首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Super ENSO and global climate oscillations at millennial time scales   总被引:1,自引:0,他引:1  
The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Ni?o-Southern Oscillation (ENSO). El Ni?o conditions correlate with stadials at high latitudes, whereas La Ni?a conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Ni?o.  相似文献   

2.
A continuous record of oxygen-18 (delta(18)O) variations in the continental hydrosphere during the middle-to-late Pleistocene has been obtained from a uranium-series dated calcitic vein in the southern Great Basin. The vein was deposited from ground water that moved through Devils Hole-an open fault zone at Ash Meadows, Nevada-between 50 and 310 ka (thousand years ago). The configuration of the delta(18)O versus time curve closely resembles the marine and Antarctic ice core (Vostok) delta(18)O curves; however, the U-Th dates indicate that the last interglacial stage (marine oxygen isotope stage 5) began before 147 +/- 3 ka, at least 17,000 years earlier than indicated by the marine delta(18)O record and 7,000 years earlier than indicated by the less well dated Antarctic delta(18)O record. This discrepancy and other differences in the timing of key climatic events suggest that the indirectly dated marine delta(18)O chronology may need revision and that orbital forcing may not be the principal cause of the Pleistocene ice ages.  相似文献   

3.
Isotopic analyses of subglacially precipitated calcite from near a modern temperate glacier show that the delta(18)O (= (18)O/(16)O relative to standard mean ocean water) of the calcite records the delta(18)O of the ice from that glacier. It may therefore be possible to determine the delta(18)O of Pleistocene ice sheets on the basis of isotopic analyses of calcite formed under that ancient ice. This, in turn, would allow estimation of the delta(18)O of Pleistocene oceans and correction of the paleotemperature scale based on foraminiferal oxygen isotopic analyses.  相似文献   

4.
A record of oxygen isotopes in biogenic silica from a deep-sea sediment core from the Southern Ocean reveals that marine diatoms retain their primary isotopic composition after burial. As a result, the marine diatom record can be combined with data on coexisting planktonic foraminifera to monitor past surface temperature and isotopic composition of seawater. The coupling of these two records allows the solution of two paleotemperature equations for each core interval. Data from a South Atlantic core show that the average delta(18)O during the glacial period at this site was higher by about 1.3 per mil than average Holocene values, and that average glacial-age temperatures were not significantly different from average Holocene values.  相似文献   

5.
A deep-sea temperature record for the past 50 million years has been produced from the magnesium/calcium ratio (Mg/Ca) in benthic foraminiferal calcite. The record is strikingly similar in form to the corresponding benthic oxygen isotope (delta(18)O) record and defines an overall cooling of about 12 degrees C in the deep oceans with four main cooling periods. Used in conjunction with the benthic delta(18)O record, the magnesium temperature record indicates that the first major accumulation of Antarctic ice occurred rapidly in the earliest Oligocene (34 million years ago) and was not accompanied by a decrease in deep-sea temperatures.  相似文献   

6.
500,000-year stable carbon isotopic record from devils hole, nevada   总被引:1,自引:0,他引:1  
The record of carbon-13 (delta(13)C) variations in DH-11 vein calcite core from Devils Hole, Nevada, shows four prominent minima near glacial terminations (glacial-interglacial transitions) V to II. The delta(13)C time series is inversely correlated with the DH-11 oxygen isotope ratio time series and leads it by as much as 7000 years. The delta(13)C variations likely record fluctuations in the delta(13)C of dissolved inorganic carbon of water recharging the aquifer. How such variations are transported 80 kilometers to Devils Hole without obliteration by water-rock reaction remains an enigma. The record may reflect (i) global variations in the delta(13)C of atmospheric CO(2) and, hence, the delta(13)C of continental biomass or (ii) variations in extent and density of vegetation in the southern Great Basin. In the latter case, delta(13)C minima at 414, 334, 246, and 133 thousand years ago mark times of maximum vegetation.  相似文献   

7.
One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial delta(18)O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 x 10(6) years. Uraniumseries dates on the salt beds range from 35 x 10(3) to 231x 10(3) years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.  相似文献   

8.
A 30,000-year paleotemperature record derived from noble gases dissolved in carbon-14-dated ground water indicates that the climate in lowland Brazil (Piaui Province, 7 degrees S, 41.5 degrees W; altitude, 400 meters) was 5.4 degrees +/- 0.6 degrees C cooler during the last glacial maximum than today. This result suggests a rather uniform cooling of the Americas between 40 degrees S and 40 degrees N. A 5.4 degrees C cooling of tropical South America is consistent with pollen records, snow line reconstructions, and strontium/calcium ratios and delta(18)O coral records but is inconsistent with the sea-surface temperature reconstruction of CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction). On the basis of these results, it appears that the tropical Americas are characterized by a temperature sensitivity comparable to that found in higher latitudes.  相似文献   

9.
Pore fluids from the upper 60 meters of sediment 3000 meters below the surface of the tropical Atlantic indicate that the oxygen isotopic composition (delta18O) of seawater at this site during the last glacial maximum was 0.8 ± 0.1 per mil higher than it is today. Combined with the delta18O change in benthic foraminifera from this region, the elevated ratio indicates that the temperature of deep water in the tropical Atlantic Ocean was 4°C colder during the last glacial maximum. Extrapolation from this site to a global average suggests that the ice volume contribution to the change in delta18O of foraminifera is 1.0 per mil, which partially reconciles the foraminiferal oxygen isotope record of tropical sea surface temperatures with estimates from Barbados corals and terrestrial climate proxies.  相似文献   

10.
Subpolar North Atlantic proxy records document millennial-scale climate variations 500,000 to 340,000 years ago. The cycles have an approximately constant pacing that is similar to that documented for the last glacial cycle. These findings suggest that such climate variations are inherent to the late Pleistocene, regardless of glacial state. Sea surface temperature during the warm peak of Marine Isotope Stage 11 (MIS 11) varied by 0.5 degrees to 1 degrees C, less than the 4 degrees to 4.5 degrees C estimated during times of ice growth and the 3 degrees C estimated for glacial maxima. Coherent deep ocean circulation changes were associated with glacial oscillations in sea surface temperature.  相似文献   

11.
Application of a simple linear model to the earth's ice volume record of the past 730,000 years indicates that although forcing by variations in the earth's orbital parameters of tilt and precession is real, it is small (less than 25 percent of the variance in the record). No relationship with the eccentricity is observed. This indicates that the Pleistocene glacial variations are largely stochastic in nature.  相似文献   

12.
The deep-sea sediment oxygen isotopic composition (delta(18)O) record is dominated by a 100,000-year cyclicity that is universally interpreted as the main ice-age rhythm. Here, the ice volume component of this delta(18)O signal was extracted by using the record of delta(18)O in atmospheric oxygen trapped in Antarctic ice at Vostok, precisely orbitally tuned. The benthic marine delta(18)O record is heavily contaminated by the effect of deep-water temperature variability, but by using the Vostok record, the delta(18)O signals of ice volume, deep-water temperature, and additional processes affecting air delta(18)O (that is, a varying Dole effect) were separated. At the 100,000-year period, atmospheric carbon dioxide, Vostok air temperature, and deep-water temperature are in phase with orbital eccentricity, whereas ice volume lags these three variables. Hence, the 100,000-year cycle does not arise from ice sheet dynamics; instead, it is probably the response of the global carbon cycle that generates the eccentricity signal by causing changes in atmospheric carbon dioxide concentration.  相似文献   

13.
Three ice cores to bedrock from the Dunde ice cap on the north-central Qinghai-Tibetan Plateau of China provide a detailed record of Holocene and Wisconsin-Würm late glacial stage (LGS) climate changes in the subtropics. The records reveal that LGS conditions were apparently colder, wetter, and dustier than Holocene conditions. The LGS part of the cores is characterized by more negative delta(18)O ratios, increased dust content, decreased soluble aerosol concentrations, and reduced ice crystal sizes than the Holocene part. These changes occurred rapidly approximately 10,000 years ago. In addition, the last 60 years were apparently one of the warmest periods in the entire record, equalling levels of the Holocene maximum between 6000 and 8000 years ago.  相似文献   

14.
The mean oxygen-18 content of continental ice sheets during the last glacial maximum is estimated to deltaO(18)=-30 per mille or less, and the consequent change in the isotopic composition of the oceans at that time to 1.2 per mille or more. This means that at least 70 percent of the oxygen-18 variations found in shells of planktonic foraminifera from deep-sea cores between times of glacial maximums and minimums are due to isotopic changes in ocean water, and at most 30 percent to changes in ocean surface temperature. Hence, Emiliani's "paleotemperature" curve rather depicts the amount of ice on the continents in excess of that present today. In this sense it may be renamed a "paleoglaciation" curve.  相似文献   

15.
Oxygen isotopes in marine sulfate (delta18O(SO4)) measured in marine barite show variability over the past 10 million years, including a 5 per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.  相似文献   

16.
A multitracer study of a small aquifer in northern Switzerland indicates that the atmosphere in central Europe cooled by at least 5 degreesC during the last glacial period. The relation between oxygen isotope ratios (delta18O) and recharge temperatures reconstructed for this period is similar to the present-day one if a shift in the delta18O value of the oceans during the ice age is taken into account. This similarity suggests that the present-day delta18O-temperature relation can be used to reconstruct paleoclimate conditions in northern Switzerland. A gap in calculated groundwater age between about 17,000 and 25,000 years before the present indicates that during the last glacial maximum, local groundwater recharge was prevented by overlying glaciers.  相似文献   

17.
Long, continuous, marine sediment records from the subpolar North Atlantic document the glacial modulation of regional climate instability throughout the past 0.5 million years. Whenever ice sheet size surpasses a critical threshold indicated by the benthic oxygen isotope (delta18O) value of 3.5 per mil during each of the past five glaciation cycles, indicators of iceberg discharge and sea-surface temperature display dramatically larger amplitudes of millennial-scale variability than when ice sheets are small. Sea-surface temperature oscillations of 1 degrees to 2 degreesC increase in size to approximately 4 degrees to 6 degreesC, and catastrophic iceberg discharges begin alternating repeatedly with brief quiescent intervals. The glacial growth associated with this amplification threshold represents a relatively small departure from the modern ice sheet configuration and sea level. Instability characterizes nearly all observed climate states, with the exception of a limited range of baseline conditions that includes the current Holocene interglacial.  相似文献   

18.
Ice cores from Penny Ice Cap, Baffin Island, Canada, provide continuous Holocene records of oxygen isotopic composition (delta18O, proxy for temperature) and atmospheric impurities. A time scale was established with the use of altered seasonal variations, some volcanic horizons, and the age for the end of the Wisconsin ice age determined from the GRIP and GISP2 ice cores. There is pre-Holocene ice near the bed. The change in delta18O since the last glacial maximum (LGM) is at least 12.5 per mil, compared with an expected value of 7 per mil, suggesting that LGM ice originated at the much higher elevations of the then existing Foxe Dome and Foxe Ridge of the Laurentide Ice Sheet. The LGM delta18O values suggest thick ice frozen to the bed of Hudson Bay.  相似文献   

19.
The climatic and environmental changes associated with the last glaciation (90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important example of the effects of global climate change on biological diversity. These effects were particularly marked in Beringia (northeastern Siberia, northwestern North America, and the exposed Bering Strait) during the late Pleistocene. To investigate the evolutionary impact of these events, we studied genetic change in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years using DNA preserved in permafrost remains. A marked degree of genetic structure is observed in populations throughout this period despite local extinctions, reinvasions, and potential interspecies competition with the short-faced bear, Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., before the glacial maximum, and little change is observed after this time. Late Pleistocene histories of mammalian taxa may be more complex than those that might be inferred from the fossil record or contemporary DNA sequences alone.  相似文献   

20.
Plummer LN 《Science (New York, N.Y.)》1993,262(5142):2016-2020
Paleowaters from the Floridan aquifer system in the southeastern Atlantic coastal plain have higher D/H and (18)O/(16)O ratios than local Holocene ground water. Maximum delta(18)O enrichments in ground water having adjusted radiocarbon ages of 20,000 to 26,000 years are 0.7 to 2.3 per mil. The trend in isotopic enrichment in paleowaters is the reverse of that normally observed in continental glacial age ground water. Dissolved nitrogen and argon concentrations indicate, however, that the average recharge temperature was 5.3 degrees C cooler than that today. The data indicate cool conditions in the southeast Atlantic coastal plain during the last glacial maximum, with recharge limited primarily to late summer tropical cyclones and hurricanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号