首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[目的]探讨花江小流域石漠化过程中土壤的物理性质变化。[方法]在贵州花江连续性灰岩区的小流域范围内,比较樵采和开垦干扰模式下石漠化过程的土壤物理性质变化。[结果]研究区域土壤质地粘重但结构较好,粒径〈0.001mm粘粒的平均含量为49.7%.粒径〉0.25mm水稳定团聚体含量大于60%;樵采石漠化的土壤密度低于2.6g/cm^3,开垦石漠化的土壤密度高于2.6g/cm^3;樵采石漠化土壤的物理性质均优于同等级开垦石漠化,导致抵抗雨水或流水冲击破碎的能力较开垦石漠化强一些。分形维数、平均重量直径、结构破坏率和团聚体稳定性是较好的评价石灰土土壤结构的指标。[结论]随着人为干扰程度的增加,花江小流域石漠化等级增加,土壤密度和土壤结构破坏率有增加的趋势,团聚体稳定性有降低的趋势。  相似文献   

2.
卢红梅  王世杰 《安徽农业科学》2009,37(28):13750-13753
[目的]探讨樵采和开垦干扰模式下石漠化过程土壤的化学性质变化。[方法]在贵州花江连续性灰岩区的小流域范围内,比较樵采和开垦干扰模式下石漠化过程的土壤化学性质变化。[结果]花江小流域石漠化过程中土壤中性偏碱性,碳、氮含量高,C/N值比较低,多数在10以下,具有较高的氮素供应潜力,土壤阳离子代换量高,保肥性能好,但磷、钾养分普遍缺乏,有效磷大多在10mg/ks以下,有效钾几乎都低于100mg/kg,缓效钾都远低于300mg/kg。随着人为干扰程度增加,花江小流域石漠化等级加剧,大部分土壤属性都有退化的趋势,体现了石漠化演变过程与土壤退化的一致性;石漠化成因对土壤性质的影响比干扰程度的影响大,樵采对土壤化学性质的影响小。开垦对土壤化学性质的影响大。茂兰凉风洞原生林下土壤养分含量大多介于花江流域的樵采和开垦序列之间。[结论]为防治喀斯特石漠化奠定基础。  相似文献   

3.
以未开垦土为对照,选取黑龙江省农垦九三管理局不同开垦年限黑土为研究对象,通过萨维诺夫法研究土壤团聚体及土壤有机质变化。结果表明,黑土抵抗外力侵蚀能力、土壤团聚体水稳性和抗水侵蚀能力随开垦年限增加逐年下降;土壤结构破坏率及△MWD随开垦年限增长而增大,增大幅度为12.52%~37.60%、12.08%~26.85%;各级团聚体有机质含量总体趋势随开垦年限增长均减小,5.00 mm、5.00~2.00 mm、2.00~1.00 mm、1.00~0.50 mm、0.50~0.25 mm、0.25 mm粒级土壤团聚体有机质含量随开垦年限下降幅度分别为29.86%~58.72%、27.42%~73.98%、26.20%~68.04%、33.70%~69.41%、27.35%~65.77%、10.00%~62.36%;过氧化氢酶、脲酶及转化酶三种酶活性均随团聚体粒级降低而增强。  相似文献   

4.
  目的  探究岩溶石漠化区土壤团聚体养分及酶活性特征,可为该地区土壤改良和植被恢复提供理论依据。  方法  以滇中高原4种不同石漠化程度(潜在、轻度、中度和重度石漠化)土壤为研究对象,对其表层土壤3种团聚体(粒径<0.25 mm、粒径0.25~2.00 mm、粒径>2.00 mm)分布特征,团聚体4种水解酶(淀粉酶、脲酶、β-葡萄糖苷酶、酸性磷酸酶)活性和3种养分(有机碳、全氮、全磷)质量分数特征进行分析。  结果  ①不同石漠化程度土壤团聚体组成比例随粒径的增大而增大,由高到低依次为粒径>2.00 mm(51.31%)、粒径0.25~2.00 mm(36.53%)、粒径<0.25 mm(12.04%)的团聚体。②不同团聚体土壤脲酶、β-葡萄糖苷酶、酸性磷酸酶、土壤酶活性几何平均数及有机碳、全氮质量分数均随粒径的增大而减小,对有机碳、全氮、全磷及酶活性的贡献率均为粒径>2.00 mm的团聚体最高,其次为粒径0.25~2.00 mm,粒径<0.25 mm的团聚体最低。③不同石漠化程度土壤团聚体淀粉酶活性均值为5.70 mg·g?1·h?1,石漠化土壤的石漠化程度从大到小依次为潜在、轻度、重度、中度,石漠化土壤有机碳、全氮、脲酶和β-葡萄糖苷酶活性从大到小依次为重度、轻度、潜在、中度。团聚体粒径及石漠化程度均对土壤有机碳、全氮和酶活性有显著影响(P<0.05),但粒径和石漠化程度的交互作用对土壤养分及酶活性没有显著影响(P>0.05)。  结论  在岩溶石漠化地区,较大粒径的土壤团聚体在土壤组成上占优势,对土壤养分和酶活性的贡献率也相对较高,而较小粒径的土壤团聚体更有利于土壤养分和酶活性的积累,其相应的含量也更高。图2表6参45  相似文献   

5.
种植年限对植烟土壤团聚体组成与稳定性的影响   总被引:1,自引:0,他引:1  
【目的】揭示不同植烟年限土壤团聚体的分布特征和稳定性,探明烟草种植对土壤结构变化的影响。【方法】以冕宁县长期植烟区域土壤为研究对象,研究种植年限在3年以下、4~6年及7年以上土壤团聚体的粒级组成、机械稳定性、水稳定性、分行维数和结构破坏率的变化。【结果】(1)植烟土壤机械稳定性团聚体以0.25 mm的土壤大团聚体含量最高,所占比例在75.85%~83.56%。随植烟年限的延长,土壤机械稳定性团聚体组成逐渐呈均质化态势,这种变化主要影响到5~2和2~1 mm 2个粒级。(2)植烟土壤水稳性团聚体组成均以0.25 mm的微团聚体为优势级别,随植烟年限的延长,土壤水稳性团聚体变化较非水稳性团聚体变化更快,尤其以5 mm的粒径变化最为显著。(3)在种植初期(3年),土壤水稳性团聚体平均重量直径(MWD)、几何平均直径(GMD)最大,分形维数(D)、结构破坏率(PAD)最小,土壤团聚体稳定性最好,随种植年限的增加,MWD、GMD降低,D、PAD增大。【结论】种植年限对土壤团聚体的组成影响不大,但影响其稳定性。长期种植烟草会使土壤团聚体的水力学稳定性变差,减弱土壤的抗蚀性。  相似文献   

6.
对喀斯特高原区贵州省清镇市王家寨峰丛洼地同一流域内不同类型石漠化、不同等级石漠化以及不同干扰方式石漠化土壤颗粒组成变化及其空间分布特征进行了研究.结果表明:随着石漠化的发展,土壤物理性粘粒(粒径<0.01 mm)含量逐渐增加,物理性砂粒(粒径>0.01 mm)含量逐渐减少,土壤向粘质化、紧密化发展.在不同等级石漠化中,土壤各粒级颗粒含量在中度与强度之间均无明显变化.而在轻度与强度之间除粗砂粒外均存在显著性差异(P≤0.05),轻度.中度阶段为土壤颗粒组成变化最敏感时期.黑色石灰土中的物理性粘粒普遍低于黄壤,而物理性砂粒则普遍高于黄壤,且除粗砂粒外的各粒级颗粒含量在两类土壤中均存在极显著性差异(P≤0.01).开垦和放牧较樵采和火烧更易使土壤中的小颗粒聚集,总体表现为开垦>放牧>樵采>火烧.土壤颗粒组成受土壤有机质的影响,并影响着土壤的其他结构性能.  相似文献   

7.
不同开垦年限农田黑土团聚体与土壤基础肥力的关系   总被引:1,自引:0,他引:1  
比较不同开垦年限的农田黑土,在0~20cm耕层不同粒级土壤风干团聚体和水稳性团聚体含量间的差异,并结合其土壤有机质、全磷、全氮与土壤水稳性团聚体之间的关系,对不同开垦年限的农田黑土土壤结构和抗蚀能力进行评价。结果表明,0.25mm风干团聚体与0.25mm水稳性团聚体含量都随这开垦年限的增加而逐渐减少,黑土中0.25mm水稳性团聚体与土壤中的有机质、全氮、全磷具有良好的相关性,相关系数分别为0.982**、0.893**、0.876**;在回归关系中,与有机质之间的关系更密切些,要保持黑土良好的结构状况,土壤有机质变化应处于平衡状态。  相似文献   

8.
刘栋   《西北林学院学报》2015,30(6):8-14
以黄土高原西部典型小叶杨人工林地土壤为研究对象,通过比较研究区内不同土层中的土壤及其团聚体有机碳氮的含量和储量,分析并探讨了土壤有机碳氮的分布及其随土壤团聚体的变化特征。结果表明:1)、黄土高原西部地区小叶杨林土壤团聚体的分布受土壤质地影响,壤土以<0.053 mm团聚体为主,而砂土以0.250~0.053 mm团聚体为主;2)、研究区内小叶杨人工林下表层土壤碳氮含量高于底层土壤,且壤土差异较砂土更为明显,且含量也高于砂土;3)、土壤质地影响土壤中碳氮元素随团聚体的分布:壤土有机碳氮的分布取决于各团聚体有机碳氮的分布特征,而砂土有机碳氮的含量取决于<0.053 mm团聚体的有机碳氮含量,有机碳氮的储量则取决于0.25~0.053 mm团聚体的有机碳氮储量。  相似文献   

9.
为探明石漠化治理区林草植被恢复后土壤团聚体的粒径分布、结构稳定性、有机碳的分布特征,以关岭-贞丰花江石漠化治理示范区4种林草植被(金银花、火龙果、花椒和草地)与传统种植方式玉米地进行对比研究,采用湿筛法进行团聚体分离和测定,对比分析了石漠化治理方式与传统农耕方式下土壤团聚体稳定性和团聚体有机碳分布规律。结果表明:①5种样地水稳性团聚体均以大团聚体(>0.25 mm)粒级含量为主,大团聚体(>0.25 mm)含量表现出草地>金银花地>火龙果地>玉米地>花椒地,团聚体含量总体上随粒级的减小而降低;②团聚体的平均质量直径和几何平均直径均为草地>金银花地>火龙果地>玉米地>花椒地;③土壤团聚体有机碳含量表现为金银花地>草地>火龙果地>花椒地>玉米地,说明从传统种植方式转变为林草植被后,土壤有机碳含量得到提高。除花椒地外,其他样地土壤团聚体稳定性均优于玉米地,土壤有机碳含量都高于玉米地。综上所述,石漠化治理区退耕还林和植被恢复有利于土壤结构改善和碳库容量提升,促进喀斯特石漠化生态环境的改善。  相似文献   

10.
喀斯特地区碳酸盐岩发育土壤团聚体稳定性研究   总被引:2,自引:0,他引:2  
土壤团聚体的数量及稳定性是衡量土壤抗蚀性和土壤质量的重要标志,本文应用Yoder湿筛法和Le Bissonnais法研究喀斯特地区3种主要母质发育的土壤团聚体稳定性和物理机制.结果表明:湿筛法测定的团聚体稳定性表现为:石灰岩>白云岩>灰质白云岩;Le Bissonnais法测定的团聚体稳定性表现为慢速(SW>机械(WS)>快速(FW),通过相对糊化指数(RSI)和相对机械破坏指数(RMI)两个指标进一步说明喀斯特地区碳酸盐岩发育土壤团聚体崩解的主要机制是团聚体中封闭空气引起的消散作用;对不同粒径的团聚体研究得出:5-2 mm及2-1mm团聚体稳定性表现为:石灰岩>灰质白云岩>白云岩,而1-0.5 mm及0.5-0.25 mm团聚体稳定性则表现为:石灰岩>白云岩>灰质白云岩.  相似文献   

11.
土壤团聚体养分含量是衡量土壤肥力的重要指标,比较研究了不同开垦年限不同粒级团聚体养分含量。结果表明:除全磷含量和碱解氮含量外,各粒级团聚体土壤养分含量均为未开垦土地最高,表现为随开垦时间的增加,团聚体土壤养分含量下降。2.0~5.0mm和0.25mm团聚体土壤全磷含量以未开垦土地最高,其它粒级团聚体土壤全磷含量以开垦40a土地最高。各粒级团聚体土壤碱解氮含量以开垦40a土地最高,未开垦土地碱解氮含量最低。不同开垦年限土壤酸度差异不大。  相似文献   

12.
研究不同种植年限果园土壤团聚体结构变化规律,探究各粒级团聚体有机碳、全氮分布变化特征,旨在为亚热带地区果园土壤肥力形成和变化规律等相关研究提供参考。以林地土壤(0 a)和不同种植年限(2、10、20、30 a)果园土壤为研究对象,分析种植年限与土壤团聚体结构及其有机碳和全氮含量的关系。结果表明:与林地土壤相比,开垦为果园后的土壤中2 mm团聚体含量显著增加;果园土壤团聚体含量随粒级减小而降低,其中2 mm和0.25~2 mm粒级分别占40.1%~64.9%和30.6%~46.4%;不同种植年限果园土壤各粒级团聚体含量无显著差异。各粒级团聚体有机碳和全氮含量随着种植年限的延长呈增加趋势,但C/N值呈下降趋势。相关分析表明,随种植年限延长而增加的土壤有机碳或全氮主要分布于0.25~2 mm粒级团聚体。亚热带地区林地开垦为果园可增加土壤大团聚体含量,但开垦为果园后种植年限对土壤团聚体各粒级的分布无显著影响。虽然随着种植年限延长可显著提高各粒径下有机质和全氮含量,但C/N降低,建议果园管理过程中应适当减施氮肥、增施有机肥,提高土壤养分有效性。  相似文献   

13.
【目的】分析东北黑土旱地改稻田后土壤团聚体组成及其稳定性、各粒级团聚体有机碳、全氮含量及其~(13)C、~(15)N自然丰度值的动态变化,探讨旱地改稻田后土壤团聚体有机碳、全氮的赋存能力及稳定性,揭示旱地改稻田后土壤团聚体及其有机碳、全氮的演变规律。【方法】选择东北典型黑土旱地土壤(种植大豆年限大于60年,作为对照)和改种不同年限的稻田土壤(3、5、10、17、20和25年,改稻田前种植作物均为大豆),利用土壤团聚体湿筛分离技术和稳定同位素分析技术,研究旱地改稻田后土壤团聚体有机碳、全氮的动态变化特征。【结果】在0—60 cm土层,与对照土壤相比,改种水稻各年限土壤中2—0.25 mm团聚体组成有所减少,0.25—0.053 mm和0.053 mm团聚体组成有所增加,2 mm团聚体组成的变化无明显规律,但旱地改稻田不同年限均以2—0.053 mm团聚体为主;团聚体平均重量直径(MWD)与2 mm团聚体组成之间呈显著线性正相关关系(P0.01),与0.25—0.053 mm、0.053 mm团聚体组成之间均呈显著线性负相关关系(P0.01或P0.05);水稳性团聚体组成变化受水稻种植年限和土层深度的显著影响,而MWD的变化则受土层深度的显著影响。与对照土壤相比,在0—40 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降,在改种水稻3—25年间均随水稻种植年限延长大体上呈增加趋势。总体上,2—0.25 mm、0.25—0.053 mm团聚体是赋存有机碳和全氮的主要粒级;在0—60 cm土层,2 mm团聚体有机碳、全氮含量与其团聚体组成之间呈显著正相关关系(P0.01或P0.05),在0—20 cm土层,2—0.25 mm团聚体有机碳、全氮含量与其团聚体组成之间也呈显著正相关关系(P0.01或P0.05);2 mm团聚体有机碳和全氮含量的变化受水稻种植年限影响显著,而0.25 mm团聚体有机碳和全氮含量的变化则受土层深度影响显著。与对照土壤相比,各粒级团聚体中δ~(13)C在改种水稻3年时均明显增加,在改种水稻5年时均明显下降,在改种水稻5—25年间变化不明显,各粒级团聚体中δ~(15)N在改种水稻25年间均略有下降。总体上,在改稻田3—25年间,团聚体中δ~(13)C、δ~(15)N的变化受水稻种植年限和土层深度的显著影响,其数值均随粒级的减少而增加,相同年限各粒级团聚体δ~(13)C随着土层的加深而增大,δ~(15)N无明显变化规律。【结论】东北典型黑土旱地改稻田25年间,土壤中非水稳性大团聚体遭受破坏形成了粒径较小的团聚体,2—0.053 mm水稳性团聚体是有机碳、全氮固存的主要载体,较小粒级团聚体赋存的有机碳较为稳定,其稳定性随水稻种植年限延长、土层加深而增强。  相似文献   

14.
就拉萨市农田土壤团聚体的组成及稳定性进行了研究,结果表明:干筛处理下土壤团聚体均以>2 mm粒径为主,总体随粒径的减小呈先降低后增加的趋势;湿筛处理下土壤团聚体以<0.25 mm粒径为主,总体随粒径的减小呈增加的趋势。干筛处理下,林地土壤平均重量直径大于农田;土壤平均重量直径与>0.25 mm水稳性土壤团聚体含量呈极显著正相关。  相似文献   

15.
【目的】分析东北黑土旱地改稻田后土壤团聚体组成及其稳定性、各粒级团聚体有机碳、全氮含量及其 13C、 15N自然丰度值的动态变化,探讨旱地改稻田后土壤团聚体有机碳、全氮的赋存能力及稳定性,揭示旱地改稻田后土壤团聚体及其有机碳、全氮的演变规律。【方法】选择东北典型黑土旱地土壤(种植大豆年限大于60年,作为对照)和改种不同年限的稻田土壤(3、5、10、17、20和25年,改稻田前种植作物均为大豆),利用土壤团聚体湿筛分离技术和稳定同位素分析技术,研究旱地改稻田后土壤团聚体有机碳、全氮的动态变化特征。【结果】在0—60 cm土层,与对照土壤相比,改种水稻各年限土壤中2—0.25 mm团聚体组成有所减少,0.25—0.053 mm和<0.053 mm团聚体组成有所增加,>2 mm团聚体组成的变化无明显规律,但旱地改稻田不同年限均以2—0.053 mm团聚体为主;团聚体平均重量直径(MWD)与>2 mm团聚体组成之间呈显著线性正相关关系(P<0.01),与0.25—0.053 mm、<0.053 mm团聚体组成之间均呈显著线性负相关关系(P<0.01或P<0.05);水稳性团聚体组成变化受水稻种植年限和土层深度的显著影响,而MWD的变化则受土层深度的显著影响。与对照土壤相比,在0—40 cm土层,2—0.25 mm、0.25—0.053 mm团聚体有机碳和全氮含量在改种水稻3年时均有所下降,在改种水稻3—25年间均随水稻种植年限延长大体上呈增加趋势。总体上,2—0.25 mm、0.25—0.053 mm团聚体是赋存有机碳和全氮的主要粒级;在0—60 cm土层,>2 mm团聚体有机碳、全氮含量与其团聚体组成之间呈显著正相关关系(P<0.01或P<0.05),在0—20 cm土层,2—0.25 mm团聚体有机碳、全氮含量与其团聚体组成之间也呈显著正相关关系(P<0.01或P<0.05);<2 mm团聚体有机碳和全氮含量的变化受水稻种植年限影响显著,而>0.25 mm团聚体有机碳和全氮含量的变化则受土层深度影响显著。与对照土壤相比,各粒级团聚体中δ 13C在改种水稻3年时均明显增加,在改种水稻5年时均明显下降,在改种水稻5—25年间变化不明显,各粒级团聚体中δ 15N在改种水稻25年间均略有下降。总体上,在改稻田3—25年间,团聚体中δ 13C、δ 15N的变化受水稻种植年限和土层深度的显著影响,其数值均随粒级的减少而增加,相同年限各粒级团聚体δ 13C随着土层的加深而增大,δ 15N无明显变化规律。【结论】东北典型黑土旱地改稻田25年间,土壤中非水稳性大团聚体遭受破坏形成了粒径较小的团聚体,2—0.053 mm水稳性团聚体是有机碳、全氮固存的主要载体,较小粒级团聚体赋存的有机碳较为稳定,其稳定性随水稻种植年限延长、土层加深而增强。  相似文献   

16.
以内蒙古自治区大兴安岭南麓阿荣旗全境农田土壤为研究对象,利用机械筛分法测定团聚体组成,并采用经典统计学对其团聚体组成结构进行分析,探索农田耕层土壤团聚体的结构稳定性。结果表明:阿荣旗各乡镇农田土壤团聚体组成存在较大差异,其中以大团聚体为主,粒径≥2 mm的大团聚体占总体的一半以上;粒径≥2 mm和0.25—2 mm的大团聚体之间及粒径0.053—0.25 mm和<0.053 mm的微团聚体之间具有极强的相关关系。各乡镇之间粒径≥2 mm和0.25—2 mm的大团聚体稳定性存在显著差异;各乡镇之间粒径0.053—0.25 mm和<0.053 mm的微团聚体稳定性差异不显著,微团聚体结构相对稳定。相关结果表明:大团聚体容易受到耕地不合理利用、水土流失等外因影响而产生崩解或分解为微团聚体,造成各乡镇间微团聚体差异性较大团聚体显著,直接影响土壤质量。合理利用耕地,保护性耕作才能阻止水土流失,维护土壤团聚体稳定性。  相似文献   

17.
为研究不同复垦模式对矿区土壤团聚体组成及其有机碳、氮分布的影响,以平朔矿区安太堡露天煤矿3 a荞麦复垦、3 a苜蓿复垦为研究对象,以3 a自然恢复地为对照,分别采集3种模式下表层0~20 cm土样,测定机械稳定性团聚体、水稳性团聚体含量及其有机碳、氮含量,并进行相关指标分析。结果表明,随着团聚体粒径的减小,荞麦复垦与自然恢复地下的土壤机械稳定性团聚体含量均呈现出先增加后减少的趋势,且主要集中在1~2、0.25~1.00、≤0.25 mm粒径内,其中,2 mm粒径中机械稳定性团聚体含量表现为苜蓿复垦显著高于荞麦复垦和自然恢复地,0.25~1.00 mm粒径中苜蓿复垦显著低于荞麦复垦和自然恢复地,≤0.25 mm粒径中各复垦模式间无显著性差异;土壤水稳性团聚体主要集中于≤0.25 mm微团聚体内,而苜蓿复垦显著提高了0.25 mm粒径的水稳性团聚体含量,其中,苜蓿复垦下2 mm粒径的水稳性团聚体含量达23.77%,比荞麦复垦与自然恢复地分别高出13.37%和14.12%;土壤团聚体稳定性从大到小表现为苜蓿复垦荞麦复垦自然恢复地。团聚体有机碳、氮含量主要集中于0.25 mm粒径内,其中,苜蓿复垦下0.25~1.00 mm粒径的团聚体有机碳、氮含量分别达到最大值7.66、1.35 g/kg,各处理团聚体碳氮储量均以0.25 mm大团聚体为主;植物复垦提高了0.25 mm土壤团聚体C/N值,降低了≤0.25 mm粒径团聚体C/N值。植物复垦能够提高0.25 mm粒径机械稳定性团聚体和水稳性团聚体含量,增强团聚体的稳定性,并且可提高土壤团聚体有机碳、氮含量;苜蓿效果优于荞麦,其可作为矿区复垦优选植被。  相似文献   

18.
 以新疆南疆地区50团棉花连作5年、10年、15年20年的土壤为研究对象,分别测定不同连作年限土壤比重、容重、孔隙度以及团聚体结构和机械组成等物理性状。结果表明:棉花连作对其土壤各种物理性状产生了较大的影响。比重、容重随着连作年限的增长呈上升趋势,而孔隙度则反之;土壤团聚体中粒径小于0.25mm的微团聚体占了较大比重,良好团聚体的含量随着连作年限的增长呈下降趋势,而微团聚体则相反;土壤机械组成中砂粒的含量占了较大比重,而砾石没有,砂粒的含量随着连作年限的增长呈上升趋势,粉粒呈下降趋势,而粘粒呈无规律的波动状。  相似文献   

19.
通过对贵阳市五种利用方式下石灰土的团聚体组成、稳定性及其它相关因素进行初步研究,结果表明:>5 mm水稳定性团聚体含量顺序为:林地>灌木林地>荒草地>旱地>裸地;>0.25 mm的水稳定性团聚体含量顺序为:林地>灌木林地>旱地>荒草地>裸地。有机质含量与>5 mm和>0.25 mm水稳定性团聚体含量呈极显著的正相关;影响>0.25 mm风干团聚体含量主要是土壤中粘粒的数量;团聚体结构破坏率与>0.25 mm和>5 mm水稳定性团聚体达到显著负相关。同时,土壤团聚体稳定性与土壤侵蚀状况呈负相关,团聚体的破坏率与有机质含量呈极显著负相关,有机质对团聚体的作用大于粘粒对团聚体的影响。人为开垦林地引起土壤侵蚀加剧,使土壤有机质含量降低,是导致土壤结构退化的基本原因。  相似文献   

20.
不同种植模式下坡耕地红壤团聚体有机碳矿化特征   总被引:2,自引:0,他引:2  
为探讨不同种植模式下团聚体中有机碳转化和稳定的作用机制,以坡耕地红壤为研究对象,结合土壤团聚体组成及有机碳分布,通过室内有机碳矿化培养方法,并采用一级动力学方程拟合培养过程中CO_2通量的动态变化,分析不同种植模式下团聚体有机碳矿化动态特征及其对土壤总矿化的贡献。结果表明:不同种植模式下土壤团聚体粒径均以2 mm和2~0.25 mm为主,其总量在78%以上,玉米单作显著减少2 mm团聚体的比例,但却显著增加0.25 mm团聚体的比例。不同种植模式下0.25 mm团聚体的有机碳含量显著高于全土、2 mm团聚体和2~0.25 mm团聚体。全土中玉米大豆间作处理的土壤有机碳含量显著低于大豆单作处理,各粒径团聚体中有机碳含量在单作处理与对应的间作处理之间没有显著差异。不同种植模式下全土和团聚体中有机碳矿化作用的强弱表现为单作处理比对应的间作处理更强,并且大豆单作处理有机碳累积矿化量最高。不同种植模式下2~0.25 mm团聚体有机碳矿化速率最快,有机碳矿化作用最强,而0.25 mm团聚体C_0/SOC值(土壤有机碳矿化分解作用消耗土壤中有机碳的比例)较全土及其他两个粒径团聚体显著降低,更有利于土壤有机碳固存。2 mm和2~0.25 mm团聚体对全土有机碳矿化的贡献最大。研究表明,大团聚体(0.25 mm)在坡耕地红壤有机碳矿化中起重要作用,玉米大豆间作和玉米白萝卜间作在一定程度上可降低土壤有机碳矿化作用,增强土壤固碳能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号