首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Rosemary (Rosmarinus officinalis L.) extract (RE) has multiple pharmacological and biological activities, including the use as a food additive and medicine. This study was conducted to investigate the effects of dietary RE supplementation on the growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and microbiota of weaning piglets. A total of 192 crossbred weaned piglets [Duroc × (Large White × Landrace)] (initial body weight = 6.65 ± 0.33 kg, weaned days = 23 ± 1 d) were group housed (six pigs per pen; n = 8 pens/treatment). Pigs were fed a corn–soybean meal-based control diet or the basal diet supplemented with 100, 200, or 400 mg/kg RE. Pigs were allowed ad libitum access to fed for 21 d. The growth performance and apparent total tract digestibility of nutrients, and intestinal morphology and antioxidant status were evaluated. The components of the microbial microflora were also determined in the cecal samples. Compared with the control, dietary supplementation with RE increased the final body weight, average daily gain, and average daily feed intake (linear, P = 0.038, 0.016, and 0.009, respectively), and decreased the diarrhea ratio in piglets (linear, P < 0.05). The digestibility of crude protein (linear, P = 0.034) and gross energy (linear, P = 0.046) increased with treatment with RE. Piglets fed RE showed longer villus height (linear, P = 0.037 and 0.028, respectively) and villus height/crypt depth (linear, P = 0.004 and 0.012; quadratic, P = 0.023 and 0.036, respectively) in the jejunum and ileum, in addition to a lesser crypt depth in the jejunum (linear, P = 0.019) and ileum (quadratic, P = 0.042). The addition of RE increased the activity of superoxide dismutase (linear, P = 0.035 and 0.008, respectively) and glutathione peroxidase activity (linear, P = 0.027 and 0.039, respectively) and decreased the content of malondialdehyde (linear, P = 0.041 and 0.013; quadratic, P = 0.023 and 0.005, respectively) in the serum and liver. Dietary RE supplementation, compared with the control, increased the number of Bifidobacterium (linear, P = 0.034) and Bacteroidetes (linear, P = 0.029), while decreased Escherichia coli (linear, P = 0.008; quadratic, P = 0.014) in the cecal contents. Thus, dietary RE supplementation can improve growth performance, nutrient digestibility, antioxidant capacity, intestinal morphology, and the microbiota in weaned piglets, and 200 mg/kg may be considered the optimum dosage.  相似文献   

2.
The aim of this study was to evaluate the effects of dietary soluble non-starch polysaccharide (sNSP) content and xylanase supplementation on production performance, egg quality parameters, and nutrient digestibility in Hy-line Brown layers from 25 to 32 wk of age. A total of 144 Hy-line Brown laying hens (25 wk of age) were randomly allocated to 1 of 4 wheat-based dietary treatments in a 2 × 2 factorial experimental design, with 36 replicates of individual hens per treatment. The diets were formulated to contain either a high or low sNSP level (at 13.3 or 10.8 g/kg) and were supplemented with either 0 or 12,000 BXU/kg exogenous xylanase. Birds were fed these treatment diets for an 8-wk period, and hen production performance, including daily egg production, average egg weight, daily egg mass, feed conversion ratio and proportion of dirty and abnormal eggs were measured at bird age 25 to 28 wk and 29 to 32 wk. An interaction between sNSP content of the diet and xylanase supplementation was observed on daily egg production from 25 to 28 wk of age (P = 0.018); birds fed the high sNSP diet without xylanase had lower egg production than those fed any other treatment. An interaction between the 2 dietary factors was also observed on hen weight gain at 29 to 32 wk of age (P = 0.014), with birds fed the low sNSP diet with 12,000 BXU/kg xylanase presenting greater weight gain compared to those fed the high sNSP diet with 12,000 BXU/kg xylanase. Feed intake at 29 to 32 wk of age was reduced by xylanase supplementation (P = 0.047). Xylanase supplementation also increased yolk colour score at both 28 and 32 wk of age, and decreased yolk weight at 32 wk of age (P = 0.014, 0.037 and 0.013, respectively). Birds fed the low sNSP diet presented lower protein digestibility (P = 0.024) than those fed the high sNSP diet. Additionally, birds fed high sNSP presented higher shell reflectivity at both 28 and 32 wk of age (P = 0.05 and 0.036, respectively). The influence of duration of feeding the treatment diets on egg quality was also determined. It was observed that egg weight, yolk weight and yolk colour score consistently increased over time, regardless of experimental treatment effects. In contrast, Haugh Unit and albumen height significantly decreased throughout the study period in all treatments, although this was less pronounced in hens fed the treatment with high sNSP and no supplemental xylanase. A reduction in shell breaking strength over time was observed only in hens fed the treatments without xylanase addition, and shell thickness was improved over time only in birds fed the low sNSP diet with xylanase. The impacts of the dietary treatments were largely inconsistent in this study, so a solid conclusion cannot be drawn. However, these findings do indicate that dietary NSP level influences layer production performance, and thus should be considered when formulating laying hen diets. It also proved that further research is warranted into how to optimize the benefits of xylanase application in laying hens.  相似文献   

3.
In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (>20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. A total of 3 replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF + 100 mg xylanase/kg (HF + XY [Econase XT 25P; AB Vista, Marlborough, UK]) providing 16,000 birch xylan units/kg; and HF + 50 mg arabinoxylan-oligosaccharide (AXOS) product/kg (HF + AX [XOS 35A; Shandong Longlive Biotechnology, Shandong, China]) providing AXOS with 3–7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P < 0.01). Relative to HF, HF + XY improved the AID of GE, CP, and NDF (P < 0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P < 0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P = 0.031). Relative to HF, HF + XY improved cecal disappearance of DM (162 vs. 98 g; P = 0.008) and NDF (44 vs. 13 g; P < 0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P < 0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF + XY decreased ileal viscosity compared with HF (P < 0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.  相似文献   

4.
The objective of this study was to investigate the effects of xylo-oligosaccharides (XOSs) supplementation on growth performance, serum parameters, small intestinal morphology, intestinal mucosal integrity, and immune function in weaned piglets. A total of 240 weaned piglets with an average body weight (BW) of 8.82 ± 0.05 kg (28 d of age) were assigned randomly to four dietary treatments in a 28-d trial, including a control (CON) diet and three diets with XOS supplementation at the concentration of 100 (XOS100), 500 (XOS500), and 1,000 (XOS1000) mg/kg. There were four replicates per treatment with 15 pigs per pen. From day 1 to 14, there were no differences (P > 0.05) in average daily gain (ADG), average daily feed intake, and gain to feed ratio (G:F) during the different treatments. The different doses of XOSs showed a quadratic effect on BW on day 28, ADG, and G:F on day 1 to 28 of piglets (P < 0.05). From day 15 to 28, ADG of pigs fed the XOS500 diet was higher (P < 0.05) than pigs fed the CON diet. During the overall period (day 1 to 28), pigs fed the XOS500 diet had a higher BW, ADG, and G:F than pigs fed the CON diet (P < 0.05). In addition, compared with the CON group, the XOS500 group had significantly higher serum total antioxidant capacity, total superoxide dismutase and catalase levels, and lower malondialdehyde levels on days 14 and 28 (P < 0.05). The serum immunoglobulin G (IgG) concentration in the XOS500 group was also significantly higher compared with the CON group on days 14 and 28 (P < 0.05). However, serum immunoglobulin A and immunoglobulin M were not affected by the dietary treatments. Supplementation of XOS500 to the feed significantly increased the villus height (VH) and VH to crypt depth ratio in the jejunum and ileum in comparison with the CON and XOS1000 groups. Moreover, the XOS500 group significantly elevated the expression levels of occludin and zonula occludens protein-1 in the ileum compared with the CON group. The ileal interleukin (IL)-1β, IL-8, and interferon (IFN)-γ mRNA expression levels in the XOS100 and XOS500 groups were markedly lower than in the CON group. In contrast, the ileal IL-10 mRNA expression levels were remarkably higher in the XOS500 than in the CON group. In conclusion, XOSs have a beneficial effect on growth performance by improving serum antioxidant defense system, serum IgG, small intestinal structure, and intestinal barrier function in weaned piglets.  相似文献   

5.
The specialization of swine production and the market demand for pigs at different growth stages makes road transportation inevitable. However, road transportation usually causes a stress response in pigs. It is reported that homeopathic remedies supplementation could alleviate the stress response in pigs. This study investigated the effects of road transportation with or without homeopathic remedy (Convermax) supplementation on growth performance, nutrient digestibility, fecal microbiota, and serum cortisol and superoxide dismutase (SOD) concentrations in growing pigs. A total of 180 crossbred 49-d-old growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight of 13.17 ± 0.02 kg were randomly allotted to 2 groups based on the initial body weight, containing 18 replicates with 5 pigs (mixed sex) in each. The pigs were fed dietary supplementation of a homeopathic remedy (Convermax) (0 or 200 mg/kg of feed, as-fed) for 35 d. On day 21, 45 pigs (70-d old; 25.25 ± 0.37 kg) were randomly selected from each group and assigned to either 2 hr of road transportation or no road transportation, resulting in a 2 × 2 factorial design. We found that road transportation led to an increase in the fecal coliform bacteria counts (P = 0.023) and serum cortisol concentration (P = 0.039) and a decrease in the serum SOD concentration (P < 0.001). However, supplementing homeopathic remedy (Convermax) to the diet of growing pigs increased gain to feed ratio (P = 0.042), apparent nitrogen digestibility (P = 0.019), and serum SOD concentration (P = 0.007), whereas decreased serum cortisol concentration (P = 0.022). In brief, road transportation induced stress response for growing pigs and increased harmful bacteria counts in their intestines. Dietary supplementation of homeopathic remedy (Convermax) alleviated stress response, improved apparent nitrogen digestibility, and increased gain to feed ratio. However, no significant interactive effects between road transportation with or without dietary homeopathic remedy (Convermax) levels were observed on the detected parameters in growing pigs.  相似文献   

6.
Two studies were conducted to investigate the effect of Bacillus amyloliquefaciens CECT 5940 (BA) as a probiotic on growth performance, amino acid digestibility and bacteria population in broiler chickens under a subclinical necrotic enteritis (NE) challenge and/or fed diets with different levels of crude protein (CP). Both studies consisted of a 2 × 2 factorial arrangement of treatments with 480 Ross 308 mix-sexed broiler chickens. In study 1, treatments included 1) NE challenge (+/−), and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). In study 2, all birds were under NE challenge, and treatments were 1) CP level (Standard/Reduced [2% less than standard]) and 2) BA (1.0 × 106 CFU/g of feed) supplementation (+/−). After inducing NE infection, blood samples were taken on d 16 for uric acid evaluation, and cecal samples were collected for bacterial enumeration. In both studies, ileal digesta was collected on d 35 for nutrient digestibility evaluation. In study 1, the NE challenge reduced body weight gain (BWG), supressed feed conversion ratio (FCR) and serum uric acid levels (P < 0.001). Supplementation of BA increased BWG (P < 0.001) and reduced FCR (P = 0.043) across dietary treatments, regardless of challenge. Bacillus (P = 0.030) and Ruminococcus (P = 0.029) genomic DNA copy numbers and concentration of butyrate (P = 0.017) were higher in birds fed the diets supplemented with BA. In study 2, reduced protein (RCP) diets decreased BWG (P = 0.010) and uric acid levels in serum (P < 0.001). Supplementation of BA improved BWG (P = 0.001) and FCR (P = 0.005) and increased Ruminococcus numbers (P = 0.018) and butyrate concentration (P = 0.033) in the ceca, regardless of dietary CP level. Further, addition of BA reduced Clostridium perfringens numbers only in birds fed with RCP diets (P = 0.039). At d 35, BA supplemented diets showed higher apparent ileal digestibility of cystine (P = 0.013), valine (P = 0.020), and lysine (P = 0.014). In conclusion, this study suggests positive effects of BA supplementation in broiler diets via modulating gut microflora and improving nutrient uptake.  相似文献   

7.
Dietary fiber, resistant to host-mediated digestion in the small intestine due to lack of endogenous enzymes, impacts many facets of animal health and is associated with gut development especially in young monogastrics. Furthermore, it can be used as in-feed antibiotic alternative. Chicory (Cichorium intybus L.) forage with high content of pectin (uronic acids as building blocks) is a novel class of dietary fiber that is chemically different from cereal grains (with high content of arabinoxylans). In the present study, we investigated effects of dietary inclusion of chicory forage on digestibility, gut morphology and microbiota in broilers and young pigs. In the chicken experiment, 160 1-d old broiler chicks were fed 3 nutritionally balanced diets for 30 d including a cereal-based diet and 2 diets with part of the cereals substituted with 60 and 120 g/kg chicory forage (CF60 and CF120), whereas in the pig experiment, 18 seven-wk old Yorkshire pigs were fed 3 diets for 18 d including a cereal-based diet and 2 diets with 80 and 160 g/kg chicory forage inclusion (CF80 and CF160). Our results showed that young pigs were capable to utilize chicory forage well with higher total tract apparent digestibility (TTAD) of all fiber fractions, particularly uronic acid, compared with the control (P < 0.01). In contrast, a decreased TTAD of all fiber fractions was observed in chickens fed on diet CF120 (P < 0.05). Moreover, diet induced changes in gut morphology were observed in the large intestine of chickens. The alteration of cecal mucosal thickness was further positively correlated with TTAD of non-starch polysaccharides (NSP) and its constituent sugars (P < 0.05). In addition, in pigs, terminal restriction fragment length polymorphism (T-RFLP) analysis of intestinal microbiota revealed substantial dietary effects (cereal control diet vs. chicory forage inclusion) on the relative abundance of 2 dominant bacterial phylotypes (Prevotella sp. vs. Roseburia sp.) respectively (P < 0.05). In conclusion, our data showed that chicory forage (Cichorium intybus L.), a novel dietary fiber source in animal nutrition, have potential beneficial properties as fiber ingredient in diets for both pigs and chickens.  相似文献   

8.
Two experiments were conducted to investigate the effects of a combined α-galactosidase and xylanase preparation on nutrients digestibility and growth performance in broiler chickens. Experiment 1 had 240 broilers allocated to 3 treatments with the dietary supplementation of 0, 300, and 500 g/t of the enzyme combination. Diet and amino acid (AA) digestibility were assessed. Experiment 2 was a 2 × 3 (enzyme × diet) factorial arrangement with 10 replicates of 12 male broilers per replicate. Diets were based on corn–soybean meal (SBM) diet and had 3 nutritional levels (normal, 2% apparent metabolizable energy (AME) and crude protein (CP) reduction, and 4% AME and CP reduction). Each of these diets was fed with or without enzyme supplementation. Growth performance, chyme viscosity, nutrients digestibility, and endogenous enzymes activity were assessed. In experiment 1, enzyme supplementation improved the digestibility of Ca (P = 0.025) and ileal digestibility of total AA, Pro, Alu, Ile, Lys, His, Thr, Glu, Val, Leu, Tyr, and Phe (P < 0.05), and also tended to increase the AME of diets (P < 0.10). In experiment 2, broilers fed the corn–SBM diet with 4% nutrient reduction had better growth performance (P < 0.05), jejunal digesta viscosity at 42 d (P < 0.01), and lower digestibility of gross energy (GE; P < 0.05) when compared with those fed the normal nutrient diet. Enzyme inclusion increased digestibility of CP (P = 0.044), GE (P = 0.009), raffinose (P < 0.001) and stachyose (P < 0.001), improved average daily gain (P = 0.031), and reduced jejunal digesta viscosity at 42 d (P = 0.011). Besides, similar improvements trend in amylase, trypsin, sucrase, and maltase activity with enzyme inclusion were observed as with energy. These data support that the enzyme supplementation increased nutrients and ileal AA digestibility, improved performance and endogenous enzymes activity.  相似文献   

9.
This study examined the impacts of different fiber sources on growth, immune status and gut health in weaned piglets fed antibiotic-free diets. Sixty piglets (BW = 8.18 ± 1.35 kg) were assigned to 3 dietary treatments based on BW and gender in a randomized complete block design (5 replicates/treatment and 4 piglets [2 barrows and 2 gilts]/replicate): (1) an antibiotic-free diet (control, CON); (2) CON + 6% wheat bran (WB); (3) CON + 4% sugar beet pulp (SBP). Dietary WB supplementation tended to increase ADG compared with CON from d 1 to 14 (P = 0.051) and from d 1 to 28 (P = 0.099). Supplementation of WB increased (P < 0.05) G:F compared with CON and SBP from d 1 to 14 and from d 1 to 28. Compared with CON, the addition of WB reduced (P < 0.05) diarrhea rate from d 1 to 14 and tended (P = 0.054) to reduce diarrhea rate from d 1 to 28. The addition of WB decreased (P < 0.05) serum diamine oxidase activity on d 14, and up-regulated (P < 0.05) ileal mRNA levels of occludin on d 28 when compared with CON. Piglets fed WB showed decreased (P < 0.05) serum interleukin-6 levels compared to those fed SBP and decreased (P < 0.05) ileal interleukin-8 levels compared to those fed CON and SBP on d 28. Supplementation of WB increased (P < 0.05) serum levels of immunoglobulin A (IgA), IgG and IgM compared with SBP on d 14, and increased (P < 0.05) the levels of serum IgA and ileal sIgA compared with CON and SBP on d 28. Piglets fed WB showed an enhanced (P < 0.05) α-diversity of cecal microbiota than those fed SBP, while piglets fed SBP showed reduced (P < 0.05) α-diversity of cecal microbiota than those fed CON. Compared with CON, the addition of WB elevated (P < 0.05) the abundance of Lachnospira and cecal butyric acid level. Piglets fed WB also showed increased (P < 0.05) abundances of Lachnospira and unclassified_f_Lachnospiraceae compared with those fed SBP. Collectively, the supplementation of WB to antibiotic-free diets improved performance, immune responses, gut barrier function and microbiota compared with the CON and SBP fed piglets. Therefore, supplementing weaned piglets with WB was more effective than SBP.  相似文献   

10.
This study was conducted to investigate host–microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free (GF) pig model. Twelve hysterectomy-derived GF Bama piglets were reared in 6 sterile isolators. Among them, 6 were considered as the GF group, and the other 6 were orally inoculated with healthy sow fecal suspension as fecal microbiota transplanted (FMT) group. Another 6 piglets from natural birth were regarded as the conventional (CV) group. The GF and FMT groups were hand-fed with Co60-γ-irradiated sterile milk powder, while the CV group was reared by lactating Bama sows. All groups were fed for 21 days. Then, all piglets and then were switched to sterile feed for another 21 days. Results showed that the growth performance, nutrient digestibility, and concentrations of short-chain fatty acids in the GF group decreased (P < 0.05). Meanwhile, the serum urea nitrogen concentration and digesta pH values in the GF group increased compared with those in the FMT and CV groups (P < 0.05). Compared with the CV group, the GF group demonstrated upregulation in the mRNA expression levels of intestinal barrier function-related genes in the small intestine (P < 0.05). In addition, the mRNA abundances of intestinal development and absorption-related genes in the small intestine and colon were higher in the GF group than in the CV and FMT groups (P < 0.05). The FMT group exhibited greater growth performance, lipase activity, and nutrient digestibility (P < 0.05), higher mRNA expression levels of intestinal development and barrier-related genes in the small intestine (P < 0.05), and lower mRNA abundances of pro-inflammatory factor in the colon and jejunum (P < 0.05) than the CV group. In conclusion, the absence of gut microbes impaired the growth and nutrient digestibility, and healthy sow gut microbiota transplantation increased the growth and nutrient digestibility and improved the intestinal development and barrier function of newborn piglets, indicating the importance of intestinal microbes for intestinal development and functions.  相似文献   

11.
Obesity and estrogen reduction are known to affect the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (week 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n = 8 per group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay and then allowed to consume twice that amount for 12 wk. Fecal samples were collected at weeks 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear mixed models procedure of SAS 9.4, with results reported as a change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separated from COSH and COSP at weeks 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.  相似文献   

12.
The study aimed to assess the effects of vitamin E (VE) supplementation and fat source on fatty acid (FA) composition, VE concentrations, and antioxidant capacity in plasma and tissues of pigs fed to a heavy slaughter weight (150 kg). A total of 64 pigs (32 barrows, 32 gilts; 28.41 ± 0.83 kg) were blocked by sex and weight, and randomly assigned to one of eight dietary treatments (n = 8 per treatment) in a 4 × 2 factorial arrangement. Fat sources included corn starch (CS), 5% tallow (TW), 5% distiller’s corn oil (DCO), and 5% coconut oil (CN); VE supplementation levels were 11 and 200 ppm. Five-phase diets were formulated to meet requirement estimates of NRC (2012) and fed to pigs for each period of 25 kg from 25 to 150 kg. Increasing VE supplementation level increased C16:1 (P < 0.05) content but decreased C20:0 (P < 0.05) content in backfat and belly fat, while in liver, it increased C17:0 (P < 0.05) but decreased C18:0 (P < 0.05). Compared to the pigs fed the CS diet, the pigs fed the CN diet had greater (P < 0.05) content of total saturated FA, the pigs fed the DCO diet had greater (P < 0.05) content of total polyunsaturated FA content and iodine value, and the pigs fed the TW diet had greater (P < 0.05) content of total monounsaturated FA in backfat, belly fat, and liver. Plasma VE concentrations increased linearly (P < 0.05) with increasing length of feeding but faster (P < 0.05) in the pigs fed the CN and TW diets compared with the CS and DCO diets within the 200 ppm VE level; the pigs fed the DCO diet had the highest plasma VE concentrations (P < 0.05) from Phase 2 to Phase 5 within the 11 ppm VE level. The VE concentrations in liver and loin muscle (P < 0.05) increased with increasing dietary VE level from 11 to 200 ppm, but it was not affected by dietary fat source. There was no effect of VE supplementation and fat source on antioxidant capacity in plasma and liver except that pigs fed the DCO diet had greater liver SOD activity (P < 0.05) than the pigs fed the CN diet. In conclusion, dietary VE supplementation did not affect FA profile in backfat, belly fat, and liver consistently, while dietary FA composition with different fat sources affected much of the FA profile in backfat, belly fat, and liver. The higher level of VE supplementation increased liver and muscle VE concentrations and dietary fat sources affected plasma VE concentrations differently (P < 0.05), wherein the TW and CN diets increased the VE absorption greater than the DCO diet.  相似文献   

13.
This study aimed to evaluate the effects of increasing levels of β-glucanase on the modulation of jejunal mucosa-associated microbiota in relation to nutrient digestibility and intestinal health of pigs fed diets with 30% corn distiller’s dried grains with solubles and xylanase. Forty pigs at 12.4 ± 0.5 kg body weight (BW) were allotted in a randomized complete block design with initial BW and sex as blocks. Dietary treatments consisted of a basal diet with xylanase (1,500 endo-pentosanase units [EPU]/kg) and increasing levels of β-glucanase (0, 200, 400, and 600 U/kg) meeting nutrient requirements and fed to pigs for 21 d. Blood samples were collected on day 19. On day 21, all pigs were euthanized to collect intestinal tissues and digesta. Tumor necrosis factor-alpha, interleukin (IL)-6, and malondialdehyde were measured in the plasma and mid-jejunal mucosa. Viscosity was determined using digesta from the distal jejunum. Ileal and rectal digesta were evaluated to determine apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients. Mucosa samples from the mid-jejunum were utilized for microbiota sequencing. Data were analyzed using the MIXED procedure on SAS 9.4. Overall, increasing dietary β-glucanase tended to increase (linear; P = 0.077) the average daily gain of pigs. Increasing dietary β-glucanase affected (quadratic; P < 0.05) the relative abundance of Bacteroidetes, reduced (linear; P < 0.05) Helicobacter rappini, and increased (linear, P < 0.05) Faecalibacterium prausnitzii. β-Glucanase supplementation (0 vs. others) tended to increase (P = 0.096) the AID of crude protein in the diet, whereas increasing dietary β-glucanase tended to increase (linear; P = 0.097) the ATTD of gross energy in the diet and increased (linear; P < 0.05) the concentration of IL-6 in the plasma of pigs. In conclusion, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg) modulated mucosa-associated microbiota by increasing the relative abundance of beneficial bacteria and reducing potentially harmful bacteria. Furthermore, increasing β-glucanase up to 600 U/kg feed in a diet containing xylanase (1,500 EPU/kg feed) enhanced the status of the intestinal environment and nutrient utilization, as well as reduced systemic inflammation of pigs, collectively resulting in moderate improvement of growth performance. Supplementing β-glucanase at a range of 312 to 410 U/kg with xylanase at 1,500 EPU/kg feed showed the most benefit on jejunal mucosa-associated microbiota and reduced systemic inflammation of pigs.  相似文献   

14.
Human-grade (HG) pet foods are commercially available, but they have not been well studied. Our objective was to determine the apparent total tract digestibility (ATTD) of HG pet foods and evaluate their effects on fecal characteristics, microbiota, and metabolites, serum metabolites, and hematology of dogs. Twelve dogs (mean age = 5.5 ± 1.0; BW = 11.6 ± 1.6 kg) were used in a replicated 4 × 4 Latin square design (n = 12/treatment). The diets included 1) Chicken and Brown Rice Recipe (extruded; Blue Buffalo); 2) Roasted Meals Tender Chicken Recipe (fresh; Freshpet); 3) Beef and Russet Potato Recipe (HG beef; JustFoodForDogs); and 4) Chicken and White Rice Recipe (HG chicken; JustFoodForDogs). Each period consisted of 28 d, with a 6-d diet transition phase, 16 d of consuming 100% of the diet, a 5-d phase for fecal collection, and 1 d for blood collection. All data were analyzed using the Mixed Models procedure of SAS 9.4. Dogs fed the extruded diet required a higher (P < 0.05) daily food intake (dry matter basis, DMB) to maintain BW. The ATTD of dry matter (DM), organic matter (OM), energy, and acid-hydrolyzed fat (AHF) were greater (P < 0.05) in dogs fed the HG diets than those fed the fresh diet, and greater (P < 0.05) in dogs fed the fresh diet than those fed the extruded diet. Crude protein ATTD was lower (P < 0.05) for dogs fed the extruded diet than those fed all other diets. Dogs fed the extruded diet had greater (P < 0.05) fecal output (as-is; DMB) than dogs fed fresh (1.5–1.7 times greater) or HG foods (2.0–2.9 times greater). There were no differences in fecal pH, scores, and metabolites, but microbiota were affected by diet. Dogs fed HG beef had higher (P < 0.05) relative abundance of Bacteroidetes and lower (P < 0.05) relative abundance of Firmicutes than dogs fed the fresh or HG chicken diets. The Actinobacteria, Fusobacteria, Proteobacteria, and Spirochaetes phyla were unchanged (P > 0.05), but diet modified the relative abundance of nearly 20 bacterial genera. Similar to previous reports, these data demonstrate that the fecal microbiota of dogs fed HG or fresh diets is markedly different than those consuming extruded diets, likely due to ingredient, nutrient, and processing differences. Serum metabolites and hematology were not greatly affected by diet. In conclusion, the HG pet foods tested resulted in significantly reduced fecal output, were highly digestible, maintained fecal characteristics, serum chemistry, and hematology, and modified the fecal microbiota of dogs.  相似文献   

15.
Folate is increasingly thought to promote gastrointestinal health and regulate the diversity of gut microbiota to alleviate weaning stress in piglets. The present study was conducted to investigate the effects of folate on organ weight, digesta pH, short-chain fatty acids (SCFAs) concentration, and intestinal microbiota in weaned piglets. A total of 28 piglets (6.73 ± 0.62 kg) were allocated to four dietary treatments consisting of a control group, 3, 9, and 18 mg/kg of folate supplementation in a 14-d feeding trial. The results showed that piglets fed with 9 and 18 mg/kg of folate supplementation had greater (P < 0.05) average liver and spleen weight than the control group. Folate supplementation (9 and 18 mg/kg) can significantly increase (P < 0.05) the stomach pH and tend (P < 0.10) to decrease the cecum pH. Folate treatment (9 and 18 mg/kg) had a positive effect on the metabolism of SCFAs in piglets, in particular, compared with the control group, and the content of acetic acid (AA) and valeric acid was markedly increased (P < 0.05) in the cecum and colon, respectively. Moreover, isobutyric acid, butyric acid, and isovaleric acid were tended (P < 0.10) to increase in the colon. Cecum contents samples were used to determine bacterial community diversity by 16S rRNA gene amplicon sequencing. At the genus level, in the cecum, there was a higher (P < 0.05) relative abundance of Lactobacillus reuteri, Lactobacillus salivarius, and Lactobacillus mucosae in the 9 mg/kg folate supplementation group. The functional pathways analysis predicted that folate may modify nutrient metabolism by changing the gut microbiota function of weaned piglets. Furthermore, the data showed that Lactobacillus was positively correlated with AA in the cecum. Overall, these findings suggested that folate treatment could increase the organ weight and the stomach pH of weaned piglets and had beneficial effects on gut health, which might be attributed to the alteration in intestinal microbiota induced by folate and the interaction of the intestinal microbiota with SCFAs.  相似文献   

16.
GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.  相似文献   

17.
This study evaluated the effects of barley inclusion and glucanase supplementation on the productive performance and digestive function in laying ducks. The experiment used a randomized design with a 5 × 2 factorial arrangement of 5 graded levels of barley (0%, 15%, 30%, 45% and 60%) with or without 1.5 g/kg β-1,3-1,4-glucanase (15,000 U/kg). During the experimental period of 120 d, the weight and total number of eggs within each pen were recorded daily, and egg quality was determined every 4 wk. At the end of the experiment, 3 randomly selected ducks within each replicate were sacrificed, then duodenal digesta and jejunal mucosa was collected. Dietary inclusion of barley had no effects on egg production, daily egg mass or FCR, but supplementation with glucanase improved egg production and FCR (P < 0.01). Barley did not affect feed intake of laying ducks, but glucanase tended to increase feed intake (P = 0.09). Neither barley nor β-glucanase had effects on the egg quality variables, except for yolk color score, which was decreased with increasing barley supplementation. Glucanase, but not barley, increased the activity of chymotrypsin and amylase in duodenal digesta. Barley inclusion affected the activity of alkaline phosphatase and maltase in jejunal mucosa (P < 0.05), but β-glucanase had no effects on the activity of these brush border enzymes. Barley inclusion increased the glucan content in duodenal digesta, but supplementation of glucanase to barley-based diet reduced digesta glucan content and reduced total volatile fatty acids and increased the proportion of acetic acid in cecal contents. The results indicate that, without glucanase, the optimal dietary barley level in the diets of laying ducks is about 13% for maximal production performance; glucanase supplementation of the barley diets improved production performance, probably through enhancing digestive function.  相似文献   

18.
Two studies were conducted to evaluate the effect of nano chromium picolinate (nCrPic) during heat stress (HS) in sheep. In the initial study, 36 Merino × Poll cross-bred sheep were individually penned and allocated to 3 dietary treatments (0, 400 and 800 μg/kg nCrPic) for 8 wk. Body composition was determined at the beginning and end of the experiment using dual energy X-ray absorptiometry. The sheep remained in their dietary groups but were then placed in metabolic cages and randomly allocated within the dietary group to differing ambient temperature regimes, i.e., thermo-neutral (TN) (n = 18) and HS (n = 18), for 3 wk. Dietary nCrPic had no effect on growth performance and body composition during the initial study conducted under TN conditions. Heat stress decreased average daily feed intake (ADFI) (P = 0.002) whereas sheep under HS had reduced average daily gain (ADG) and indeed lost weight (P < 0.001). Dietary nCrPic increased both ADFI (P = 0.041) and ADG (P = 0.049) under both TH and HS conditions such that the performance of sheep receiving supplemental nCrPic and exposed to HS was similar to that of control sheep maintained under TN conditions. Heat stress increased rectal temperature (P < 0.001) and respiration rate (P < 0.001), particularly during the hottest parts of the day as indicated by interactions (P < 0.001) between time of day and thermal treatment. Rectal temperature was lower in sheep fed nCrPic (P = 0.050), particularly under peak HS conditions during the afternoon as indicated by the interactions between dietary nCrPic and time of day (P < 0.001) and dietary nCrPic, thermal treatment and time of day (P = 0.010). Similarly, respiration rate was lower in sheep fed nCrPic under peak HS conditions during the afternoon as indicated by the interactions between dietary nCrPic and thermal treatment (P < 0.001) and dietary nCrPic and time of day (P = 0.030). In conclusion, dietary nCrPic can partially ameliorate the negative effects of HS as indicated by the maintenance of ADFI and decreased physiological responses, such as elevations in rectal temperature and respiration rate.  相似文献   

19.
In the present study, we aimed to evaluate the effects of maternal yeast-based nucleotide (YN) supplementation on the intestinal immune response and barrier function in neonatal pigs, as well as the diarrhoea rate and growth performance in suckling piglets. Sixty-four late-gestation sows were assigned to the following groups: the CON (fed a basal diet) and YN groups (fed a basal diet with 4 g YN/kg diet). The experiment started on d 85 of gestation and ended on d 20 of lactation. Diarrhoea rate and average daily gain of the piglets were recorded, and samples of blood and intestines from neonatal piglets were collected before they consumed colostrum during farrowing. Compared with the CON group, maternal YN supplementation increased the weaning weight of litter and decreased the diarrhoea rate (P < 0.01). In addition, maternal YN supplementation promoted the ileal villus development in the neonates compared with that in the CON group (P < 0.01). Maternal YN supplementation also increased the ileal secretory immunoglobulin A (sIgA) level compared with that in the CON group (P < 0.05). The real-time PCR results showed that maternal dietary YN supplementation increased the jejunal and ileal expression of interleukin (IL)-17, IL-8, IL-1β, IL-10 and tumor necrosis factor (TNF)- α in the neonates compared with that in the CON group (P < 0.05). Overall, maternal nucleotide supplementation improved the villus development and innate immunity of neonatal piglets during late pregnancy. This may be associated with the decrease in diarrhoea and the increase in weaning weight of the litter of suckling piglets.  相似文献   

20.
The objective was to determine the nutritional and functional values of lysed Corynebacterium glutamicum cell mass (CGCM) as a protein supplement and a source of cell wall fragments supporting the growth and intestinal health of nursery pigs. Thirty-two pigs (21 d of age) were allotted to four treatments (n = 8) based on the randomized block design with sex and initial body weight (BW) as blocks. The main effect was the dietary supplementation of lysed CGCM (0, 0.7, 1.4, and 2.1%) replacing blood plasma and fed in two phases (10 and 11 d, respectively). Feed intake and BW were measured at the end of each phase. Pigs were euthanized on day 21 to collect jejunal tissue and mucosa to evaluate intestinal health. Ileal digesta were collected to measure the apparent ileal digestibility of nutrients in diets. Data were analyzed using Proc Mixed and Reg of SAS. Increasing daily intake of CGCM increased (linear; P < 0.05) ADG of pigs. Increasing CGCM supplementation affected (quadratic; P < 0.05) the relative abundance of Lactobacillaceae (minimum: 26.4% at 1.2% CGCM), Helicobacteraceae (maximum: 29.3% at 1.2% CGCM), and Campylobacteraceae (maximum: 9.0% at 1.0% CGCM). Increasing CGCM supplementation affected (quadratic; P < 0.05) the concentrations of immunoglobulin G (maximum: 4.94 µg/mg of protein at 1.0% CGCM) and protein carbonyl (PC; maximum: 6.12 nmol/mg of protein at 1.1% CGCM), whereas linearly decreased (P < 0.05) malondialdehyde (MDA) in the proximal jejunal mucosa. Increasing CGCM supplemention affected (quadratic; P < 0.05) intestinal enterocyte proliferation rate (maximum: 13.3% at 1.0% CGCM), whereas it did not affect intestinal morphology and the nutrient digestibility. In conclusion, supplementing 1.0% to 1.2%, reducing blood plasma supplementation by 0.7% to 0.9%, respectively, increased potential pathogenic microbiota associated in the jejunal mucosa resulting in increased immune response, enterocyte proliferation, and PC concentration. However, supplementing diets with 2.1% CGCM, replacing 1.5% blood plasma, improved growth performance, and reduced MDA without affecting nutrient digestibility, intestinal morphology, and microbiota in the jejunal mucosa. In this study, based on the polynomial contrast, supplementing 1.0% to 1.2% CGCM suppressed the benefits from blood plasma, whereas supplementing 2.1% CGCM showed functional benefits of CGCM with similar effects from blood plasma supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号