首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Field and laboratory experiments were used to examine the efficiency of N uptake from various manure forms, and at different rates of application. In a field experiment, wheat was grown on soils with different amounts of 15N-labelled legume residues. The amount of N taken up by the crop was directly proportional to the amount applied, with a recovery of between 15% and 23% of the legume N. In a second field experiment, inorganic N was applied at rates varying from 0 to 120 kg N ha-1 in the presence and absence of poultry manure. The uptake of N by barley was 11 kg ha-1 greater in the manured plots when no inorganic N was applied, and 23 kg ha-1 greater when N was applied at the top rate. N uptake in a pot experiment was again shown to be directly proportional to the rate of manure application, but the amount of N taken up was strongly related to the N content of the manure. An incubation experiment demonstrated that net N mineralisation reached a maximum where residue concentrations were 1,5%. The significance of added nitrogen interactions in the context of manure-N additions is discussed.  相似文献   

2.
The effects of repeated synthetic fertilizer or cattle slurry applications at annual rates of 50, 100 or 200 m3 ha−1 yr−1 over a 38 year period were investigated with respect to herbage yield, N uptake and gross soil N dynamics at a permanent grassland site. While synthetic fertilizer had a sustained and constant effect on herbage yield and N uptake, increasing cattle slurry application rates increased the herbage yield and N uptake linearly over the entire observation period. Cattle slurry applications, two and four times the recommended rate (50 m3 ha−1 yr−1, 170 kg N ha−1), increased N uptake by 46 and 78%, respectively after 38 years. To explain the long-term effect, a 15N tracing study was carried out to identify the potential change in N dynamics under the various treatments. The analysis model evaluated process-specific rates, such as mineralization, from two organic-N pools, as well as nitrification from NH4+ and organic-N oxidation. Total mineralization was similar in all treatments. However, while in an unfertilized control treatment more than 90% of NH4+ production was related to mineralization of recalcitrant organic-N, a shift occurred toward a predominance of mineralization from labile organic-N in the cattle slurry treatments and this proportion increased with the increase in slurry application rate. Furthermore, the oxidation of recalcitrant organic-N shifted from a predominant NH4+ production in the control treatment, toward a predominant NO3 production (heterotrophic nitrification) in the cattle slurry treatments. The concomitant increase in heterotrophic nitrification and NH4+ oxidation with increasing cattle slurry application rate was mainly responsible for the increase in net NO3 production rate. Thus the increase in N uptake and herbage yield on the cattle slurry treatments could be related to NO3 rather than NH4+ production. The 15N tracing study was successful in revealing process-specific changes in the N cycle in relationship to long-term repeated amendments.  相似文献   

3.
Pot experiments that lasted for 3 y were conducted to investigate the dynamics of nitrogen derived from plant residues (rice root, hull, straw, corn root, and rapeseed pod-wall), and composts (rice straw compost, cattle manure compost, and cattle manure sawdust compost), which were labeled with 15N. The rates of nitrogen uptake by rice (=N efficiency), denitrification, and immobilization derived from the organic materials incorporated before the first year of cultivation were investigated throughout 3 y of cultivation. At the end of the first year of cultivation, relatively high rates of N efficiency were obtained for rapeseed pod-wall (24.6%), rice straw (19.1%), and rice hull (18.6%), while corn root and cattle manure sawdust compost displayed a noticeably high denitrification rate. Corn root, cattle manure sawdust compost, rice hull, and rapeseed pod-wall exhibited remarkably high N mineralization rates ranging from 60 to 75% of the organic materials N applied. Cumulative rates of N efficiencies from the organic materials applied before the first year of cultivation fitted well to a first-order kinetic model and their asymptotes were compared among the organic materials. The asymptotic rates of N efficiency tended to depend on the rates at the end of the first year of cultivation.  相似文献   

4.
Summary In two field experiments, plant materials labelled with 15N were buried separately within mesh bags in soil, which was subsequently sown with barley. In the first experiment, different parts of white clover (Trifolium repens), red clover (T. pratense), subterranean clover (T. subterraneum), field bean (Vicia faba), and timothy (Phleum pratense) were used, and in the second, parts of subterranean clover of different maturity. The plant materials were analysed for their initial concentrations of total N, 15N, C, ethanol-soluble compounds, starch, hemicellulose, cellulose, lignin, and ash. After the barley had been harvested, the bags were collected and analysed for their total N and 15N. In the first experiment the release of N was highest from white clover stems + petioles (86%) and lowest from field bean roots (20%). In stepwise regression analysis, the release of N was explained best by the initial concentrations of lignin, cellulose, hemicellulose, and N (listed according to decreasing partial correlations). Although the C/N ratio of the plant materials varied widely (11–46), statistically the release of N was not significantly correlated with this variable. The results of the second experiment using subterranean clover of different maturity confirmed those of the first experiment.  相似文献   

5.
The beneficial role of green manures in rice production is generally ascribed to their potential of supplying plant nutrients, particularly nitrogen (N). However, the mechanisms through which green manures enhance the crop productivity are poorly understood. Pot experiments were conducted using a 15N-tracer technique: (1) to compare the biomass production potential of sesbania (Sesbania aculeata Pers.) and maize (Zea mays L.) as green manuring crops for lowland rice and (2) to compare the effect of the two types of green manure and inorganic N on the dry matter accumulation and N uptake by two rice (Oryza sativa L.) cultivars, viz. IR-6 and Bas-370. Although maize produced three times higher shoot biomass compared with sesbania, the latter showed higher N concentration; and thus the total N yield was similar in the two types of plants. Applying the shoot material of the two plants to flooded rice significantly enhanced the dry matter yield and N uptake by the two rice cultivars, the positive effects generally being more pronounced with sesbania than with maize amendment. The difference in the growth-promoting potential of the two plant residues was related more to an increased uptake of the native soil N rather than to their direct role as a source of plant-available N. A positive added nitrogen interaction (ANI) was observed due to both plant residues, the effect was much more pronounced with the application of sesbania than with maize residues. In both rice cultivars, inorganic N also caused a substantial ANI, particularly at higher application rate. Losses from the applied N were 2–3 times lower from sesbania, compared with maize treatment. Green manuring with sesbania also caused much lower N losses than the inorganic N applied at equivalent or higher rates. The overall benefit of green manuring to rice plants was higher than inorganic N applied at comparable rates. The two rice cultivars differed in their response to green manuring, IR-6 generally being more responsive than Bas-370.  相似文献   

6.
Nitrous oxide (N2O) flux in the semi-arid Leymus chinensis (Trin.) Tzvel. grassland in Inner Mongolia, China was measured for two years (from January 2005 to December 2006) with the enclosed chamber technique. The measurements were made twice per month in the growing season and once per month in the non-growing season. To evaluate the effect of aboveground vegetation on N2O emission, the ecosystem N2O flux over the grassland was measured, and concurrently soil N2O flux was measured after the removal of all the aboveground biomass. The possible effect of water-heat factors on N2O fluxes was statistically examined. The ecosystem N2O flux ranged from 0.21 to 0.26?kg nitrous oxide-nitrogen (N2O–N) ha? 1 year? 1, indicating that the Leymus chinensis grassland of Inner Mongolia was a source for the atmospheric N2O. There was no significant difference between the ecosystem N2O flux and the soil N2O flux. The ecosystem N2O flux was under similar environmental control as the soil N2O flux. Soil moisture was the primary driving factor of the N2O fluxes in the growing season of both years; the changes in water–filled pore space (WFPS) of soil surface layers could explain 45–67% of the variations in N2O fluxes. The high seasonal variation of the N2O fluxes in the growing seasons was regulated by the distribution of effective rainfall, rather than the precipitation intensity. While in the non-growing season, the N2O fluxes were restricted much more by air temperature or soil temperature, and 83–85% of the variations of the N2O fluxes were induced by changes in temperature conditions.  相似文献   

7.
不同管理方式对夏玉米氮素吸收、分配及去向的影响   总被引:3,自引:5,他引:3  
【目的】本文利用15N同位素示踪技术探讨传统(CT)和优化(YH)两种管理方式对夏玉米氮素吸收、分配及去向的影响。分析目标产量下化肥氮的变化,解析夏玉米花前、花后氮素利用及转移规律,探讨肥料氮、土壤氮与作物氮之间的关系,为该地区夏玉米的科学合理施氮提供合理依据。【方法】在传统和优化两种管理方式定位试验中设置15N微区,采用将15N标记的尿素表施的方法,分析植株和土壤样品。新鲜土壤用1 mol/L KCl浸提,滤液用TRACCS 2000型流动分析仪测定土壤的NH+4-N和NO-3-N含量。15N标记的土壤和植物全氮的测定用烘干样(过0.15 mm筛),然后用美国THERMO finnigan公司生产的稳定同位素质谱仪DeltaplusXP进行测定。【结果】在该试验条件下,优化方式下夏玉米籽粒产量和总吸氮量显著高于传统方式,分别增加12%和10%。作物收获后,优化方式的15N吸收量及利用率显著高于传统方式,利用率分别为20.81%、32.54%。夏玉米各器官中氮素的积累量和向籽粒中的转移量土壤氮显著高于肥料氮,传统方式籽粒中氮素的57.73%、优化方式籽粒中氮素的45.15%来自各器官的转移,近一半的氮素是在花后积累的,基施高氮对作物生长作用不大。开花期土壤表层硝态氮含量传统方式显著高于优化方式,收获后有所降低,而土壤深层含量明显增加,有向下淋洗的趋势。夏玉米收获后,传统方式各土层的原子百分超均高于优化方式,而且在20—40 cm处出现了明显的15N累积峰,与开花期相比,40 cm以下土层的原子百分超明显增大,氮肥随水向下淋洗强烈。夏玉米收获后传统方式土壤氮素残留率高达56.18%,表现为土壤残留损失作物吸收;优化方式则表现为土壤残留作物吸收损失。【结论】在优化方式中夏玉米施氮量为N 185 kg/hm2时,玉米达到高产水平且氮肥的利用率高。适当减少施氮量及增加后期追肥次数可实现夏玉米的高产和肥料的高效利用。  相似文献   

8.
To understand nitrous oxide (N2O) emissions from terrestrial ecosystems it is necessary to understand the processes leading to N2O production. Here, for the first time, results are presented which identify in situ the processes of N2O production in a temperate grassland soil. A small portion of the nitrogen (N) applied in the summer to the grassland soil was rapidly transported below the main rooting zone (>20 cm) and resulted in large N2O productions at depths of 20-50 cm. Preferential pathways must have been responsible for this movement because the soil conditions were not conducive to leaching by piston flow. The N2O was entirely produced by nitrate (NO3) reduction which was surprising because the bulk soil was aerobic. Therefore, reduction processes can operate during times of the year when it is least expected and cause large N2O concentrations deep in the soil profile.  相似文献   

9.
Elevated CO2 and defoliation effects on nitrogen (N) cycling in rangeland soils remain poorly understood. Here we tested whether effects of elevated CO2 (720 μl L−1) and defoliation (clipping to 2.5 cm height) on N cycling depended on soil N availability (addition of 1 vs. 11 g N m−2) in intact mesocosms extracted from a semiarid grassland. Mesocosms were kept inside growth chambers for one growing season, and the experiment was repeated the next year. We added 15N (1 g m−2) to all mesocosms at the start of the growing season. We measured total N and 15N in plant, soil inorganic, microbial and soil organic pools at different times of the growing season. We combined the plant, soil inorganic, and microbial N pools into one pool (PIM-N pool) to separate biotic + inorganic from abiotic N residing in soil organic matter (SOM). With the 15N measurements we were then able to calculate transfer rates of N from the active PIM-N pool into SOM (soil N immobilization) and vice versa (soil N mobilization) throughout the growing season. We observed significant interactive effects of elevated CO2 with N addition and defoliation with N addition on soil N mobilization and immobilization. However, no interactive effects were observed for net transfer rates. Net N transfer from the PIM-N pool into SOM increased under elevated CO2, but was unaffected by defoliation. Elevated CO2 and defoliation effects on the net transfer of N into SOM may not depend on soil N availability in semiarid grasslands, but may depend on the balance of root litter production affecting soil N immobilization and root exudation affecting soil N mobilization. We observed no interactive effects of elevated CO2 with defoliation. We conclude that elevated CO2, but not defoliation, may limit plant productivity in the long-term through increased soil N immobilization.  相似文献   

10.
Over half of the 21 Mha of soybean planted in Brazil is now transgenic glyphosate-resistant (GMRR). A field experiment was carried out to investigate whether the application of glyphosate or imazethapyr to the GMRR variety reduced the input of N2 fixation (BNF). No effects on yield, total N accumulation, nodulation and BNF (δ15N) could be assigned to the genetic modification of the plant. Imazethapyr reduced soybean yield but had no significant effect on BNF. Even though yields were not affected by glyphosate, the significant reduction of nodule mass and BNF to the GMRR suggests that the use of this herbicide could lead to an increased dependence on soil N and consequently an eventual decrease of SOM reserves.  相似文献   

11.
The natural 15N abundances (δ15N values) were measured for nitrate and free and bound amino acids from the leaves of field-grown spinach (Spinacia oleracea L.) and komatsuna (Brassica campestris L.), as well as ureides and free and bound amino acids in the leaves and roots of hydroponically grown soybean (Glycine max L.) totally depending on dinitrogen. Nitrate from the spinach and komatsuna leaves and ureides from leaves and roots of soybean showed higher δ15N values than the total tissue N and N in free or bound amino acid fractions. The δ15N values of individual free and bound amino acids, determined by GC/C/MS using their acetylpropyl derivatives, were similar in leaf tissues except for proline but varied in soybean root tissues. The order of 15N enrichment was similar in the four samples: aspartic acid > glutamic acid > threonine, proline, valine > glycine + alanine +serine, γ-amino butyric acid, and phenylalanine.  相似文献   

12.
Our aim was to study whether the in situ natural abundance 15N (δ15N)-values and N concentration of understory plants were correlated with the form and amount of mineral N available in the soil. Also to determine whether such differences were related to earlier demonstrations of differences in biomass increase in the same species exposed to nutrient solutions with both and or to alone. Several studies show that the δ15N of in soil solution generally is isotopically lighter than the δ15N of due to fractionation during nitrification. Hence, it is reasonable to assume that plant species benefiting from in ecosystems without significant leaching or denitrification have lower δ15N-values in their tissues than species growing equally well, or better, on We studied the δ15N of six understory species in oak woodlands in southern Sweden at 12 sites which varied fivefold in potential net N mineralisation rate The species decreased in benefit from in the following order: Geum urbanum, Aegopodium podagraria, Milium effusum, Convallaria majalis, Deschampsia flexuosa and Poa nemoralis. Four or five species demonstrated a negative correlation between and leaf δ15N and a positive correlation between and leaf N concentration. In wide contrast, only D. flexuosa, which grows on soils with little nitrification, showed a positive correlation between and the leaf N concentration and δ15N-value. Furthermore, δ15N of plants from the field and previously obtained indices of hydroponic growth on relative to were closely correlated at the species level. We conclude that δ15N may serve as a comparative index of uptake of among understory species, preferably in combination with other indices of N availability. The use of δ15N needs careful consideration of known restrictions of method, soils and plants.  相似文献   

13.
Abstract: By using the indirect 15nitrogen (N) method, the application effects of sewage sludge (SS) on growth indices, yield, and nutrient uptake in Komatsuna (Brassica campestris var. perviridis) grown in a low fertility soil were investigated and compared with those of chemical fertilizer (CF) and no‐fertilizer (NF) treatments. The N‐use efficiencies of CF and SS were 19.7% and 12.1%, respectively, of the applied N. Therefore, the relative efficiency of the sewage sludge to chemical fertilizer was 61.5%. In comparison to NF and CF, the application of SS apparently increased the soil microbial activity, which was evaluated by measuring hydrolysis of fluorescein diacetate. After cultivation, the electrical conductivity (EC) of CF soil (0.175 dS m?1) was significantly higher than those of NF (0.067 dS m?1) and SS soils (0.057 dS m?1). The concentrations of phosphorus (P), calcium (Ca), and magnesium (Mg) in SS leaves were significantly higher than those in CF leaves; however, the concentration of potassium (K) was significantly lower in SS than in CF.  相似文献   

14.
Low temperatures and high soil moisture restrict cycling of organic matter in arctic soils, but also substrate quality, i.e. labile carbon (C) availability, exerts control on microbial activity. Plant exudation of labile C may facilitate microbial growth and enhance microbial immobilization of nitrogen (N). Here, we studied 15N label incorporation into microbes, plants and soil N pools after both long-term (12 years) climate manipulation and nutrient addition, plant clipping and a pulse-addition of labile C to the soil, in order to gain information on interactions among soil N and C pools, microorganisms and plants. There were few effects of long-term warming and fertilization on soil and plant pools. However, fertilization increased soil and plant N pools and increased pool dilution of the added 15N label. In all treatments, microbes immobilized a major part of the added 15N shortly after label addition. However, plants exerted control on the soil inorganic N concentrations and recovery of total dissolved 15N (TD15N), and likewise the microbes reduced these soil pools, but only when fed with labile C. Soil microbes in clipped plots were primarily C limited, and the findings of reduced N availability, both in the presence of plants and with the combined treatment of plant clipping and addition of sugar, suggest that the plant control of soil N pools was not solely due to plant uptake of soil N, but also partially caused by plants feeding labile C to the soil microbes, which enhanced their immobilization power. Hence, the cycling of N in subarctic heath tundra is strongly influenced by alternating release and immobilization by microorganisms, which on the other hand seems to be less affected by long-term warming than by addition or removal of sources of labile C.  相似文献   

15.
外源水稻根系和茎叶碳氮在稻田土壤中释放的特征   总被引:2,自引:0,他引:2  
东北地区气候寒冷,稻田土壤休耕期长,多处于冻结状态;水稻生长期短,土壤温度高且季节性淹水.外源水稻秸秆碳氮在东北地区稻田土壤休耕期和水稻生长期不同水热条件下的释放特征尚不完全清楚.通过室外培养试验方法,利用双标记(13C和15N)水稻根系和茎叶示踪技术和稳定同位素质谱分析技术,研究水稻根系和茎叶在稻田土壤中的腐解率、有...  相似文献   

16.
A pot experiment was conducted to compare the uptake and dry matter production potential of NH inf4 sup+ and NO inf3 sup- and to study the effect of Baythroid, a contact poison for several insect pests of agricultural crops, on growth and N uptake of maize (Zea mays L.). Nitrogen was applied as (15NH4)2SO4, K15NO3, or 15NH4NO3 and in one treatment Baythroid was combined with 15NH4NO3. Source of N had, in general, a nonsignificant effect on dry matter and N yield, but uptake of NO inf3 sup- was significantly higher than that of NH inf4 sup+ when both N sources were applied together. Substantial loss of N occurred from both the sources, with NH inf4 sup+ showing greater losses. Baythroid was found to have a significant positive effect on dry matter yield of both root and shoot; N yield also increased significantly. Uptake of N from both the applied and native sources increased significantly in the presence of Baythroid and a substantial added nitrogen interaction (ANI) was determined. The positive effect of Baythroid was attributed to: (1) a prolonged availability of NH inf4 sup+ due to inhibition of nitrification, (2) an increased availability of native soil N through enhanced mineralization, and (3) an enhanced root proliferation.  相似文献   

17.
Appropriate cultural practices need to be determined for enhancing crop yields with low inputs under rainfed conditions. A field experiment was conducted to study the effect of tillage practices and fertilizer levels on yield, nitrogen (N) uptake and carbon (C) isotope discrimination in wheat (Triticum aestivum L.) grown under semi-arid conditions at three sites in north-west Pakistan: NIFA, Urmar and Jalozai. Two fertilizer levels, 60 kg N ha−1+30 kg P ha−1 (L1) and 60 kg N ha−1+60 kg P ha−1 (L2), were applied to wheat grown under conventional tillage (T1) and no-tillage (T0) practices. Labeled urea having 1% 15N atom excess at 60 kg N ha−1 was applied as aqueous solution in microplots within each treatment plot. A pre-sowing irrigation of 60 mm was applied and during the growing season, the crop relied entirely on rainfall (268 mm). Biomass yield, N uptake and stable C isotope composition (δ13C) of plants were determined at maturity. Yield of wheat was improved by tillage at two sites (Sites 1 and 2), while at the third site yield was reduced by tillage as compared with the no-tillage treatment. At Sites 1 and 2, nutrient addition (L2, 60 kg N ha−1+60 kg P ha−1) increased the yield of all plant parts (straw, grain and root) in contrast to Site 3 where only grain yield was increased significantly. Maximum grain yield of wheat was observed with tillage under nutrient level L2 at all sites. Generally, the tillage treatment did not affect the N content in plant parts compared with no-tillage (T0) treatment at all three sites. However, fertilizer N uptake by wheat was variable under different fertilizer levels and tillage practices. Nitrogen derived from fertilizer (Ndff) for grain at Site 2 was higher in tilled plots but was not affected by tillage practice at the other sites. The C isotope (δ13C) values varied from −28.96 to −26.03‰ under different treatments at the three sites. The δ13C values were less negative indicating more effective water use at Sites 2 and 3 compared to Site 1. The C isotope discrimination (Δ) values were positively correlated with yield of wheat straw (r=0.578*), grain (r=0.951**) and root (r=0.583*). Further, the Δ in grain had significant negative relationship (r=0.912**) with Ndff (%). The tillage practice exerted a positive effect on yield, N uptake and plant N derived from fertilizer by wheat compared to no-tillage. The positive correlation of Δ with grain, straw and root yields and negative correlation with the Ndff (%) by wheat suggest that this value (Δ) could be used to predict these parameters. However, further studies on different crops under varied environmental conditions are necessary.  相似文献   

18.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   

19.
【目的】在西北黄土高原地区,春季干旱少雨和肥料利用率低限制着生产优质苹果。国外通常应用水肥一体化技术来克服水肥利用率低的问题,但由于其硬件设施要求高,投资大,短期内在我国难以推广。近年来我国采用的根际注射施肥可利用施肥枪将肥料溶液直接注入根际土壤中,施肥成本低且技术简单。本研究利用同位素15N示踪技术,研究根际注射施肥对苹果氮素吸收利用及产量品质的影响,可为黄土高原果园水肥高效利用提供依据。【方法】以9年生富士/M26/新疆野苹果为试验材料,利用15N尿素标记肥料去向,最后通过MAT-251质谱计测15N丰度,得出果树各器官和土壤的肥料利用率。同时利用叶绿素仪(SPAD-502)测定标记叶片的SPAD值,用浸以磷酸甘油溶液的海绵进行田间原位测定,得到土壤氨挥发的量,用静态箱—气相色谱法测定土壤的N2O逸失量。综合对比分析黄土高原传统环状开沟撒施肥与根际注射施肥对苹果吸收利用氮素、肥料氮在土壤中残留及果实产量和品质的影响。【结果】黄土高原苹果园根际注射施肥的优越性体现在:1)施肥后一个月内,果园土壤的气态氮素损失发生变化,根际注射施肥比传统环状开沟施肥的氨挥发总量低54.9%,同时N2O的排放通量低5.0%。2)根际注射施肥后,促进了肥料在土壤中的扩散范围,扩大了根系肥水吸收容积,叶片和果实吸收的肥料氮比例(Ndff%)在整个生长季始终处于较高水平。生长季末期,根际注射施肥的整株氮素当季吸收率为53.04%,比环状开沟施肥提高12.25个百分点,表明根际注射施肥有利于氮素更快地被吸收利用,显著提高苹果树的氮素当季利用率。3)生长季末,在0—60 cm土层内,根际注射施肥的土壤氮素残留率为36.55%,而环状开沟施肥为43.13%,前者显著低于后者。4)在整个生长季内,根际注射施肥处理下的树体新梢叶片内叶绿素含量(SPAD)值一直高于环状开沟施肥。根际注射施肥能提高苹果单株产量和单果重,其单果重和单株产量分别比环状开沟施肥处理提高了3.8%和19.7%。【结论】黄土高原地区推广的果树根际注射施肥技术可以有效提高苹果树体氮素的利用率,降低了土壤中的氮素残留。此外注射施肥的深度、注射量、密度和时间均可根据不同时期的养分需要随时调整,使水肥在土壤中均匀分布,达到节水节肥的目的。同时可避免传统施肥时挖坑作业对浅土层吸收根的损伤,降低劳动力成本。综合来看,根际注射施肥是提高黄土高原区旱地苹果树肥水利用率、产量和品质的有效方式之一。  相似文献   

20.
The variation in P uptake and use efficiency and N accumulation by Gliricidia sepium (N2-fixing tree), Senna siamea and S. spectabilis (leguminous non-N2-fixing trees) were examined in the field at Fashola (savanna zone), southwestern Nigeria, using four P rates, 0, 20, 40 and 80 kg P ha-1. Growth of G. sepium and S. spectabilis responded to P application at 24 weeks after planting (WAP) and average yield increases of 58% and 145% were observed by the application of 40 kg P ha-1 for the two species, respectively. Such a P response was not found in S. siamea at 24 WAP and for any of the species at 48 WAP. G. sepium accumulated more P (on average 162%) than S. siamea and S. spectabilis at 24 WAP and had greater root length and a higher percentage of mycorrhizal infection. However, at 48 WAP S. siamea had 2.5 times more P than G. sepium. Differences in the physiological P use efficiency (PPUE) between G. sepium and the non-N2-fixing trees were significant at the 0 P level, being higher for S. siamea (average, 0.61 g shoot mg-1 P) than for G. sepium (0.27 g shoot mg-1 P). G. sepium had a consistently lower atom % 15N than S. spectabilis, while that of S. siamea for most of the time did not differ from that of G. sepium. The reference plant affected N2 fixation extimates, with negative values and a higher variability (CV 60%) associated with S. siamea than with S. spectabilis (CV<20%). Consequently, S. spectabilis was selected as a better reference plant for measuring N2 fixation in G. sepium. G. sepium fixed on average 35% and 54% of its N at 24 and 48 WAP, respectively. Except at the lowest P rate, percentage and amount of N fixed were not generally enhanced by P application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号