首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in biomass and soil carbon with nitrogen fertilization were simulated for a 25-year loblolly pine (Pinus taeda) plantation and for three consecutive 7-year short-rotation cottonwood (Populus deltoides) stands. Simulations were conducted for 17 locations in the southeastern United States with mean annual temperatures ranging from 13.1 to 19.4 °C. The LINKAGES stand growth model, modified to include the “RothC” soil C and soil N model, simulated tree growth and soil C status. Nitrogen fertilization significantly increased cumulative cottonwood aboveground biomass in the three rotations from a site average of 106 to 272 Mg/ha in 21 years. The equivalent site averages for loblolly pine showed a significant increase from 176 and 184 Mg/ha in 25 years with fertilization. Location results, compared on the annual sum of daily mean air temperatures above 5.5 °C (growing-degree-days), showed contrasts. Loblolly pine biomass increased whereas cottonwood decreased with increasing growing-degree-days, particularly in cottonwood stands receiving N fertilization. The increment of biomass due to N addition per unit of control biomass (relative response) declined in both plantations with increase in growing-degree-days. Average soil C in loblolly pine stands increased from 24.3 to 40.4 Mg/ha in 25 years and in cottonwood soil C decreased from 14.7 to 13.7 Mg/ha after three 7-year rotations. Soil C did not decrease with increasing growing-degree-days in either plantation type suggesting that global warming may not initially affect soil C. Nitrogen fertilizer increased soil C slightly in cottonwood plantations and had no significant effect on the soil C of loblolly stands.  相似文献   

2.
Long-term management impacts on carbon storage in Lake States forests   总被引:2,自引:0,他引:2  
We examined carbon storage following 50+ years of forest management in two long-term silvicultural studies in red pine and northern hardwood ecosystems of North America’s Great Lakes region. The studies contrasted various thinning intensities (red pine) or selection cuttings, shelterwoods, and diameter-limit cuttings (northern hardwoods) to unmanaged controls of similar ages, providing a unique opportunity to evaluate long-term management impacts on carbon pools in two major North American forest types. Management resulted in total ecosystem carbon pools of 130-137 Mg ha−1 in thinned red pine and 96-177 Mg ha−1 in managed northern hardwoods compared to 195 Mg ha−1 in unmanaged red pine and 224 Mg ha−1 in unmanaged northern hardwoods. Managed stands had smaller tree and deadwood pools than unmanaged stands in both ecosystems, but management had limited impacts on understory, forest floor, and soil carbon pools. Total carbon storage and storage in individual pools varied little across thinning intensities in red pine. In northern hardwoods, selection cuttings stored more carbon than the diameter-limit treatment, and selection cuttings generally had larger tree carbon pools than the shelterwood or diameter-limit treatments. The proportion of total ecosystem carbon stored in mineral soil tended to increase with increasing treatment intensity in both ecosystems, while the proportion of total ecosystem carbon stored in the tree layer typically decreased with increasing treatment intensity. When carbon storage in harvested wood products was added to total ecosystem carbon, selection cuttings and unmanaged stands stored similar levels of carbon in northern hardwoods, but carbon storage in unmanaged stands was higher than that of thinned stands for red pine even after adding harvested wood product carbon to total ecosystem carbon. Our results indicate long-term management decreased on-site carbon storage in red pine and northern hardwood ecosystems, but thinning intensity had little impact on carbon storage in red pine while increasing management intensity greatly reduced carbon storage in northern hardwoods. These findings suggest thinning to produce different stand structures would have limited impacts on carbon storage in red pine, but selection cuttings likely offer the best carbon management options in northern hardwoods.  相似文献   

3.
Fertilizing pine plantations with phosphorus has been a common practice on the Coastal Plain since the 1960s. A decision to fertilize a second or subsequent rotation must take into consideration the availability of residual phosphorus fertilizer. We tested the efficacy of phosphorus applied in a first rotation loblolly pine stand to support the growth of the subsequent second rotation stand. Phosphorus rates applied in 1967 at the time of planting of the first rotation were 0, 28 and 56 kg/ha. Retreatments included the application of 45 kg/ha P at midrotation in 1978, and the application of 45 kg/ha P at the beginning of the second rotation in 1991. The field trial had a split-block design with the three initial P rates crossed by five retreatments, and replicated four times. The first rotation 28 kg/ha P treatment had 91% and the 56 kg/ha P treatment 101% of the volume at age 5 of all the treatments fertilized with P in the second rotation. Foliar P levels, in the second rotation, were elevated at age 2 relative to ages 3 and 5, presumably due to effective competition control. Twenty-nine percent, 40% and 75% of the trees fertilized with 28 kg/ha P in 1967, 56 kg/ha P in 1967, and 45 kg/ha P in 1991, respectively, had foliar P concentrations of 0.10% or above at age 3. Based on foliar analyses, we recommend refertilizing stands fertilized with 45 kg/ha P in the first rotation by age 3 in the second rotation.  相似文献   

4.
The Ankasa Forest Conservation Area is one of the most important protected areas (PA) in West Africa. This study aimed at estimating the economic values of selected ecosystem services of the PA and the direct on-site REDD + opportunity costs to communities. We found that the PA stocks 32.8 million m3 (627 m3/ha) of standing trees with a stumpage value of about $ 19.1 million (364 $/ha), 64.3 million tCO2e (1230 tCO2e/ha) of carbon worth of $379.5 million ($7257/ha), and 6380 tons of nutrients worth of 0.64 million USD. The direct on-site REDD + opportunity cost for conserving the PA until 2042 was about 6.7–24.1 $/tCO2e (0.22–0.80 $/tCO2e per year) in net present value. From our field observation of the PA, we did not see a buffer zone that separates the PA from the surrounding land uses. Establishing a buffer zone is very important for the sustainability of the PA. Such an effort, however, should take in to account the opportunity costs to the rural communities associated with possible displacement. Thus, the results of the study could be used as important input for designing policies that will reinforce the sustainability of the Ankasa PA and other conservation sites in Ghana.  相似文献   

5.
Plant species composition (n = 95) and biomass (n = 62) samples from harvested and natural stands were analyzed to determine if forest clearcutting increased forage abundance for wood bison (Bison bison athabascae) in north-central Alberta. The sampled stands ranged from 1 to 28 and 50 to 100 years old, respectively, and were members of a Populus tremuloides/Rosa-Viburnum vegetation-type, which is a common forest community on upland sites in the boreal mixedwood zone of western Canada. In addition, a five-stand chronosequence was monitored from May to September, inclusive, to measure seasonal variation in forage abundance and nutrient content. Three-fourths of clearcuts were mechanically treated after harvesting. The data showed that clearcutting increased forage availability, but not quality. Peak summer biomass production occurred in 2–12-year-old clearcuts (∼944 kg/ha, S.D. 511, n = 30), with forage availability decreasing to natural stand levels (∼228 kg/ha, S.D. 147, n = 10) 25–30 years after harvesting. Mechanical site treatment increased forage availability by 26% above untreated clearcuts (P = 0.002). No major differences relevant to bison nutrient requirements occurred between forbs and graminoids in summer, or among age-classes within a monitored chronosequence. Crude protein content declined and fiber content increased during the growing season. Peak forage availability and maximum crude protein content occurred in July among monitored stands. Species with fair forage quality dominated the vegetation in 1–16-year-old clearcuts, with the proportion of forbs increasing as stands aged. Maximum summer carrying capacity of natural stands averaged 0.57 animal unit month per hectare (AUM/ha), depending upon the applied assumptions, with lower winter values (0.01–0.03 AUM/ha). In 2–12-year-old clearcuts, maximum summer and winter carrying capacities were <0.67 and <0.29 AUM/ha based on 25% seasonal usage, respectively. The application of a safe-use factor, down-weighting of forbs to account for dietary preferences, and adjustments for forage quality reduced summer (≤0.30 AUM/ha) and winter (≤0.07 AUM/ha) carrying capacities. Wood bison carrying capacity typically decreased when stands were >8 years old. Clearcuts provide adequate forage for wood bison during the summer, but owing to low graminoid biomass they are not suitable as winter habitat.  相似文献   

6.
Historical land use and management practices in the southeastern United States have resulted in the dominance of loblolly pine (Pinus taeda L.) on many upland sites that historically were occupied by longleaf pine (Pinus palustris Mill.). There is currently much interest in restoring high quality longleaf pine habitats to such areas, but managers may also desire the retention of some existing canopy trees to meet current conservation objectives. However, fast-growing natural loblolly pine regeneration may threaten the success of artificially regenerated longleaf pine seedlings. We evaluated the establishment and growth of natural loblolly pine regeneration following different levels of timber harvest using single-tree selection (Control (uncut, residual basal area ∼16 m2/ha), MedBA (residual basal area of ∼9 m2/ha), LowBA (residual basal area of ∼6 m2/ha), and Clearcut (complete canopy removal)) and to different positions within canopy gaps (approximately 2800 m2) created by patch cutting at two ecologically distinct sites within the longleaf pine range: Fort Benning, GA in the Middle Coastal Plain and Camp Lejeune, NC in the Lower Coastal Plain. The density of loblolly pine seedlings was much higher at Camp Lejeune than at Fort Benning at the end of the first growing season after harvesting. Following two growing seasons, there were no significant effects of canopy density or gap position on the density of loblolly pine seedlings at either site, but loblolly pine seedlings were taller on treatments with greater canopy removal. Prescribed fires applied following the second growing season killed 70.6% of loblolly pine seedlings at Fort Benning and 64.3% of seedlings at Camp Lejeune. Loblolly pine seedlings were generally less than 2 m tall, and completeness of the prescribed burns appeared more important for determining seedling survival than seedling size. Silvicultural treatments that include canopy removal, such as patch cutting or clearcuts, will increase loblolly pine seedling growth and shorten the window of opportunity for control with prescribed fire. Therefore, application of prescribed fire every 2-3 years will be critical for control of loblolly pine regeneration during restoration of longleaf pine in existing loblolly pine stands.  相似文献   

7.
Wood products are considered to contribute to the mitigation of carbon dioxide emissions. A critical gap in the life cycle of wood products is to transfer the raw timber from the forest to the processing wood industry and, thus, the primary wood products. Therefore, often rough estimates are used for this step to obtain total forestry carbon balances. The objectives of this study were (1) to examine the fate of timber harvested in Thuringian state forests (central Germany), representing a large, intensively managed forested region, and (2) to quantify carbon stocks and the lifetime of primary wood products made from this timber. The analyses were based on the amount and assortments of actually sold timber, and production parameters of the companies that bought and processed this timber. In addition, for coniferous stands of a selected Thuringian forest district, we calculated potential effects of management, as expressed by different thinning regimes on wood products and their lifetimes. Total annual timber sale of soft- and hardwoods from Thuringian state forests (195,000 ha) increased from about 136,893 t C (~0.7 t C ha−1 year−1) in 1996 to 280,194 t C (~1.4 t C ha−1 year−1) in 2005. About 47% of annual total timber harvest went into short-lived wood products with a mean residence time (MRT) < 25 years. Thirty-one per cent of the total harvest went into wood products with an MRT of 25–43 years, and only 22% was used as construction wood and glued wood, products with the longest MRT (50 years). The average MRT of carbon in harvested wood products was 20 years. Thinning from above throughout the rotation of spruce forests would lead to an average MRT in harvested wood products of about 23 years, thinning from below of about 18 years. A comparison of our calculations with estimates that resulted from the products module of the CO2FIX model (Nabuurs et al. 2001) demonstrates the influence of regional differences in forest management and wood processing industry on the lifetime of harvested wood products. To our knowledge, the present study provides for the first time real carbon inputs of a defined forest management unit to the wood product sector by linking data on raw timber production, timber sales and wood processing. With this new approach and using this data, it should be possible to substantially improve the net-carbon balance of the entire forestry sector.  相似文献   

8.
Storms can turn a great proportion of forests’ assimilation capacity into dead organic matter because of windthrow and thus its role as a carbon sink will be diminished for some time. However, little is known about the magnitude or extent to which storms affect carbon efflux. We compared soil CO2 fluxes in wind-thrown forest stands with different time periods since a storm event, and with different management practices (deadwood cleared or left on-site). This study examined changes in soil CO2 efflux in two windthrow areas in north-eastern Estonia and one area in north-western Latvia, which experienced severe wind storms in the summers of 2001, 2002 and 1967, respectively. We measured soil CO2 fluxes in stands formerly dominated by Norway spruce (Picea abies L. Karst.) with total and partial canopy destruction (all trees or roughly half of the trees in stand damaged by storm), in harvested areas (material removed after the wind storm) and in control areas (no damage by wind). Removal of wind-damaged material decreased instantaneous CO2 flux from the soil surface. The highest instantaneous fluxes were measured in areas with total and partial canopy destruction (0.67 g CO2 m−2 h−1 in both cases) compared with fluxes in the control areas (0.51 g CO2 m−2 h−1), in the new storm-damaged areas where the material was removed (0.57 g CO2 m−2 h−1) and in the old storm-damaged area where wood was left on site (0.55 g CO2 m−2 h−1). The only factor affecting soil CO2 flux was location of the measuring collar (plastic collar with diameter 100 mm, height 50 mm) - either on undamaged forest ground or on the uprooted tree pit, where the mineral soil was exposed after disturbance. New wind-thrown stands where residues are left on site would most likely turn to sources of CO2 for several years until forest regeneration reaches to substantial assimilation rates. New wind-thrown stands where residues are left on site would most likely tend to have elevated CO2 fluxes for several years until forest regeneration reaches to substantial assimilation rates. However, forest managers might be concerned about the amounts of CO2 immediately released into the atmosphere if the harvested logs are burned.  相似文献   

9.
Over the coming decades, climate change will increasingly affect forest ecosystem processes, but the future magnitude and direction of these responses is uncertain. We designed 12 scenarios combining possible changes in tree growth rates, decay rates, and area burned by wildfire with forecasts of future harvest to quantify the uncertainty of future (2010-2080), timber growing stock, ecosystem C stock, and greenhouse gas (GHG) balance for 67 million ha of forest in British Columbia, Canada. Each scenario was simulated 100 times with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Depending on the scenario, timber growing stock over the entire land-base may increase by 14% or decrease by 9% by 2080 (a range of 2.8 billion m3), relative to 2010. However, timber growing stock available for harvest was forecast to decline in all scenarios by 26-62% relative to 2010 (a range of 1.2 billion m3). Forests were an annual GHG source in 2010 due to an ongoing insect outbreak. If half of the C in harvested wood was assumed to be immediately emitted, then 0-95% of simulations returned to annual net sinks by 2040, depending on scenario, and the cumulative (2010-2080) GHG balance ranged from a sink of −4.5 Pg CO2e (−67 Mg CO2e ha−1) for the most optimistic scenario, to a source of 4.5 Pg CO2e (67 Mg CO2e ha−1) for the most pessimistic. The difference in total ecosystem carbon stocks between the most optimistic and pessimistic scenarios in 2080 was 2.4 Pg C (36 Mg C ha−1), an average difference of 126 Tg CO2e yr−1 (2 Mg CO2e yr−1 ha−1) over the 70-year simulation period, approximately double the total reported anthropogenic GHG emissions in British Columbia in 2008. Forests risk having reduced growing stock and being GHG sources under many foreseeable scenarios, thus providing further feedback to climate change. These results indicate the need for continued monitoring of forest responses to climatic and global change, the development of mitigation and adaptation strategies by forest managers, and global efforts to minimize climate change impacts on forests.  相似文献   

10.
The simulation of forest production until 2100 under different environmental scenarios and current management practices was performed using a process-based model BIOME-BGC previously parameterized for the main Central-European tree species: spruce, pine, beech and oak and adapted to include forest management practices. Climatic scenario HadCM3 used in the simulations was taken from the IPCC database created within the 3rd Assessment Report. It was combined with a scenario of CO2 concentration development and a scenario of N deposition. The control scenario considered no changes of climatic characteristics, CO2 concentration and N deposition. Simulation experiment was performed for the test region - South Bohemia - using a 1 km × 1 km grid. The actual data on the regional forest cover were aggregated for each grid cell in such a way that each cell represented an even-aged single-dominant species stand or non-forested area, and a standard management scenario depending on the stand age and species was applied to each cell. The effect of environmental variables was estimated as the difference of simulated carbon pools and fluxes in 2050 under environmental changes and under control scenario.The model simulation for the period to 2050 with only climate change under constant CO2 concentration and N deposition indicated a small decrease of NPP (median values by species reached −0.9 to −1.7% for different species), NBP (−0.3 to −1.7%) and vegetation carbon (−0.3 to −0.7%), whereas soil C slightly increased. Separate increase of N deposition gave small positive effect on carbon pools (0.8-2.9% for wood C and about 0.5% for soil C) and more expressed effect on carbon fluxes (1.8-4.3% for NPP and 1.0-9.7% for NBP). Separate increase of CO2 concentration lead to 0.6-2.4% increase of wood C pool and 0.1-0.5% increase of soil C. The positive effects of CO2 concentration and N deposition were more pronounced for coniferous than for deciduous stands.Replacement of 0.5% of coniferous plantations every year by natural broadleaved stands evoked 10.5% of increase of wood carbon pool due to higher wood density of beech and oak compared to spruce and pine, but slightly decreased soil and litter carbon pools.  相似文献   

11.
This study explores the economic feasibility of several long-rotation afforestation scenarios for southern Ontario, Canada. Three species, red pine (Pinus resinosa Ait.), Norway spruce (Picea abies L.) and black walnut (Juglans nigra L.) are examined. We integrate growth and yield models, site suitability maps, and several management scenarios to investigate the investment attractiveness of these species inclusive and exclusive of carbon sequestration values. We report net present values (NPV), internal rates of return (IRR) and two break-even price metrics. For wood value only scenarios the IRRs range from 4.3 to 4.6% for red pine and 3.4–3.6% for Norway spruce (for the most attractive 10,000 ha, in a single rotation scenario). Black walnut had rates of return 3.5–3.7% for the most attractive 10,000 ha area. Adding carbon valued at Cdn $3.4 per metric ton CO2 − e (roughly 2005 prices in the Chicago Climate Exchange) increases rates of return by about 0.6% for red pine and Norway spruce and 0.4% for black walnut scenarios. Perhaps surprisingly these returns are comparable and better than 20-year rotation hybrid poplar plantations. To achieve a 6% real rate of return break-even carbon prices were $10.7/t CO2 − e for red pine, $12.6/t CO2 − e for Norway spruce and $17.2/t CO2 − e for black walnut (again for the “best” 10,000 ha). Although somewhat unremarkable, the results suggest that these longer-rotation species may be a better investment than perhaps previously expected if landowners have the appropriate site conditions.  相似文献   

12.
Life-cycle analyses, energy analyses, and a range of utilization efficiencies were developed to determine the carbon dioxide (CO2) and fossil fuel (FF) saved by various solid wood products, wood energy, and unharvested forests. Some products proved very efficient in CO2 and FF savings, while others did not. Not considering forest regrowth after harvest or burning if not harvested, efficient products save much more CO2 than the standing forest; but wood used only for energy generally saves slightly less. Avoided emissions (using wood in place of steel and concrete) contributes the most to CO2 and FF savings compared to the product and wood energy contributions. Burning parts of the harvested logs that are not used for products creates an additional CO2 and FF savings. Using wood substitutes could save 14 to 31% of global CO2 emissions and 12 to 19% of global FF consumption by using 34 to 100% of the world’s sustainable wood growth. Maximizing forest CO2 sequestration may not be compatible with biodiversity. More CO2 can be sequestered synergistically in the products or wood energy and landscape together than in the unharvested landscape. Harvesting sustainably at an optimum stand age will sequester more carbon in the combined products, wood energy, and forest than harvesting sustainably at other ages.  相似文献   

13.
Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting frequency and proportion of post-harvest structural retention on carbon storage in northern hardwood-conifer forests, and (2) tests the significance of including harvested wood products in carbon accounting at the stand scale. We stratified Forest Inventory and Analysis (FIA) plots to control for environmental, forest structural and compositional variables, resulting in 32 FIA plots distributed throughout the northeastern U.S. We used the USDA Forest Service's Forest Vegetation Simulator to project stand development over a 160 year period under nine different forest management scenarios. Simulated treatments represented a gradient of increasing structural retention and decreasing harvesting frequencies, including a “no harvest” scenario. The simulations incorporated carbon flux between aboveground forest biomass (dead and live pools) and harvested wood products. Mean carbon storage over the simulation period was calculated for each silvicultural scenario. We investigated tradeoffs among scenarios using a factorial treatment design and two-way ANOVA. Mean carbon sequestration was significantly (α = 0.05) greater for “no management” compared to any of the active management scenarios. Of the harvest treatments, those favoring high levels of structural retention and decreased harvesting frequency stored the greatest amounts of carbon. Classification and regression tree analysis showed that management scenario was the strongest predictor of total carbon storage, though site-specific variables were important secondary predictors. In order to isolate the effect of in situ forest carbon storage and harvested wood products, we did not include the emissions benefits associated with substituting wood fiber for other construction materials or energy sources. Modeling results from this study show that harvesting frequency and structural retention significantly affect mean carbon storage. Our results illustrate the importance of both post-harvest forest structure and harvesting frequency in carbon storage, and are valuable to land owners interested in managing forests for carbon sequestration.  相似文献   

14.
The long-term success of forest management depends primarily on the sustainability of timber production. In this study we analyse the population structure, tree age and wood increment of Malouetia tamaquarina (Aubl.) (Apocynaceae) to define a species-specific minimum logging diameter (MLD) and felling cycle by modelling volume growth. Contrary to other timber species in the nutrient-rich white-water floodplains forests (várzea), M. tamaquarina grows in the subcanopy of old-growth várzea forests. The wood of this species is utilized by local inhabitants in the floodplains for handicraft. In 35 plots of 25 m × 50 m we measured diameter at breast height (DBH) and tree height of all trees taller than 150 cm height. From 37 individuals with DBH > 15 cm we sampled two cores by increment borers to determine the wood density, tree age and diameter increment rates. In the management area of a várzea settlement with about 150 ha recently harvested trees of M. tamaquarina have been recorded and DBH was measured. The species presents an inverse J-shaped diameter distribution indicating that the species is obviously regenerating in the old-growth forests. Tree-ring analysis indicates a mean age of 74.5 years for a DBH of 22.7 cm for a studied population comprising 37 trees with maximum ages of up to 141 years for an individual with a DBH of 45.7 cm. The tree species has low annual diameter increment rates (3.16 ± 0.6 mm) despite a low wood density (0.36 ± 0.05 g cm−3). The volume growth model indicates a MLD of 25 cm and a felling cycle of 32.4 years. In the management area 35 trees with a mean DBH of 24 cm were recorded, similar to the defined MLD. The abundance of trees above the MLD is 2.7 trees ha−1, or 405 trees, when extrapolated to the whole management area. Considering a felling cycle of 32.4 years (annual production unit of 4.63 ha) this results in total of 12.5 harvestable trees, almost three times less than actually harvested. The actual practice of harvesting M. tamaquarina risks the overexploitation of this slow-growing species.  相似文献   

15.
Chinese fir [(Cunninghamia lanceolata (Lamb.) Hook (Taxodiaceae)] plantations are helping to meet China's increasing demands for timber, while, at the same time, sequestering carbon (C) above and belowground. The latter function is important as a means of slowing the rate that CO2 is increasing in the atmosphere. Available data are limited, however, and even if extensive, would necessitate consideration of future changes in climatic conditions and management practices. To evaluate the contribution of Chinese fir plantations under a range of changing conditions a dynamic model is required. In this paper, we report successful outcome in parameterizing a process-based model (3-PG) and validating its predictions with recent and long-term field measurements acquired from different ages of Chinese fir plantations at the Huitong National Forest Ecosystem Research Station. Once parameterized, the model performed well when simulating leaf area index (LAI), net primary productivity (NPP), biomass of stems (WS), foliage (WF) and roots (WR), litterfall, and shifts in allocation over a period of time. Although the model does not specifically include heterotrophic respiration, we made some attempts to estimate changes in root C storage and decomposition rates in the litterfall pool as well as in the total soil respiration. Total C stored in biomass increased rapidly, peaking at age 21 years in unthinned stands. The predicted averaged above and belowground NNP (13.81 t ha−1 a−1) of the Chinese fir plantations between the modeling period (from 4 to 21-year-old) is much higher than that of Chinese forests (4.8–6.22 t ha−1 a−1), indicating that Chinese fir is a suitable tree species to grow for timber while processing the potential to act as a C sequestration sink. Taking into account that maximum LAI occurs at the age of 15 years, intermediate thinning and nutrient supplements should, according to model predictions, further increase growth and C storage in Chinese fir stands. Predicted future increases (approximately 0–2 °C) in temperature due to global warming may increase plantation growth and reduce the time required to complete a rotation, but further increases (approximately 2–6 °C) may reduce the growth rate and prolong the rotational age.  相似文献   

16.
Species choice is potentially an important management decision for increasing carbon stocks in forest ecosystems. The substitution of a slow-growing hardwood species (Quercus petraea) by a fast-growing conifer plantation (Pinus nigra subsp. laricio) was studied in central France. Simulations of carbon stocks in tree biomass were conducted using stand growth models Fagacées for sessile oak and PNL for Corsican pine. The changes in soil carbon were assessed using the Century model and data from two European soil monitoring networks: 16 km × 16 km grid and RENECOFOR. Carbon in wood products was assessed with life cycle analysis and lifespan of final products. However, only carbon stocks and their variation were accounted for: effects of energy-consuming materials or fossil fuel substitution are excluded from the analysis. To compare the growth of these two types of forest stands, an important part of the study was to assess the productivity of both species at the same site, using National Forest Inventory data.  相似文献   

17.
We extended the Hartman model to examine the optimal rotation, taking into consideration the economic benefits of wood and the dynamics of three carbon pools (aboveground biomass, dead organic matter, and harvested forest products). Chinese fir (Cunninghamia lanceolata) stands in Southern China were taken for a numerical example to analyze the effects of carbon price on the optimal management of short-rotation plantations. The results show that, with the current price of carbon, introducing the effects of harvesting on different carbon pools into the decision model would increase the optimal rotation age on poor (SI = 10) and medium (SI = 17) sites by one year, while it does not have any impact on the optimal rotation for good sites (SI = 21). Irrespective of site condition, the optimal rotation age is not sensitive to carbon price and interest rate. An increase in interest rate by 1% would reduce the optimal rotation age by one year. In conclusion, forest carbon trade could effectively enhance land owners' income from short-rotation forest plantations. However, it does not lead to any significant increase in forest carbon sink.  相似文献   

18.
Land management in tropical woodlands is being used to sequester carbon (C), alleviate poverty and protect biodiversity, among other benefits. Our objective was to determine how slash-and-burn agriculture affected vegetation and soil C stocks and biodiversity on an area of miombo woodland in Mozambique, and how C stocks and biodiversity responded once agriculture was abandoned. We sampled twenty-eight 0.125 ha plots that had previously been cleared for subsistence agriculture and had been left to re-grow for 2 to ∼25 years, and fourteen 0.25 ha plots of protected woodlands, recording stem diameter distributions and species, collecting wood for density determination, and soil from 0 to 0.3 m for determination of %C and bulk density. Clearance for agriculture reduced stem wood C stocks by 19.0 t C ha−1. There were significant relationships between period of re-growth and basal area, stem numbers and stem biomass. During re-growth, wood C stocks accumulated at 0.7 t C ha−1 year−1. There was no significant difference in stem C stocks on woodlands and on abandoned farmland 20–30 years old. Soil C stocks in the top 0.3 m on abandoned land had a narrower range (21–74 t C ha−1) than stocks in woodland soils (18–140 t C ha−1). There was no discernible increase in soil C stocks with period of re-growth, suggesting that the rate of accumulation of organic matter in these soils was very slow. The re-growing plots did not contain the defining miombo species, and total stem numbers were significantly greater than in woodland plots, but species richness and diversity were similar in older abandonments and miombo woodlands. Wood C stocks on abandoned farmland were capable of recovery within 2–3 decades, but soil C stocks did not change on this time-scale. Woodland soils were capable of storing >100 t C ha−1, whereas no soil on a re-growing area exceeded 74 t C ha−1, so there is a potential for C sequestration in soils on abandoned farmland. Management should focus on identifying C-rich soils, conserving remaining woodlands to protect soil C and preserve defining miombo species, and on investigating whether fire control on recovering woodland can stimulate accumulation of soil C and greater tree biomass, and restore defining miombo species.  相似文献   

19.
Forest ecosystems are increasingly expected to produce multiple goods and services, such as timber, biodiversity, water flows, and sequestered carbon. While many of these are not mutually exclusive, they cannot all be simultaneously maximised so that management compromise is inevitable. We used a 42-year dataset from a naturally regenerating floodplain forest of the river red gum (Eucalyptus camaldulensis) to investigate the effects of pre-commercial thinning on long-term patterns in habitat quality, forest structure and rates of carbon storage (i.e. standing aboveground carbon). Estimates of habitat quality were based on the density of hollow-bearing trees because hollows are ecologically important to many species of vertebrates and invertebrates in these forests. Thinning improved habitat value by producing 20 (±8) hollow-bearing trees per ha after 42 years, while the unthinned treatment produced none. Unthinned (highest density) stands were dominated by many slender trees, mostly <25 cm in diameter, whereas thinned stands produced negatively skewed size distributions with higher median and maximum stem diameters. Moderately thinned stands (560 trees ha−1) had the highest aboveground carbon storage rate (4.1 t C year−1) and the highest aboveground carbon stocks (200.2 ± 9.6 t C ha−1) after 42 years, while the unthinned treatment had the lowest carbon storage rate (1.6 t C year−1) and an intermediate level of aboveground standing carbon (165.1 ± 31.1 t C ha−1). Our results highlight the importance of early stand density as a determinant of long-term forest structure, habitat quality and carbon storage rates. We recommend that thinning be considered as one component of a broader strategy for enhancing the structure, habitat value and aboveground carbon storage of developing floodplain forests.  相似文献   

20.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号