maturity at all nutrient levels. The RPY values showed that phosphorus was not the limiting factor to any of the crop in the system even if it was not applied. The study thus suggests that in the soybean/pigeonpea intercropping system, N is a limiting factor for growth of pigeonpea intercrop during the first half of its growth and application of 100% NPK (30 kg N) + 4 t FYM could meet N demand of pigeonpea in N deficient soils as this nutrient management option gave higher yield, root length density and profit under soybean/pigeonpea intercropping system than 100% NPK and control.  相似文献   

6.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

7.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

8.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

9.
《Field Crops Research》1999,63(3):225-236
In rainfed agriculture, climatic variability has profound effects on the performance of management systems in improvements of productivity and use of natural resources. A field study was conducted on a Vertic Inceptisol during 1995–1997 seasons at the ICRISAT Center, Patancheru, India, to study the effect of two landforms, i.e., broadbed-and-furrow (BBF) and flat, and two soil depths (shallow and medium-deep) on crop yield and water balance of a soybean–chickpea rotation. Using two seasons experimental data, a soybean–chickpea sequencing model was evaluated and used to extrapolate the results over 22 years of historical weather records. The simulation results showed that in 70% of years total runoff for BBF was greater than 35 mm (range 35–190 mm) compared to greater than 60 mm (range 60–260 mm) for flat on the shallow soil. In contrast on the medium-deep soil it was greater than 70 mm (range 70–280 mm) for BBF compared to greater than 80 mm (range 80–320 mm) for the flat landform. The decrease in runoff on BBF resulted in a concomitant increase in deep drainage for both soils. In 70% of years, deep drainage was greater than 60 mm (range 60–390 mm) for the shallow soil and ranged from 10 to 280 mm for the medium-deep soil. In 70% of years, the simulated soybean yields were greater than 2200 kg ha−1 (range 2200–3000 kg ha−1) and were not influenced by landform or soil depth. In the low rainfall years, yields were marginally higher for the BBF than for the flat landform, especially on the shallow soil. Simulated chickpea yields were higher for the medium-deep soil than for the shallow soil. In most years, marginally higher chickpea yields were simulated for the BBF than for the flat landform on both soil types. In 70% of years, the chickpea yields were greater than 500 kg ha−1 (range 500–1500 kg ha−1) for the shallow soil, and greater than 800 kg ha−1 (range 800–1960 kg ha−1) for the medium-deep soil. Total productivity of soybean–chickpea rotation was greater than 3000 kg ha−1 (range 3000–4150 kg ha−1) for the shallow soil and greater than 3450 kg ha−1 (range 3450–4700 kg ha−1) for the medium-deep soil in 70% of years. These results showed that in most years BBF, landform increased rainfall infiltration into the soil and had marginal effect on yields of soybean and chickpea. Crop yields on Vertic Inceptisols can be further increased and sustained by adopting appropriate rain water management practices for exploiting surface runoff and deep drainage water as supplemental irrigation to crops in a watershed setting.  相似文献   

10.
《Field Crops Research》2006,96(1):125-132
The late-season foliar application of urea may increase yield and grain quality of wheat (Triticum aestivum L.). Limited information is available regarding the effect of late urea spraying on the performance of wheat cultivars under various basal N fertilization rates. Field experiments were conducted during 2000 through 2002 to evaluate the responses of six winter wheat cultivars to foliar urea (30 kg N ha−1) treatment around flowering at low (67 kg N ha−1) and high (194 kg N ha−1) basal N fertilization rates. Following urea spraying at low N rate, all cultivars increased grain yields to a similar extent (by an average of 7.8% or 509 kg ha−1) primarily due to an increase in the 1000-kernel weight. No yield response to the late-season urea treatment occurred at high basal N rate where grain yields averaged 24.9% (1680 kg ha−1) higher than those at low N rate. In contrast, late foliar urea application similarly improved grain quality at both low and high N rates by an average of 5 g kg−1 (4.5%) for protein content, 3.2 cm3 (11.9%) for Zeleny sedimentation, and 20 g kg−1 (8.6%) for wet gluten. These quality increments were consistent in all growing seasons regardless of significant variations in grain yields and protein concentrations across years. However, most cultivars failed to achieve breadmaking standards at low N rate as quality increments associated with the urea treatment were relatively small when compared to those achieved by high basal N rate. Late urea spraying had no effect on the falling number, whereas some cultivars showed small, but significant reduction in the gluten index at both N rates. Cultivars improved the hectolitre weight with the late-season urea treatment only at low N rate. Significant cultivar × urea interactions existed for most quality traits, which were due to the cultivar differences in the magnitude of responses. Thus, late-season urea spraying consistently produced larger yields at low basal N rate, and resulted in cultivar-dependent increases in protein content, Zeleny sedimentation, and wet gluten at both low and high N rates.  相似文献   

11.
《Field Crops Research》2006,95(1):75-88
Long-term trends of crop yields have been used as a means to evaluate the sustainability of intensive agriculture. Previous studies have measured yield trends from long-term rice–rice and rice–wheat experiments in different sites from the slopes of individual site regressions of yield over time. The statistical significance of each site regression was determined but not that of the aggregate trend, which could give an indication of the magnitude and significance of global yield change.The random regression coefficient analysis (RRCA) and meta-analysis were used in this study to analyze the aggregate yield trend from several long-term experiments (LTE) across the Indo-Gangetic Plains (IGP) and outside the IGP. Both methods show that there has been a significant (p < 0.05) declining trend in rice yield in rice–wheat LTEs in South Asia including China with the recommended rates of nutrients, but that there has been no significant change in wheat and system (rice + wheat) yields. There was no significant year × region (IGP versus non-IGP) interaction in rice and wheat yields. However, RRCA showed that the average yield trend was significantly negative (−41.0 kg ha−1 yr−1) only in the IGP. In the rice–rice LTEs, there was a significant year × site (IRRI versus non-IRRI sites) interaction during the dry season but not the wet season. Rice yields declined throughout Asia in the wet season. The average system (dry + wet season rice) yield trends were significantly negative in both IRRI and non-IRRI sites (−170.1 and −52.8 kg ha−1 yr−1, respectively) but the magnitude of yield decline was significantly greater in the IRRI sites than in the non-IRRI sites.Rice in the rice–wheat LTEs showed a significantly positive yield trend with the addition of farmyard manure (FYM) but the initial yield was generally lower with FYM than without FYM. After 15 years, yield increase due to FYM was not evident in most of the LTE.  相似文献   

12.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

13.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

14.
《Field Crops Research》2004,86(1):33-42
The study was undertaken to assess the variation within a bread wheat (Triticum aestivum L.) cultivar, primarily for grain yield, and the implications for wheat breeding. During the 1998–1999 growing season, cv. Nestos was established in a non-replicated (NR-0) honeycomb experiment, in the absence of competition (11 547 plants ha−1). Ten high yielding (H) and 10 low yielding (L) plants were selected, the seeds of which were used to form the respective H and L lines. The 20 lines, along with their original cultivar, were evaluated in two locations either in the absence of competition (11 547 plants ha−1) during the 1999–2000 season or under competition (5 000 000 plants ha−1) during the 2000–2001 season. Results showed significant differentiation between lines for grain yield, determined both in the absence of competition at the single-plant level, i.e. yield per plant (YP), and under competition at the crop yield level, i.e. yield per plot (CY). Significant differences between lines were also found for grain protein content (PC), grain carbon isotope discrimination (Δ), and grain ash content (ASH), either in the absence of competition or under competition. A positive relationship was found between YP and CY (r=0.53,P<0.02). Results showed that selection within a bread wheat cultivar, under very low density and on the basis of individual plant grain yield, could be an effective way to either upgrade or maintain the cultivar, whereas the use of Δ or ASH as indirect selection criteria instead of grain yield was not supported by the study.  相似文献   

15.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

16.
《Field Crops Research》2006,95(2-3):348-354
During the 2000/2001 and 2001/2002 cropping seasons, a study was conducted at the Tanganyika Planting Company (TPC) estate in Tanzania, to investigate the uptake and balance of mineral N applied as urea (60 kg ha−1) and ammonium sulphate (AS) (40 kg ha−1) on a saline (pH 8.8) and a non-saline (pH 7.8) soil. Both fertilizers were labelled with 10 at.% 15N excess. The results showed high recoveries (>90%) in the sugarcane plant growing on a non-saline soil for N applied as both urea and ammonium sulphate. On a saline soil, recoveries were lower but depended on the form of N, being lower (∼34%) with urea than with ammonium sulphate (∼77%). These lower recoveries of N in the plant were also associated with lower recoveries in the soil–plant system and imply that there were significant losses of N to the environment in this soil. Possible causes for the losses were discussed.  相似文献   

17.
《Field Crops Research》2005,91(1):71-81
Wheat (Triticum aestivum L.) cultivation in no-till soil of a postrice harvest field utilizes residual soil moisture and reduces the time period from rice harvest to wheat seeding in intensive rice-wheat cropping systems. Some of the major constraints in no-till wheat production are high weed infestation, poor stand establishment due to rapid drying of topsoil and low nitrogen use efficiency (NUE). A field experiment was conducted at the research farm of the Wheat Research Centre, Dinajpur, Bangladesh, for two consecutive years to overcome those constraints, to evaluate rice straw as mulch, and to determine the optimum application rate of nitrogen (N) for no-till wheat. The treatments included 12 factorial combinations of three levels of mulching: no mulch (M0), surface application of rice straw mulch at 4.0 Mg ha−1 that was withdrawn at 20 days after sowing (M1), the same level of mulch as M1 but allowed to be retained on the soil surface (M2), and four nitrogen levels (control 80, 120 and 160 kg ha−1). Rice straw mulching had a significant effect on conserving initial soil moisture and reducing weed growth. Root length density and root weight density of wheat were positively influenced both by straw mulching and N levels. N uptake and apparent nitrogen recovery of applied N fertilizer were higher in mulch treatments M1 and M2 as compared to M0. Also mulch treatment of M1 and M2 were equally effective at conserving soil moisture, suppressing growth of weed flora, promoting root development and thereby improved grain yield of no-till wheat. N application of 120 kg ha−1 with straw mulch was found to be suitable for no-till wheat in experimental field condition.  相似文献   

18.
《Field Crops Research》1999,63(1):79-86
This paper explores the possibility of improving yields of spring wheat (Triticum aestivum) by using plastic film mulching. Field experiments compared three mulching treatments viz. for 20 d (M1), 40 d (M2), and 60 d (M3) after sowing (DAS), with a non-mulch control (CK). Mulching increased temperature and moisture in the upper 5 cm of soil, and shoots emerged 8 d earlier than in CK. Mulching also increased number of tillers, length of the growing period, spikelet and grain numbers per spike, and the duration from flowering to harvest. In the mulched treatments, photosynthesis rate and soluble sugar content were higher in the vegetative period, but soluble sugar content was lower in the grain filling period relative to CK. Grain yield following 20 d mulching was greatest (8207 kg ha−1), and decreased gradually as the mulching period increased (7847 and 6702 kg ha−1 for M2 and M3, respectively). Plastic film removed after 20 d maximizes yield and minimizes soil pollution.  相似文献   

19.
《Field Crops Research》2006,95(2-3):135-155
A field study was carried out over 4 years at one site in the Low Po Valley, Northern Italy, to examine the effect of various levels of pig slurry applications on alfalfa (Medicago sativa L.) productivity, solar radiation utilization, and nutrient removal. Treatments consisted of three liquid pig manure rates, estimated to provide in total 300, 450 and 600 kg N ha−1 year−1 (PS300, PS450, PS600, respectively), and one unfertilized control (named as Control). Treatments were applied on the second and third year of crop stand (1994 and 1995), whilst during the subsequent fourth and fifth years of crop stand (1996 and 1997) the residual effects of previous treatments were investigated. Regardless of crop age and year-to-year variability, pig slurry tended to increase annual forage production during the 2 years of fertilization and the subsequent biennium of stand duration. Overall, the forage dry matter production, accumulated over four growing seasons and 17 cuts, was 39 000 kg ha−1 for the Control, 44 500 kg ha−1 (+14%) for PS300, to 49 800 kg ha−1 (+28%) for PS450 and 45 800 kg ha−1 (+17%) for PS600. Nitrogen concentration in shoot dry matter was not influenced by the treatment applied. P concentration, on the other hand, was substantially increased by all three rates of pig slurry application, with an evident residual effect observed during the last 2 years of crop stand. However, the evident increase of P availability, assured by pig slurry fertilization, resulted in most of cases in luxury consumption of P by the crop plant. A strong linear relationship was found between cumulative forage dry matter and accumulated incident global solar radiation. Pig slurry fertilization increased significantly the slope of the regressions with respect to the Control. Since enhanced N and P availability may reduce the carbon costs for sustaining root nodules and symbiotic organisms, it seems likely that the crop plant must gain advantage in terms of dry matter produced per unit of radiation intercepted. However, further research is needed to clarify whether the effect of manure is attributable to improved alfalfa efficiency in converting intercepted solar energy into forage dry matter, to enhanced canopy cover thus higher radiation capture per unit of soil area, or to a combination of both mechanisms.  相似文献   

20.
《Field Crops Research》2001,72(3):197-210
The effect of tillage system, crop rotation and nitrogen (N) fertilization rates on the quality of hard red spring wheat (Triticum aestivum L.) was studied over a 6-year period under rainfed Mediterranean conditions. Grain yield, test weight, protein content and alveogram parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio; G: swelling index) were analyzed. Tillage treatments included no tillage (NT) and conventional tillage (CT). Crop rotations were wheat–sunflower (Helianthus annuus L.) (WS), wheat–chickpea (Cicer arietinum L.) (WCP), wheat–faba bean (Vicia faba L.) (WFB), wheat–fallow (WF) and continuous wheat (CW). Nitrogen fertilizer rates were 50, 100 and 150 kg N ha−1 on a Vertisol (Typic Haploxerert). A split–split plot design with four replications was used. Weather conditions over the study years strongly influenced wheat yield and quality. Test weights rose considerably with yield and increased rainfall during the filling period, and fell slightly as N rates increased. Grain protein content increased with rainfall in the month of May (when grain protein accumulation occurs) up to a maximum of 80 mm. Grain protein content peaked at average mean temperatures of around 26–27°C. Protein content and alveogram parameter also improved under CT, following a prior legume crop and with rising N fertilizer rates. Alveogram parameters rose with protein content, although the P/L ratio showed greater imbalance. N fertilizer proved to be a key factor in determining bread-making quality, and the best strategy available to the farmer for optimizing wheat quality. However, the influence of weather conditions and soil residual N should be borne in mind when deciding on the additional fertilizer N to be used as a top dressing with a view to increasing yield and, particularly, enhancing wheat protein content and bread-making quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号