首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembled monolayers (SAMs) of omega-functionalized long-chain alkanethiolates on gold films are excellent model systems with which to study the interactions of proteins with organic surfaces. Monolayers containing mixtures of hydrophobic (methyl-terminated) and hydrophilic [hydroxyl-, maltose-, and hexa(ethylene glycol)-terminated] alkanethiols can be tailored to select specific degrees of adsorption: the amount of protein adsorbed varies monotonically with the composition of the monolayer. The hexa(ethylene glycol)-terminated SAMs are the most effective in resisting protein adsorption. The ability to create interfaces with similar structures and well-defined compositions should make it possible to test hypotheses concerning protein adsorption.  相似文献   

2.
Covalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders. We used SLG surfaces supported on copper, silicon carbide, and transparent fused silica (SiO(2)) substrates, enabling optical spectroscopy of COFs in transmission mode. Three chemically distinct COF films grown on SLG exhibit similar vertical alignment and long-range order, and two of these are of interest for organic electronic devices for which thin-film formation is a prerequisite for characterizing their optoelectronic properties.  相似文献   

3.
It is becoming increasingly apparent that chemistry at surfaces, whether it be heterogeneous catalysis, semiconductors etching, or chemical vapor deposition, is controlled by much more than the nature and structure of the surface. Recent experiments that principally make use of molecular beam techniques have revealed that the energy at which an incident molecule collides with a surface can be the key factor in determining its reactivity with or on the surface. In addition, the collision energy of an incident particle has proven essential to the finding of new mechanisms for reaction or desorption of molecules at surfaces, collision-induced activation and collision-induced desorption. These phenomena are often responsible for the different surface chemistry observed under conditions of high reactant pressure, such as those present during a heterogeneous catalytic reaction, and of low pressure of reactants (< 10(-4) torr), such as those present in an ultrahigh vacuum surface science experiment. This knowledge of the microscopic origins of the effect of pressure on the chemistry at surfaces has allowed the development of a scheme to bypass the high-pressure requirement. Reactions that are normally observed only at high reactant pressures, and which are the ones most often of practical importance, can now be carried out in low-pressure, ultrahigh vacuum environments.  相似文献   

4.
Understanding how molecules can restructure the surfaces of heterogeneous catalysts under reaction conditions requires methods that can visualize atoms in real space and time. We applied a newly developed aberration-corrected environmental transmission electron microscopy to show that adsorbed carbon monoxide (CO) molecules caused the {100} facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature. The CO molecules adsorbed at the on-top sites of gold atoms in the reconstructed surface, and the energetic favorability of this reconstructed structure was confirmed by ab initio calculations and image simulations. This atomic-scale visualizing method can be applied to help elucidate reaction mechanisms in heterogeneous catalysis.  相似文献   

5.
Heterogeneous, patterned surfaces comprising well-defined hydrophobic and hydrophilic regions and having micrometer-scale periodicities were prepared by patterning the adsorption of omega-functionalized alkanethiolates in self-assembled monolayers (SAMs) on gold. Condensation of water on such surfaces resulted in drops that followed the patterns in the SAMs. These patterned condensation figures (CFs) acted as optical diffraction gratings for reflected (or transmitted) light from a helium-neon laser (wavelength of 632.8 nanometers). Under an atmosphere of constant relative humidity, the development of the condensation figure was monitored quantitatively, as the temperature of the surface was lowered, by following the change in intensity of a first-order diffraction spot. This experimental technique may be useful in the development of new types of optical sensors that respond to their environment by changing the reflectivity of patterned regions and for studying phenomena such as drop nucleation, contact angle hysteresis, and spontaneous dewetting and break-up of thin liquid films.  相似文献   

6.
An experimental technique is described for simultaneously measuring the static and dynamic interactions of very thin liquid films between two surfaces as they are moved normally or laterally relative to each other. Film thickness can be measured and controlled to 1 angstrom. Initial results are presented of the transition in the physical properties of liquid films only one molecular layer thick to thicker films whose properties are practically indistinguishable from the bulk. In particular, the results show that two molecularly smooth surfaces, when close together in simple liquids, slide (shear) past each other while separated by a discrete number of molecular layers, and that the frictional force is "quantized" with the number of layers.  相似文献   

7.
The tip-surface region of a scanning tunneling microscope (STM) emits light when the energy of the tunneling electrons is sufficient to excite luminescent processes. These processes provide access to dynamic aspects of the local electronic structure that are not directly amenable to conventional STM experiments. From monolayer films of carbon-60 fullerenes on gold(110) surfaces, intense emission is observed when the STM tip is placed above an individual molecule. The diameter of this emission spot associated with carbon-60 is approximately 4 angstroms. These results demonstrate the highest spatial resolution of light emission to date with a scanning probe technique.  相似文献   

8.
Single-crystal films are essential for devices because the intrinsic properties of the material, rather than its grain boundaries, can be exploited. Cubic bismuth oxide has the highest known oxide ion mobility, which makes it useful for fuel cells and sensors, but it is normally only stable from 729 degrees to 825 degrees C. The material has not been previously observed at room temperature. Single-crystal films of the high-temperature cubic polymorph of bismuth oxide were epitaxially electrodeposited from an aqueous solution onto single-crystal gold substrates. The 35.4 percent lattice mismatch was accommodated by forming coincidence lattices in which the bismuth oxide film was rotated in relation to the gold substrate. These results provide a method for producing other nonequilibrium phases that cannot be accessed by traditional thermal processing.  相似文献   

9.
Nanometer-thick films at interfaces and surfaces exist in various materials and can substantially influence their properties. Whether these films are an equilibrium or transient state is debated. To address this question, we equilibrated 1.2-nanometer-thick films at gold-sapphire interfaces in the presence of anorthite glass and measured the solid-solid interface energy. The equilibrated film significantly reduced the interfacial energy and could be described by the Gibbs adsorption isotherm expanded to include structure in addition to chemical excess. Unlike artificially made conventional thin films, these films do not break up during equilibration and offer an alternative design criterion for thin-film technology. These results demonstrate that nanometer-thick films at interfaces and surfaces can be an equilibrium state and included in phase diagrams with dedicated tie-lines.  相似文献   

10.
YBa(2)Cu(3)O(7) films have been grown epitaxially on SrTiO(3) (100) and LaAlO(3) (100) substrates with nearly pure a-axis orientation and with transition temperature T(c) (R = 0) of 85 K. A unique feature of these films is their smooth surface. These smooth surfaces enable the growth of short-period superlattices with well-defined modulations. The films are untwinned and the grains grow with their c-axis along one of two perpendicular directions on the substrate ([100] or [010]). The fabrication of sandwich-type Josephson junctions with good characteristics may now be possible because unlike c-axis-oriented films, the superconducting coherence length of these smooth films is appreciably large perpendicular to their surfaces.  相似文献   

11.
Scanning tunneling microscopy was used to characterize the growth of oxidized areas on galena (100) surfaces and the formation of gold islands by the reductive adsorption of AuCl(4)(-) from aqueous solution. The gold islands and galena substrate were distinguished by atomic resolution imaging and tunneling spectroscopy. Oxidized areas on galena have [110]-trending boundaries; gold islands elongate along [110] directions. However, there are no obvious structural registry considerations that would lead to elongation of gold islands in a [110] direction. Instead, it is probable that a direct coupling of gold reduction and sulfide surface oxidation controls the initial formation of gold islands. Gold islands grow less quickly on preoxidized galena surfaces and show no preferred direction of growth.  相似文献   

12.
Aqueous films on terrestrial litter are inhabited by numerous microorganisms; the surfaces of such films are covered by monolayer-forming substances. The spreading pressure of the latter can result in transport of floating and submerged organisms to adjacent water films with clean surfaces. The clean surfaces, produced by rain or possibly dew, permit rapid vertical and horizontal dispersal of microorganisms onto newly fallen leaves and other plant materials.  相似文献   

13.
The self-assembly of monodisperse gold and silver colloid particles into monolayers on polymer-coated substrates yields macroscopic surfaces that are highly active for surface-enhanced Raman scattering (SERS). Particles are bound to the substrate through multiple bonds between the colloidal metal and functional groups on the polymer such as cyanide (CN), amine (NH(2)), and thiol (SH). Surface evolution, which can be followed in real time by ultraviolet-visible spectroscopy and SERS, can be controlled to yield high reproducibility on both the nanometer and the centimeter scales. On conducting substrates, colloid monolayers are electrochemically addressable and behave like a collection of closely spaced microelectrodes. These favorable properties and the ease of monolayer construction suggest a widespread use for metal colloid-based substrates.  相似文献   

14.
The critical role that dopants play in semiconductor devices has stimulated research on the properties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, doped with intentional impurities. We review advances in the chemical synthesis of doped nanocrystals, in the theoretical understanding of the fundamental mechanisms that control doping, and in the creation of highly conducting nanocrystalline films. Because impurities can be used to alter the properties of nanoscale materials in desirable and controllable ways, doped nanocrystals can address key problems in applications from solar cells to bioimaging.  相似文献   

15.
Ward MD  Buttry DA 《Science (New York, N.Y.)》1990,249(4972):1000-1007
The converse piezoelectric effect, in which an electric field applied across a piezoelectric material induces a stress in that material, has spurred many recent developments in mass measurement techniques. These methods commonly rely on the changes in the vibrational resonant frequency of piezoelectric quartz oscillators that result from changes in mass on the surface of the oscillator. The dependence of frequency on mass has been exploited extensively for mass measurements in vacuum or gas phase, for example, thickness monitors for thin-film preparation and sensors for chemical agents. Advances in piezoelectric methodology in the last decade now allow dynamic measurements of minute mass changes (< 10(-9) grams per square centimeter) at surfaces, thin films, and electrode interfaces in liquid media as well. Mass measurements associated with a diverse collection of interfacial processes can be readily performed, including chemical and biological sensors, reactions catalyzed by enzymes immobilized on surfaces, electron transfer at and ion exchange in thin polymer films, and doping reactions of conducting polymers.  相似文献   

16.
Carbon films with a diamondlike structure that are chemically bonded to surfaces have been deposited by means of low-energy C(+) ion beams. When mass-selected C(+) beams at energies in the range from 20 to 200 electron volts impinge on atomically clean surfaces, the first carbon monolayer grows as a carbide structure that is chemically bonded to the surface. As deposition continues, the structure evolves over the next several atomic layers into a diamondlike structure. These pure carbon films are strongly adhered to the surface through the carbide bonds, which also provide for an intimate interface. There are significant applications for such films, particularly as insulators and doped semiconductors.  相似文献   

17.
The nature and control of individual metal atoms on insulators are of great importance in emerging atomic-scale technologies. Individual gold atoms on an ultrathin insulating sodium chloride film supported by a copper surface exhibit two different charge states, which are stabilized by the large ionic polarizability of the film. The charge state and associated physical and chemical properties such as diffusion can be controlled by adding or removing a single electron to or from the adatom with a scanning tunneling microscope tip. The simple physical mechanism behind the charge bistability in this case suggests that this is a common phenomenon for adsorbates on polar insulating films.  相似文献   

18.
天然有机质(NOM)在土壤、沉积物和水体等环境中无处不在,其中富里酸和胡敏酸是主要形态。富里酸及胡敏酸活性高,易与天然矿物颗粒和金属离子发生相互作用,影响矿物的表面化学特性以及金属离子的形态与迁移性,进而在控制环境中金属离子的生物有效性和毒性等方面起重要作用。本文主要综述了富里酸和胡敏酸等NOM和金属离子在矿物表面共吸附特性与主要影响因素,归纳了表面络合模型和现代光谱技术在上述三元体系研究中的应用及其反应机制研究进展。NOM在较大程度上改变了金属离子在矿物表面的吸附特性和反应机制,并受体系pH、金属离子类型和浓度、NOM浓度、NOM和金属离子的添加顺序、矿物类型等因素的影响。低pH时,NOM通常促进矿物对金属离子的吸附。NOM和金属离子在矿物表面的共吸附机制包括:NOM和金属离子竞争吸附表面活性吸附位点;在溶液中形成NOM-金属离子络合物;形成金属离子桥接矿物表面位点与NOM的A型三元络合物(矿物-金属离子-NOM)或NOM联接矿物表面与金属离子的B型三元表面络合物(矿物-NOM-金属离子);静电作用改变表面电荷特征。最后展望了天然有机质等配体与金属离子在矿物表面共吸附有关的研究热点和方向。  相似文献   

19.
离子束增强沉积掺杂氧化钒薄膜的最佳退火条件   总被引:1,自引:0,他引:1  
用离子束增强沉积方法制备掺杂Ar和W的VO2多晶薄膜,明显改变了VO2薄膜的相变温度.试验发现,薄膜存在一个形成VO2结构的临界结晶温度,该温度随薄膜制备时沉积条件的不同而改变.选择适当的杂质和退火条件可以将VO2薄膜的相变温度降低到室温附近,获得较高室温电阻-温度系数的薄膜.  相似文献   

20.
Stochastic on-off conductivity switching observed in phenylene-ethynylene oligomers has been explained in terms of changes in ring conformations, or electron localization, or both. We report the observation of stochastic on-off switching in the simplest of wired molecules: octanedithiol, decanedithiol, and dodecanedithiol bonded on an Au(111) surface. Stochastic switching was observed even when a top gold contact was pressed on by a conducting atomic force microscope tip at constant force. The rate of switching increased substantially at 60 degrees C, a temperature at which these films are commonly annealed. Because such switching in alkanethiols is unlikely to be caused by internal molecular electronic changes and cannot be fully accounted for by breaking of the top contact, we argue that the cause is the well-known mobility of molecules tethered to gold via a thiol linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号