首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

There is limited knowledge about the differences in carbon availability and metabolic quotients in temperate volcanic and tropical forest soils, and associated key influencing factors. Forest soils at various depths were sampled under a tropical rainforest and adjacent tea garden after clear-cutting, and under three temperate forests developed on a volcanic soil (e.g. Betula ermanii and Picea jezoensis, and Pinus koraiensis mainly mixed with Tilia amurensis, Fraxinus mandshurica and Quercus mongolica), to study soil microbial biomass carbon (MBC) concentration and metabolic quotients (qCO2, CO2-C/biomass-C). Soil MBC concentration and CO2 evolution were measured over 7-day and 21-day incubation periods, respectively, along with the main properties of the soils. On the basis of soil total C, both CO2 evolution and MBC concentrations appeared to decrease with increasing soil depth. There was a maximal qCO2 in the 0–2.5 cm soil under each forest stand. Neither incubation period affected the CO2 evolution rates, but incubation period did induce a significant difference in MBC concentration and qCO2 in tea soil and Picea jezoensis forest soil. The conversion of a tropical rainforest to a tea garden reduced the CO2 evolution and increased the qCO2 in soil. Comparing temperate and tropical forests, the results show that both Pinus koraiensis mixed with hardwoods and rainforest soil at less than 20 cm depth had a larger MBC concentration relative to soil total C and a lower qCO2 during both incubation periods, suggesting that microbial communities in both soils were more efficient in carbon use than communities in the other soils. Factor and regression analysis indicated that the 85% variation of the qCO2 in forest soils could be explained by soil properties such as the C:N ratio and the concentration of water soluble organic C and exchangeable Al (P < 0.001). The qCO2 values in forest soils, particularly in temperate volcanic forest soils, decreased with an increasing Al/C ratio in water-soluble organic matter. Soil properties, such as exchangeable Ca, Mg and Al and water-soluble organic C:N ratio, were associated with the variation of MBC. Thus, MBC concentrations and qCO2 of the soils are useful soil parameters for studying soil C availability and microbial utilization efficiency under temperate and tropical forests.  相似文献   

3.
Abstract

The advanced classification of brown forest soils (BFS) is based on the specific properties of these soils, including the acid ammonium oxalate extractable aluminum (Alox) and lithic fragment contents, as well as their vertical distributions in the soil profile. In the present study, these properties were used to classify BFS, resulting in four types: (1) H-Alox-NGv BFS, (2) H-Alox-Gv BFS, (3) M-Alox BFS, (4) L-Alox BFS. H-Alox-NGv BFS is derived from volcanic ash characterized by a high Alox content and no lithic fragment, whereas L-Alox BFS is derived from weathered bedrock and has a low Alox content. H-Alox-Gv BFS and M-Alox BFS are derived from mixtures of volcanic ash and weathered bedrock. H-Alox-Gv BFS is characterized by high Alox content and many lithic fragments, whereas M-Alox BFS has moderate Alox content. H-Alox-NGv BFS and black soils (BLS) develop from accumulated volcanic ash, as indicated by declining Alox and clay content with decreasing depth in the surface horizons, as a result of successive additions of less-weathered volcanic ash to the soil surface.  相似文献   

4.
Intensive cultivation of crop fields using agricultural chemicals and fertilizers has led to changes in ecological systems, resulting in a high possibility of environmental pollution by contamination, or occasional reactions not only in the soil but also in the water and the atmosphere. Some substances are known to be very toxic to human beings at low concentrations. For example, nitrosamines are believed to be carcinogenic and mutagenic.  相似文献   

5.
Abstract

To gain a better understanding of the distribution of charred plant fragment C (CPFC) and its contribution to organic C (OC) in the particle size fractions of Japanese volcanic ash soils, each of four soil samples was divided into six particle size fractions, namely three sand-sized aggregate (20–53, 53–212 and 212–2,000 µm) fractions, one silt-sized aggregate (2–20 µm) fraction, and two clay-sized aggregate (< 0.2 and 0.2–2 µm) fractions. Furthermore, after HCl–HF treatment of these aggregate fractions, sub-fractions of less than specific gravity (s.g.) 1.6 g cm?3 (< 1.6 fraction) were isolated using s.g. 1.6 g cm?3 sodium polytungstate solution. Microscopic observation indicated that the charred plant fragments, which are black or blackish brown, were the main components in the < 1.6 fractions. Therefore, the OC in this fraction was designated as CPFC. In all the soils studied, the quantitative distribution of the CPFC of the silt-sized aggregate fractions to total CPFC of whole soils, ranging from 59 to 84%, was greatest among the aggregate fractions. The sum of the distribution (%) values of the CPFC in the three sand-sized aggregate fractions varied from 6.9 to 33%, while that in the two clay-sized aggregate fractions ranged from 1.1 to 9.4%. Similar to the CPFC, in all soils, the quantitative distribution of the OC in the aggregate fractions was greater in the silt-sized aggregate fractions (52–76%) than in the other aggregate fractions (0.1–20%). In all soils, the quantitative contribution of total CPFC to total OC of whole soils ranged from 10 to 28%. The CPFC/OC values in the aggregate fractions were 21% or more in 10 samples from a total of 24 fractions, with a maximum value of 34%. On the basis of the findings obtained in the present study, it is assumed that in Japanese volcanic ash soils the silt-sized fraction is an important reservoir of CPFC and OC, and CPFC merits attention as one of the constituents of OC in particle size fractions.  相似文献   

6.
7.
Abstract

The objective of the present study was to clarify the influence of volcanic ash addition on soil carbon stocks and the carbon accumulation process in brown forest soils (BFS) in Japan. The degree of volcanic ash addition to the soil was estimated according to the acid ammonium oxalate extractable aluminum (Alox) and lithic fragment contents, and their vertical distribution patterns. The BFS was classified in order of increasing volcanic ash influence on the soil into the following types: high Alox content with no gravel (H-Alox-NGv), high Alox with a high gravel content (H-Alox-Gv), moderate Alox (M-Alox), and low Alox (L-Alox), and then analyzed for carbon content, carbon amount, carbon stock, Alox amount and pyrophosphate extractable aluminum (Alpy) amount. The correlation between the carbon and Alpy amounts and the relationship between the Alpy and Alox amounts in the BFS samples indicated that the amount of carbon is determined by Al—humus complex formation, which is defined by the active Al generated from additional volcanic ash in BFS soil samples of BFS. Therefore, soils with thicker horizons and greater amounts of Alox had higher carbon levels in deeper horizons. For this reason, soil carbon stocks at depths of 0–30 cm and 0–100 cm, and in the effective soil depth of BFS, were larger and followed the order H-Alox-NGv = H-Alox-Gv > M-Alox > L-Alox. Furthermore, successive accumulations of volcanic ash on the soil surface promoted soil carbon accumulation as a result of the development of the surface horizon in H-Alox-NGv BFS. Our results suggest that volcanic ash additions control the soil carbon accumulation of forest soil in Japan.  相似文献   

8.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

9.
Abstract

P status of soils derived from volcanic ash in Guatemala was investigated. Growth chamber and greenhouse studies were conducted with H‐3 hybrid corn (Zea mays). All plants exhibited P deficiency symptoms and yielded less dry matter when they were grown on soils that received only lime at a rate equivalent to 2,240 and 4,480 kg/ha. The P content of plants was low and correlated with P deficiency symptoms. Application of P (336 and 672 kg/ha) under constant liming corrected the P deficiencies and increased dry matter. In comparative studies, plants grown on a highly fertile, non‐volcanic soil showed vigorous growth and yielded high dry matter. Apparently, P was limiting productivity in volcanic ash soils of Guatemala, and due to low exchangeable Al, addition of only lime did not produce beneficial results. The soils responded to P fertilization and they should be supplied large quantities of this macronutrient.  相似文献   

10.
11.
Abstract. The effect of land use on the water retention capacity of Umbric Andosols in south Ecuador was studied. The objective was to acquire a better insight into the hydrological processes of the ecosystem and the role of the soil, in order to assess the impact of changing soil properties due to land use change on the hydrology of the high Andes region. Field data on the water retention capacity at wilting point of Umbric Andosols were collected for both cultivated field conditions and original bush vegetation. The pH in water and in NaF, texture, organic matter content and dry bulk density were measured to show which physicochemical soil characteristics are responsible for the water retention of the Umbric Andosols and for the irreversible loss in water retention due to air drying. Organic matter content appears to be very important and certainly more important than allophane clay content. Water retention of the organic litter layer was calculated to be 16 mm, this would be lost when vegetation was cleared and the land cultivated.  相似文献   

12.
Forest management and climate change may have a substantial impact on future soil organic carbon (SOC) stocks at the country scale. Potential SOC in Japanese forest soils was regionally estimated under nine forest managements and a climate change scenario using the CENTURY ecosystem model. Three rotations (30, 50, 100 yr) and three thinning regimes were tested: no‐thinning; 30% of the trees cut in the middle of the rotation (e.g. 15 year in a 30‐yr rotation) and thinned trees all left as litter or slash (ThinLef) and the trees from thinning removed from the forest (ThinRem). A climate change scenario was tested (ca. 3 °C increase in air temperature and 9% increase in precipitation). The model was run at 1 km resolution using climate, vegetation and soil databases. The estimated SOC stock ranged from 1600 to 1830 TgC (from 6800 to 7800 gC/m2), and the SOC stock was largest with the longest rotation and was largest under ThinLef with all three rotations. Despite an increase in net primary production, the SOC stock decreased by 5% under the climate change scenario.  相似文献   

13.
Carbon (C) stocks in forest soils were evaluated in the first comprehensive survey of Great Britain, the BioSoil soil survey, using a total of 167 plots (72 in England, 26 in Wales and 69 in Scotland). The average C stock down to 80 cm depth for seven main soil types ranged between 108 and 448 t C/ha with maximum values from 511 to 927 t C/ha. Carbon stock varied with soil depth and type, forest type, and stand age. Stocks within the upper mineral soil (0–20 cm) represented between 29 and 69% of the total 0–80 cm C stock, while those in the top 40 cm comprised 59–100% of the total. Carbon stocks decreased in the order deep peats > peaty gleys > groundwater gleys > surface‐water gleys > podzols and ironpans > brown earths > rankers and rendzinas. Litter and fermentation horizons on average contributed an additional 7.3 and 8.8 t C/ha, respectively, to the overall soil C stock. Measured soil C stocks (0–80 cm) were upscaled by area of main soil and forest types to provide national estimates. Total forest soil stocks for England, Wales and Scotland were upscaled to 163, 46 and 337 Mt C, respectively, with an additional 17, 4 and 21 Mt C within surface organic layers (litter and fermentation horizons). Carbon stocks were larger under conifers compared with broadleaves. Peaty gleys contributed most to the total C stock in Scotland, while brown earths and podzolic soils made the largest contribution in Wales, and brown earths and surface‐water gley soils in England. Estimated total carbon stocks in forest soils in Great Britain, including organic layers, are 589 Mt C in the top 80 cm and 664 Mt C in the top 1 m of soil. The BioSoil soil survey provides the most comprehensive estimate of forest soil C stocks in Great Britain to date and provides a good baseline for assessing future change even though variability in forest soil C stocks is high. However, a relatively small number of additional plots to fill existing gaps in spatial coverage and to increase representation of rendzinas and highly organic soils would significantly reduce the level of uncertainty.  相似文献   

14.
Water-extractable organic carbon (WEOC) drives the C and N cycles in forest ecosystems via microbial activity. However, few studies have considered both then spatial and temporal patterns of WEOC in forest soils. We investigated the spatial and temporal variation in WEOC along a topographic sequence in a cool temperate deciduous forest. The concentrations of WEOC, carbohydrates, total phenols, and other organics were 126±51, 40±15, 1.5±0.5 and 85±43 mg C kg dry soil−1, respectively. Carbohydrates and phenols accounted for 33±11 and 1.5±1.0% of WEOC, respectively. The effect of season on the WEOC concentration was stronger than that of slope position the growing season, although most of the soil properties varied markedly with slope position. The concentration of carbohydrates in WEOC showed similar seasonal patterns across slope positions. The carbohydrate concentration peaked in May and August. The results suggest that carbohydrates are controlled by the recent production of C, rather than by organic C that has accumulated in soil.  相似文献   

15.
Daily matrix flow at 1-m depth in a volcanic ash soil was calculated during a period of one year using Darcy's law. Unsaturated hydraulic conductivity of undisturbed core samples could be expressed as a unique function of the soil water content. Hydraulic gradient obtained from soil water suction by a tensiometer installed at 90- and 110-cm depths, and hydraulic conductivity converted from the soil water content by time domain reflectometry (TDR) were monitored every 30 min throughout a year in a maize (Zea mays L.) Chinese cabbage (Brassica pekinensis Rupr.) field. The matrix flow obtained by this method was substituted for the water balance equation to estimate the bypass flow, and monthly and annual evapotranspiration. Annual rainfall in 1997 was 989 mm and evapotranspiration was estimated to be 730 mm. Net matrix flow at 1-m depth was 164 mm downward even though upward matrix flow occurred during half of the year. Downward flow determined by the water balance method exceeded the downward matrix flow during two heavy rain events in the year and the difference between the two flows was 63 mm, which was considered to correspond to a bypass flow. The bypass flow accounted for only 6.4% of the annual rainfall. Matrix flow was well monitored by the application of unsaturated Darcy's law in a field, and monthly evapotranspiration and bypass flow could be quantified by the introduction of the water balance equation.  相似文献   

16.
Dissolved organic carbon (DOC) constitutes an important carbon input flux to forested mineral soils. Seepage from mineral subsoils contains only small amounts of DOC because of mineralization, sorption or the formation of particulate organic matter (POM). However, the relation between these processes is largely unknown. Therefore, the objective of this study was to quantify the mineralization of DOC from different depths of forest soils, and to determine degradation rate constants for rapidly and slowly degradable DOC pools. Mineralization of DOC and formation of POM in mineral soil solution from two forested sites in northern Bavaria (Germany) were quantified in a 97 days laboratory incubation experiment. Furthermore, spectroscopic properties such as specific UV absorption and a humification index derived from fluorescence emission spectrometry were measured before and after incubation. DOC in all samples turned out to belong mainly to the stable DOC pool (> 95 %) with half‐lives ranging from years to decades. Spectroscopic properties were not suitable to predict the mineralization of DOC from mineral soils. However, together with data on DOC from the forest floor and long‐term data on DOC concentrations in the field they helped to identify the processes involved in C sequestration in mineral subsoils. Mineralization, formation of POM, and probably sorption seem all to be responsible for maintaining low concentrations of DOC in the upper mineral soil. DOC below the upper mineral soil is highly resistant to mineralization, and thus the further decrease of DOC concentrations in the subsoil as observed under field conditions cannot be attributed to mineralization. Our results suggest that sorption and to some minor extent the formation of POM may be responsible for C sequestration in the subsoil.  相似文献   

17.
The morphology and chemical composition of fungal sclerotium-like grains collected from the buried humic horizon of volcanic ash soil in Mt. Myoko were examined using a scanning electron microscope (SEM), energy dispersion xray micro-analyzer (EDX), and electron probe micro-analyzer (EPMA). A high C content, low level of Si and high concentration of Al characterized the grains considered to correspond to the sclerotia of Cenoccocum graniforme. The 27Al MAS NMR spectrum of the sclerotia showed the existence of 6- and 4-coordinated Al. X-ray diffraction analyses supported the presence of amorphous Al (ex. Al-humus complex) in the sclerotia.  相似文献   

18.
ABSTRACT

A meta-analysis of 297 treatment data from the Vezaiciai Branch of the Lithuanian Research Centre for Agriculture and Forestry long-term field experiment published from 2006 to 2015 was used to characterize the changes in SOC under different fertilization treatments and residue management practices in Lithuania’s acid soil. A meta-analysis was performed to quantify the relative annual change (RAC) of SOC content and the average RAC rate of SOC under four fertilization modes (farmyard manure (FYM) (40?t?ha?1)); alternative organic fertilizers (in the manure background (40?t?ha?1)); FYM (60?t?ha?1); alternative organic fertilizers (in the manure background (60?t?ha?1)) in two soil backgrounds (naturally acid and limed soil). The average RAC under four fertilization modes was 1.46 g?kg?1?yr?1, indicating that long-term fertilization had considerable SOC sequestration potential. Incorporation of alternative organic fertilizers in unlimed soil showed negative effects (?0.39 and ?0.66 g?kg?1?yr?1) in the observed long-term experiment. The RAC in the limed soil with incorporated organic fertilizers (FYM and alternative organic fertilizers), compared to the control, and varied from 0.25 g?kg?1?yr?1 in the treatment with incorporated alternative organic fertilizers (in the manure background (40?t?ha?1)) to 0.71 g?kg?1?yr?1 in the soil with FYM (60?t?ha?1). In this study, the average RAC rate of SOC under organic fertilization treatments in limed soil (5.07–6.54%) was longer than organic fertilization in unlimed soil (2.11–3.49%), which might be attributed to the application of organic manure that would result in a slow release of fertilizer efficiency. Our results indicate that the application of manure (40 or 60?t?ha?1) showed the greatest potential for C sequestration in agricultural soil and produced the longest SOC sequestration duration.  相似文献   

19.
20.
Addition of wood ash to acid soils will affect the soil chemistry of forests in a number of ways which were assessed for a pine stand in northern Germany. A field experiment was carried out in a fifty‐year old pine stand on a sandy Podzol at Fuhrberg (Lüneburger Heide, Lower Saxony/Germany) which involved depositing wood ash (2.4 t ha—1) on the surface. Soil solution chemistry was investigated monthly at different depths for 24 months. Prior to and 19 months after the ash addition, exchangeable cations and amounts of heavy metals were determined at different depths. Two to four months after addition of wood ash, maximum mean concentrations in the soil solution of Ca were 240 μmol l—1 at 0 cm (surface of mineral soil) and 100 μmol l—1 at 100 cm and of K 980 μmol l—1 and 140 μmol l—1, respectively. The pH values in soil solutions dropped temporarily by 0.3 units at 0 and 10 cm depth. Nitrate concentrations increased at all depths and maximum mean concentration was 230 μmol l—1 at 100 cm. Concentrations of Pb and Cr in soil solution did not change significantly (p < 0.05) after ash addition. Concentrations of Cd and Zn increased significantly at some depths but stayed well below the legal limit for drinking water and below the limits given by the German recommendation for soil conservation. Nineteen months after ash addition, the cation exchange capacity (corrected for the release of cations from the ash) of the upper 6 cm of the organic layer was almost doubled and amounts of exchangeable Ca and Mg increased significantly in the upper 8 cm of the organic layer. Amounts of Zn were increased in the entire organic layer, but changes were significant only in the upper 4 cm. The results of this study suggest that ash from untreated wood (using modest additions) may be recommended for amelioration of forest soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号