首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.  相似文献   

2.
Rab guanosine triphosphatases (GTPases) regulate vesicle trafficking in eukaryotic cells by reversibly associating with lipid membranes. Inactive Rab GTPases are maintained in the cytosol by binding to GDP-dissociation inhibitor (GDI). It is believed that specialized proteins are required to displace GDI from Rab GTPases before Rab activation by guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factors (GEFs). Here, we found that SidM from Legionella pneumophila could act as both GEF and GDI-displacement factor (GDF) for Rab1. Rab1 released from GDI was inserted into liposomal membranes and was used as a substrate for SidM-mediated nucleotide exchange. During host cell infection, recruitment of Rab1 to Legionella-containing vacuoles depended on the GDF activity of SidM. Thus, GDF and GEF activity can be promoted by a single protein, and GDF activity can coordinate Rab1 recruitment from the GDI-bound pool.  相似文献   

3.
The guanosine triphosphatase Rab1 regulates the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus through interaction with effector molecules, but the molecular mechanisms by which this occurs are unknown. Here, the tethering factor p115 was shown to be a Rab1 effector that binds directly to activated Rab1. Rab1 recruited p115 to coat protein complex II (COPII) vesicles during budding from the endoplasmic reticulum, where it interacted with a select set of COPII vesicle-associated SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) to form a cis-SNARE complex that promotes targeting to the Golgi apparatus. We propose that Rab1-regulated assembly of functional effector-SNARE complexes defines a conserved molecular mechanism to coordinate recognition between subcellular compartments.  相似文献   

4.
N Segev 《Science (New York, N.Y.)》1991,252(5012):1553-1556
The function of the guanosine triphosphate (GTP)-binding protein Ypt1 in regulating vesicular traffic was studied in a cell-free system that reconstitutes transport from the endoplasmic reticulum to the Golgi. Blocking the Ypt1 protein activity resulted in accumulation of vesicles that act as an intermediate passing between the two compartments. The Ypt1 protein was found on the outer side of these vesicles. The transport process is completed by fusion of these vesicles with the acceptor compartment, and Ypt1 protein activity was needed for this step. Thus, a specific GTP-binding protein is required for either attachment or fusion (or both) of secretory vesicles with the acceptor compartment during protein secretion.  相似文献   

5.
Mannose 6-phosphate receptors (MPRs) deliver lysosomal hydrolases from the Golgi to endosomes and then return to the Golgi complex. TIP47 recognizes the cytoplasmic domains of MPRs and is required for endosome-to-Golgi transport. Here we show that TIP47 also bound directly to the Rab9 guanosine triphosphatase (GTPase) in its active, GTP-bound conformation. Moreover, Rab9 increased the affinity of TIP47 for its cargo. A functional Rab9 binding site was required for TIP47 stimulation of MPR transport in vivo. Thus, a cytosolic cargo selection device may be selectively recruited onto a specific organelle, and vesicle budding might be coupled to the presence of an active Rab GTPase.  相似文献   

6.
Here we report an approach, based on antibody phage display, to generate molecular conformation sensors. Recombinant antibodies specific to the guanosine triphosphate (GTP)-bound conformation of the small guanosine triphosphatase (GTPase) Rab6, a regulator of membrane traffic, were generated and used to locate Rab6.GTP in fixed cells, and, after green fluorescent protein (GFP) tagging and intracellular expression, to follow Rab6.GTP in vivo. Rab6 was in its GTP-bound conformation on the Golgi apparatus and transport intermediates, and the geometry of transport intermediates was modulated by Rab6 activity. More generally, the same approach could be applied to other molecules that can be locked in a particular conformation in vitro.  相似文献   

7.
Protrudin induces neurite formation by directional membrane trafficking   总被引:1,自引:0,他引:1  
Guanosine triphosphatases of the Rab family are key regulators of membrane trafficking, with Rab11 playing a specific role in membrane recycling. We identified a mammalian protein, protrudin, that promoted neurite formation through interaction with the guanosine diphosphate (GDP)-bound form of Rab11. Phosphorylation of protrudin by extracellular signal-regulated kinase (ERK) in response to nerve growth factor promoted protrudin association with Rab11-GDP. Down-regulation of protrudin by RNA interference induced membrane extension in all directions and inhibited neurite formation. Thus, protrudin regulates Rab11-dependent membrane recycling to promote the directional membrane trafficking required for neurite formation.  相似文献   

8.
The bacterial pathogen Legionella pneumophila exploits host cell vesicle transport by transiently manipulating the activity of the small guanosine triphosphatase (GTPase) Rab1. The effector protein SidM recruits Rab1 to the Legionella-containing vacuole (LCV), where it activates Rab1 and then AMPylates it by covalently adding adenosine monophosphate (AMP). L. pneumophila GTPase-activating protein LepB inactivates Rab1 before its removal from LCVs. Because LepB cannot bind AMPylated Rab1, the molecular events leading to Rab1 inactivation are unknown. We found that the effector protein SidD from L. pneumophila catalyzed AMP release from Rab1, generating de-AMPylated Rab1 accessible for inactivation by LepB. L. pneumophila mutants lacking SidD were defective for Rab1 removal from LCVs, identifying SidD as the missing link connecting the processes of early Rab1 accumulation and subsequent Rab1 removal during infection.  相似文献   

9.
Mechanisms by which Wnt pathways integrate the organization of receptors, organelles, and cytoskeletal proteins to confer cell polarity and directional cell movement are incompletely understood. We show that acute responses to Wnt5a involve recruitment of actin, myosin IIB, Frizzled 3, and melanoma cell adhesion molecule into an intracellular structure in a melanoma cell line. In the presence of a chemokine gradient, this Wnt-mediated receptor-actin-myosin polarity (W-RAMP) structure accumulates asymmetrically at the cell periphery, where it triggers membrane contractility and nuclear movement in the direction of membrane retraction. The process requires endosome trafficking, is associated with multivesicular bodies, and is regulated by Wnt5a through the small guanosine triphosphatases Rab4 and RhoB. Thus, cell-autonomous mechanisms allow Wnt5a to control cell orientation, polarity, and directional movement in response to positional cues from chemokine gradients.  相似文献   

10.
三磷酸鸟苷(GTP)结合蛋白基因(Ypt1)是一个与原癌基因Ras(Rat sarcoma)相关的基因,在酵母中,该基因编码一个与Ras相关GTP结合蛋白。为了研究以Ypt1基因为分子靶标的致病疫霉菌(P.infestans)检测技术,比较了30种卵菌Ypt1基因的序列,以该序列为靶标设计了1对针对P.infestans的特异性PCR引物Pi1/Pi2。试验结果表明,在供试的55种不同疫霉菌和真菌的144个菌株中,利用这1对引物只能从P.infestans基因组DNA中分别扩增出1条分子量为369 bp的特异性条带,这1对引物的检测灵敏度为100 pg。以疫霉菌Ypt1通用引物Yph1F/Yph2R结合这1对特异引物进行套式PCR扩增,使引物Pi1/Pi2的检测灵敏度提高了10倍,检测到10 pg的基因组DNA。通过套式PCR,引物Pi1/Pi2对游动孢子和卵孢子的检测灵敏度分别为3个游动孢子和1个卵孢子;以Pi1/Pi2引物,分别采用单轮PCR和套式PCR可检测马铃薯发病组织和病田土壤的致病疫霉。以上结果证明Ypt1基因适合作为疫霉菌分子检测靶标。采用以这1对特异引物建立的以PCR技术为基础的分子检测方法,可对田间土壤和发病植物组织中的P.infestans进行快速、灵敏的检测。  相似文献   

11.
Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.  相似文献   

12.
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1   总被引:3,自引:0,他引:3  
The multiprotein mTORC1 protein kinase complex is the central component of a pathway that promotes growth in response to insulin, energy levels, and amino acids and is deregulated in common cancers. We find that the Rag proteins--a family of four related small guanosine triphosphatases (GTPases)--interact with mTORC1 in an amino acid-sensitive manner and are necessary for the activation of the mTORC1 pathway by amino acids. A Rag mutant that is constitutively bound to guanosine triphosphate interacted strongly with mTORC1, and its expression within cells made the mTORC1 pathway resistant to amino acid deprivation. Conversely, expression of a guanosine diphosphate-bound Rag mutant prevented stimulation of mTORC1 by amino acids. The Rag proteins do not directly stimulate the kinase activity of mTORC1, but, like amino acids, promote the intracellular localization of mTOR to a compartment that also contains its activator Rheb.  相似文献   

13.
Nerve growth factor(NGF) binds to TrkA and forms a NGF/TrkA complex at the cell surface,which is then internalized into signaling endosomes and promotes neuronal survival and neurite outgrowth.The small GTPase Rab5 is reported to localize on the plasma membrane and early endosomes,regulating endosome fusion.It was reported that endogenous Rab5 function may need to be suppressed during NGF-induced neurite outgrowth and cell differentiation.Two Rab5 homologs(MoRab5A:MGG_06241 and MoRab5B:MGG_01185) were characterized from the rice blast fungus Magnaporthe oryzae,and MoRab5 B was identified as the Rab5 ortholog promoting early endosomal fusion,while MoRab5 A specialized to perform a non-redundant function in endosomal sorting.In this study,we examined whether MoRab5 A and MoRab5 B play different roles in NGF-induced neurite outgrowth and cell differentiation in PC12 cells(a rat pheochromocytoma cell line).Our data showed that MoRab5 B is a negative regulator of NGF signaling and neurite outgrowth in PC12 cells,similar to human Rab5(hRab5).MoRab5B:WT inhibits NGF signaling-dependent neurite outgrowth while the dominant-negative MoRab5 B mutant(MoRab5B:DN) enhances NGF signaling and neurite outgrowth.In contrast,MoRab5A:WT and MoRab5A:DN both significantly promote NGF-induced neurite outgrowth,indicating that MoRab5 B is more similar to hRab5 than MoRab5 A in the regulation of NGF signal transduction.  相似文献   

14.
Transmembrane signals initiated by a broad range of extracellular stimuli converge on nodes that regulate phospholipase C (PLC)-dependent inositol lipid hydrolysis for signal propagation. We describe how heterotrimeric guanine nucleotide-binding proteins (G proteins) activate PLC-βs and in turn are deactivated by these downstream effectors. The 2.7-angstrom structure of PLC-β3 bound to activated Gα(q) reveals a conserved module found within PLC-βs and other effectors optimized for rapid engagement of activated G proteins. The active site of PLC-β3 in the complex is occluded by an intramolecular plug that is likely removed upon G protein-dependent anchoring and orientation of the lipase at membrane surfaces. A second domain of PLC-β3 subsequently accelerates guanosine triphosphate hydrolysis by Gα(q), causing the complex to dissociate and terminate signal propagation. Mutations within this domain dramatically delay signal termination in vitro and in vivo. Consequently, this work suggests a dynamic catch-and-release mechanism used to sharpen spatiotemporal signals mediated by diverse sensory inputs.  相似文献   

15.
Interleukin-2 (IL-2) is an immunoregulatory cytokine that acts through a quaternary receptor signaling complex containing alpha (IL-2Ralpha), beta (IL-2Rbeta), and common gamma chain (gc) receptors. In the structure of the quaternary ectodomain complex as visualized at a resolution of 2.3 angstroms, the binding of IL-2Ralpha to IL-2 stabilizes a secondary binding site for presentation to IL-2Rbeta. gammac is then recruited to the composite surface formed by the IL-2/IL-2Rbeta complex. Consistent with its role as a shared receptor for IL-4, IL-7, IL-9, IL-15, and IL-21, gammac forms degenerate contacts with IL-2. The structure of gammac provides a rationale for loss-of-function mutations found in patients with X-linked severe combined immunodeficiency diseases (X-SCID). This complex structure provides a framework for other gammac-dependent cytokine-receptor interactions and for the engineering of improved IL-2 therapeutics.  相似文献   

16.
Complementary DNAs for the beta subunit of the dihydropyridine-sensitive calcium channel of rabbit skeletal muscle were isolated on the basis of peptide sequences derived from the purified protein. The deduced primary structure is without homology to other known protein sequences and is consistent with the beta subunit being a peripheral membrane protein associated with the cytoplasmic aspect of the sarcolemma. The protein contains sites that might be expected to be preferentially phosphorylated by protein kinase C and guanosine 3',5'-monophosphate-dependent protein kinase. A messenger RNA for this protein appears to be expressed in brain.  相似文献   

17.
Bai X  Ma D  Liu A  Shen X  Wang QJ  Liu Y  Jiang Y 《Science (New York, N.Y.)》2007,318(5852):977-980
The mammalian target of rapamycin, mTOR, is a central regulator of cell growth. Its activity is regulated by Rheb, a Ras-like small guanosine triphosphatase (GTPase), in response to growth factor stimulation and nutrient availability. We show that Rheb regulates mTOR through FKBP38, a member of the FK506-binding protein (FKBP) family that is structurally related to FKBP12. FKBP38 binds to mTOR and inhibits its activity in a manner similar to that of the FKBP12-rapamycin complex. Rheb interacts directly with FKBP38 and prevents its association with mTOR in a guanosine 5'-triphosphate (GTP)-dependent manner. Our findings suggest that FKBP38 is an endogenous inhibitor of mTOR, whose inhibitory activity is antagonized by Rheb in response to growth factor stimulation and nutrient availability.  相似文献   

18.
The crystal structure at 2.7 A resolution of the normal human c-H-ras oncogene protein lacking a flexible carboxyl-terminal 18 residue reveals that the protein consists of a six-stranded beta sheet, four alpha helices, and nine connecting loops. Four loops are involved in interactions with bound guanosine diphosphate: one with the phosphates, another with the ribose, and two with the guanine base. Most of the transforming proteins (in vivo and in vitro) have single amino acid substitutions at one of a few key positions in three of these four loops plus one additional loop. The biological functions of the remaining five loops and other exposed regions are at present unknown. However, one loop corresponds to the binding site for a neutralizing monoclonal antibody and another to a putative "effector region"; mutations in the latter region do not alter guanine nucleotide binding or guanosine triphosphatase activity but they do reduce the transforming activity of activated proteins. The data provide a structural basis for understanding the known biochemical properties of normal as well as activated ras oncogene proteins and indicate additional regions in the molecule that may possibly participate in other cellular functions.  相似文献   

19.
Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A   总被引:128,自引:0,他引:128  
The zinc finger DNA-binding motif occurs in many proteins that regulate eukaryotic gene expression. The crystal structure of a complex containing the three zinc fingers from Zif268 (a mouse immediate early protein) and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent. In this complex, the zinc fingers bind in the major groove of B-DNA and wrap part way around the double helix. Each finger has a similar relation to the DNA and makes its primary contacts in a three-base pair subsite. Residues from the amino-terminal portion of an alpha helix contact the bases, and most of the contracts are made with the guanine-rich strand of the DNA. This structure provides a framework for understanding how zinc fingers recognize DNA and suggests that this motif may provide a useful basis for the design of novel DNA-binding proteins.  相似文献   

20.
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号