首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons. Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex streets in the wake of a potential barrier. The direct observation of these topological excitations provides key information on the mechanisms of superflow and shows the potential of polariton condensates for quantum turbulence studies.  相似文献   

2.
We established superfluidity in a two-state mixture of ultracold fermionic atoms with imbalanced state populations. This study relates to the long-standing debate about the nature of the superfluid state in Fermi systems. Indicators for superfluidity were condensates of fermion pairs and vortices in rotating clouds. For strong interactions, near a Feshbach resonance, superfluidity was observed for a broad range of population imbalances. We mapped out the superfluid regime as a function of interaction strength and population imbalance and characterized the quantum phase transition to the normal state, known as the Pauli limit of superfluidity.  相似文献   

3.
Superfluids such as helium II consist of two interpenetrating fluids: the normal fluid and the superfluid. The helium II vortex ring has generally been considered merely as a superfluid object, neglecting any associated motion of the normal fluid. We report a three-dimensional calculation of the coupled motion of the normal-fluid and superfluid components, which shows that the helium II vortex ring consists of a superfluid vortex ring accompanied by two coaxial normal-fluid vortex rings of opposite polarity. The three vortex rings form a coherent, dissipative structure.  相似文献   

4.
Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by high-precision measurements of the local compressibility, density, and pressure. Our data completely determine the universal thermodynamics of these gases without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity, which displays a characteristic lambda-like feature at the critical temperature T(c)/T(F) = 0.167(13). The ground-state energy is 3/5ξN E(F) with ξ = 0.376(4). Our measurements provide a benchmark for many-body theories of strongly interacting fermions.  相似文献   

5.
We report on the observation of a highly degenerate, strongly interacting Fermi gas of atoms. Fermionic lithium-6 atoms in an optical trap are evaporatively cooled to degeneracy using a magnetic field to induce strong, resonant interactions. Upon abruptly releasing the cloud from the trap, the gas is observed to expand rapidly in the transverse direction while remaining nearly stationary in the axial direction. We interpret the expansion dynamics in terms of collisionless superfluid and collisional hydrodynamics. For the data taken at the longest evaporation times, we find that collisional hydrodynamics does not provide a satisfactory explanation, whereas superfluidity is plausible.  相似文献   

6.
Quantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds. Individual vortices persisted up to 40 seconds. The lattices could be generated over a wide range of rotation frequencies and trap geometries, shedding light on the formation process. Our observation of dislocations, irregular structure, and dynamics indicates that gaseous Bose-Einstein condensates may be a model system for the study of vortex matter.  相似文献   

7.
Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100?) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.  相似文献   

8.
9.
We have determined the upper critical field Hc2 as a function of hole concentration in bismuth-based cuprates by measuring the voltage induced by vortex flow in a driving temperature gradient (the Nernst effect), in magnetic fields up to 45 tesla. We found that Hc2 decreased steeply as doping increased, in both single and bilayer cuprates. This relationship implies that the Cooper pairing potential displays a trend opposite to that of the superfluid density versus doping. The coherence length of the pairs xi(0) closely tracks the gap measured by photoemission. We discuss implications for understanding the doping dependence of the critical temperature Tc0.  相似文献   

10.
镂空型人工鱼礁流场效应的数值模拟研究   总被引:1,自引:0,他引:1  
应用CFD软件对中空结构梯形台鱼礁和方型鱼礁在非定常流作用下的三维流场进行了数值模拟,揭示了两类鱼礁形成的上升流、背涡流的规模和强度,分析了单体鱼礁和组合鱼礁的流场差异。数值模拟结果表明:梯形台鱼礁上升流区最大速度约为来流速度的0.58~0.67倍、上升流区平均速度约为来流速度的0.15~0.19倍、而上升流区的最大高度为礁体高度的2.12~2.49倍,背涡流区平均速度约为来流速度的0.35~0.36倍、背涡流区的最大宽度约为礁体宽度的1.40~1.61倍、组合鱼礁背涡流区的最大长度约为礁体高度的4.06~4.17倍;方型鱼礁上升流区最大速度约为来流速度的0.56~0.61倍、上升流区平均速度约为来流速度的0.15~0.17倍、而上升流区的最大高度为礁体高度的2.22~2.63倍,背涡流区平均速度约为来流速度的0.30~0.35倍、背涡流区的最大宽度约为礁体宽度的1.75~2.00倍、组合鱼礁背涡流区的最大长度约为礁体高度的3.90~4.06倍。从流场调控效果来看,在相同模拟工况下,选择方型鱼礁比梯形台鱼礁能够更好地发挥鱼礁的环境资源修复功能。  相似文献   

11.
为有效清除地面起伏湿气集输管路中的积液,设计加工了一种涡流工具。通过Fluent数值模拟与环道试验分析不同气液相折算速度入口条件对涡流工具排液效果的影响,并对涡流工具的工作效果进行评价。结果表明:安装涡流工具后,上倾管内液相回流及底部积液现象有所缓解,上倾管内维持环状流流型,持液率有所下降。涡流工具的排液降压能力与气液相折算速度、管路倾角有关。在倾角一定的情况下,气相折算速度越大,涡流工具的排液降压能力越强;在相同气、液相折算速度入口条件下,管路倾角(0°~45°)越小,涡流工具的排液降压效果越好。研究成果可为指导涡流排液技术的现场应用提供理论依据。  相似文献   

12.
方形人工鱼礁单体流场效应的PIV试验研究   总被引:2,自引:0,他引:2  
采用粒子图像测速(PIV)二维流场测速技术和水槽模拟试验研究了人工鱼礁的流场效应,对单体开口比分别为0、0.04、0.16、0.25的人工鱼礁在来流流速分别为67、112、180 mm/s时产生的流场效应进行分析.结果表明:单体人工鱼礁流场效应中,开口比和来流流速均对流场效应产生影响,开口比越小,来流流速越大,流场中的上升流流速和背涡流面积就越大.研究表明,影响流场效应的主要因素是开口比,来流流速的影响程度次之.  相似文献   

13.
We used radio-frequency spectroscopy to study pairing in the normal and superfluid phases of a strongly interacting Fermi gas with imbalanced spin populations. At high spin imbalances, the system does not become superfluid even at zero temperature. In this normal phase, full pairing of the minority atoms was observed. Hence, mismatched Fermi surfaces do not prevent pairing but can quench the superfluid state, thus realizing a system of fermion pairs that do not condense even at the lowest temperature.  相似文献   

14.
We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of radio-frequency (or laser) excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, that is, in-gap excitations. The results support the conclusion that a superfluid, in which pairing is a manybody effect, was observed in recent experiments on radio-frequency spectroscopy of the pairing gap.  相似文献   

15.
Kim E  Chan MH 《Science (New York, N.Y.)》2004,305(5692):1941-1944
We report on the observation of nonclassical rotational inertia in solid helium-4 confined to an annular channel in a sample cell under torsional motion, demonstrating superfluid behavior. The effect shows up as a drop in the resonant oscillation period as the sample cell is cooled below 230 millikelvin. Measurement of 17 solid samples allows us to map out the boundary of this superfluid-like solid or supersolid phase from the melting line up to 66 bars. This experiment indicates that superfluid behavior is found in all three phases of matter.  相似文献   

16.
Supersolidity     
Chan MH 《Science (New York, N.Y.)》2008,319(5867):1207-1209
The observation of nonclassical rotational inertia (NCRI) by the torsional oscillator in 2004 gave rise to a renaissance in the study of solid helium-4. Recent theoretical and experimental studies found evidence that disorder in the solid plays a key role in enabling superfluidity. A recent experiment found a marked increase in the shear modulus that shares the same temperature and helium-3 impurity concentration dependence as that of NCRI. This correlation indicates that the onset of superfluidity requires the pinning and stiffening of the dislocation network by helium-3.  相似文献   

17.
A degenerate gas of identical fermions is brought to collapse by the interaction with a Bose-Einstein condensate. We used an atomic mixture of fermionic potassium-40 and bosonic rubidium-87, in which the strong interspecies attraction leads to an instability above a critical number of particles. The observed phenomenon suggests a direction for manipulating fermion-fermion interactions on the route to superfluidity.  相似文献   

18.
Carbon nanotubes provide a unique system for studying one-dimensional quantization phenomena. Scanning tunneling microscopy was used to observe the electronic wave functions that correspond to quantized energy levels in short metallic carbon nanotubes. Discrete electron waves were apparent from periodic oscillations in the differential conductance as a function of the position along the tube axis, with a period that differed from that of the atomic lattice. Wave functions could be observed for several electron states at adjacent discrete energies. The measured wavelengths are in good agreement with the calculated Fermi wavelength for armchair nanotubes.  相似文献   

19.
We have measured the heat capacity of an optically trapped, strongly interacting Fermi gas of atoms. A precise addition of energy to the gas is followed by single-parameter thermometry, which determines the empirical temperature parameter of the gas cloud. Our measurements reveal a clear transition in the heat capacity. The energy and the spatial profile of the gas are computed using a theory of the crossover from Fermi to Bose superfluids at finite temperatures. The theory calibrates the empirical temperature parameter, yields excellent agreement with the data, and predicts the onset of superfluidity at the observed transition point.  相似文献   

20.
When two communicating vessels are filled to a different height with liquid, the two levels equilibrate because the liquid can flow. We have looked for such equilibration with solid (4)He. For crystals with no grain boundaries, we see no flow of mass, whereas for crystals containing several grain boundaries, we detect a mass flow. Our results suggest that the transport of mass is due to the superfluidity of grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号