首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
芥菜型油菜黄籽性状的遗传、基因定位和起源探讨   总被引:6,自引:1,他引:5  
油菜种皮颜色既是一个形态指示性状, 又与种子休眠和品质有关。以芥菜型油菜种皮颜色分离的2个BC6F2群体为作图群体,用微卫星(SSR)等标记进行连锁定位, 并用定位标记对22份材料进行关联分析, 通过反转录-聚合酶链反应(RT-PCR)分析12份材料种皮中4-二氢黄酮醇还原酶(DFR)、花色素合酶(ANS)和花色素还原酶(ANR)基因的表达, 对6份黄籽材料的种皮颜色基因等位性进行测定, 结果将芥菜型油菜控制种皮颜色的2个基因位点分别定位到A9和B3连锁群, 并找到其两侧紧密连锁标记, 发现黄籽材料种皮颜色基因位点附近0.9 cM和1.5 cM区域高度保守, 所有黑色种皮中DFR、ANS和ANR基因均表达, 所有黄色种皮中DFR和ANS均不表达,但ANR基因表达或不表达,黄籽材料的种皮颜色基因等位。根据这些结果结合前人研究, 认为芥菜型油菜种皮颜色基因是调控基因,黄籽为单一起源。  相似文献   

2.
芥菜型油菜TT1基因的克隆和SNP分析   总被引:1,自引:0,他引:1  
拟南芥的TT1基因(编码含有WIP结构域的锌指蛋白)对种皮的发育和颜色的形成具有重要的调控作用。本研究利用同源克隆和RACE技术分离了芥菜型油菜TT1基因,在芥菜型油菜黄黑籽材料的种皮中进行转录水平的分析,比较了黑籽油菜与黄籽油菜基因序列的差异,并采用等位基因特异(allele-specific)PCR技术对可能存在的单核苷酸多态位点进行验证。结果表明,芥菜型油菜TT1基因的DNA序列全长为2197bp,包含1个内含子,与甘蓝型油菜TT1-1基因的DNA序列的相似性为99%,与拟南芥的TT1基因DNA序列的相似性为85%;推导的TT1蛋白序列为300氨基酸残基,理论分子量为33.97kD,等电点为6.99;TT1在所有材料的种皮中均检测到表达;比较紫叶芥、四川黄籽、NILA和NILB的TT1基因序列,共发现8个核苷酸变异位点,均在基因的外显子区域,其中紫叶芥和NILA的序列相同,四川黄籽和黒籽近等基因系NILB的序列相同。与紫叶芥相比,黒籽近等基因系NILB有8个核苷酸差异,但种皮颜色与紫叶芥一样,均为黑色,TT1基因这些位点的突变并不影响芥菜型油菜种皮的颜色。通过等位特异PCR可以区分来自四川黄籽与紫叶芥的TT1基因。  相似文献   

3.
芸苔属主要油料作物黄籽性状分子遗传研究进展   总被引:2,自引:0,他引:2  
油菜黄籽性状由于较好的营养和加工品质,得到现代油菜育种越来越多的重视,正逐渐成为油菜育种的重要目标.本文主要从芸苔属3个主要油料作物黄籽性状的遗传规律、基因定位和比较基因组学研究进展进行综述.在黄籽性状遗传方面,白菜型油菜、芥菜型油菜的遗传模式己基本清楚,由两对隐性基因控制,而甘蓝型油菜由于黄籽基因来源不同,存在多种遗传模式.在黄籽基因的定位方面,白菜型油菜、芥菜型油菜均已筛选到多个与黄籽性状紧密连锁的分子标记,并成功转成适合大规模筛选的SCAR标记,为分子标记辅助育种奠定了基础.甘蓝型油菜中也获得一些与黄籽性状紧密连锁的分子标记,并应用于分子标记辅助育种,但由于黄籽来源的不同,这些标记缺少通用性.在比较基因组学方面,根据拟南芥的相关种皮颜色基因,在白菜型油菜、芥菜型油菜、甘蓝型油菜中已克隆出一些与种皮颜色合成有关的基因,这些基因的克隆为油菜色素合成途径和通过转基因创造新型黄籽油菜研究奠定了基础.  相似文献   

4.
花青素是导致芥菜型油菜叶片颜色差异的重要物质,PAP1基因是花青素合成途径中的一个关键转录调控基因.本研究利用同源克隆技术,以不同叶色芥菜型油菜为材料,根据同源性较高的白菜PAP1基因序列设计引物,克隆芥菜型油菜PAP1基因序列.芥菜型油菜PAP1基因的基因长度在1348~1669 bp,编码序列长744~753 bp,包括3个外显子和2个内含子区域.PAP1蛋白包括两个MYB结合域,分别位于第9~59和62~110氨基酸.进化分析表明芥菜型油菜PAP1基因与白菜和芜菁具有较高的同源性,与拟南芥亲缘关系较远.对比不同叶色芥菜型油菜基因序列发现,紫叶芥和红叶芥PAP1基因的编码区序列无差异,但编码的蛋白质与绿叶芥有22个氨基酸差异,定量PCR分析表明PAP1基因及其调控的下游基因如DFR、TT19等在绿叶芥油菜中表达水平较低,上述差异可能导致了芥菜型油菜叶色的差异.本研究为探究不同叶色芥菜型油菜的可能形成机制及遗传改良提供参考.  相似文献   

5.
类黄酮是一种重要的植物次生代谢产物,查耳酮异构酶(CHI)是类黄酮生物合成早期阶段的一个关键酶,在种皮发育和颜色形成过程中具有重要的调控作用。为深入研究CHI基因在种皮发育和颜色形成中的作用及生物学功能。以16份三大类型黄、褐籽油菜为试验材料,采用同源克隆法克隆得到CHI基因的序列,并进行分子进化分析。将克隆得到的序列利用NCBI在线软件预测ORF Finder分析该基因的开发阅读框(ORF),结果发现,CHI基因ORF长度为756 bp或759 bp,编码251个或252个氨基酸。利用DNAMAN(v5.0)软件进行序列同源比对分析结果表明,CHI基因在三大类型油菜中的同源率为96.41%;利用NCBI在线软件CDD预测其保守结构域,发现它们都具有查尔酮超家族保守结构域。利用MEGA 5.2软件进行系统进化分析,结果表明,CHI基因在白菜型油菜与甘蓝型油菜中亲缘关系较近,与芥菜型油菜亲缘关系较远,并发现油菜与萝卜、拟南芥的CHI亲缘关系较近。比较三大类型油菜中黄籽油菜与褐籽油菜中CHI基因序列,结果发现,该基因在第202(C/A)位核苷酸处存在差异,可导致第68位氨基酸(P/T)的差异,这可能与油菜种皮的颜色的变化有关。该研究揭示了CHI基因的特征,为阐明CHI基因在油菜种皮颜色形成过程中的作用机制及其功能特征奠定基础。  相似文献   

6.
黄籽油菜具有种皮薄、出油率高等优点, 研究油菜黄籽的形成具有重要的意义。前期研究表明, TTG1 (TRANSPARENT TESTA GLABRA 1)基因参与了油菜种皮颜色的形成。本研究利用发根农杆菌A4菌株诱导了芥菜型油菜四川黄籽的毛状根, 并研究了菌液浓度和外植体部位对诱导率的影响。结果表明, 菌液浓度OD值为0.8时, 诱导效率最高, 平均为71.5%; 外植体中下胚轴的发根率最高, 平均为87.3%。在四川黄籽毛状根中过表达TTG1基因, 发现原花色素合成途径中的DFR (dihydroflavonol4-reductase)、ANS (anthocyanidin synthase)和BAN (anthocyanidin reductase)基因的表达受到抑制。本研究优化了油菜毛状根的诱导体系, 为利用毛状根体系进行基因功能验证提供了新的思路和方法。  相似文献   

7.
bHLH类转录因子TT8具有调控植物类黄酮合成的功能。本研究采用同源克隆法,在芥菜型油菜紫叶芥中获得了2个TT8拷贝,分别命名为BjA09.TT8和BjB08.TT8,它们分别编码521和517个氨基酸。定量表达分析表明,这2个拷贝在叶中的表达量均显著高于茎和根中,且都响应茉莉酸(JA)信号,在50μmol L–1的茉莉酸甲酯处理0.5 h后表达量均达到峰值;利用毛状根体系过表达发现,BjA09.TT8和BjB08.TT8分别可使紫叶芥和绿叶芥菜型油菜四川黄籽的毛状根中总黄酮含量升高,同时对类黄酮合成基因Bj.CHS的表达具有促进作用,说明二者在功能上具有冗余性。分别在野生型拟南芥和拟南芥tt8突变体中过表达BjA09.TT8和BjB08.TT8发现,过表达拟南芥植株叶片颜色变紫,植株总黄酮和原花色素含量显著升高。本研究表明,BjA09.TT8和BjB08.TT8基因能够促进芥菜型油菜类黄酮的合成,为进一步解析芸薹属植物原花色素合成的调控机制提供了参考。  相似文献   

8.
本研究发现以芥菜型褐籽油菜与芥菜型黄籽油菜进行杂交获得的F2后代中黄籽和褐籽后代的籽粒颜色并不是完全一致,黄籽有明亮的淡黄到暗黄的渐变,而褐籽有浅褐到深褐的渐变。因此,为了探究芥菜型油菜种皮颜色的机理,本研究以芥菜型褐籽油菜X398为母本,芥菜型黄籽油菜X402为父本进行杂交构建了重组自交系群体,再对重组自交系群体进行简化基因组测序,构建了芥菜型油菜高密度遗传连锁图谱,结合重组自交系群体的粒色性状表型和基因型进行QTL定位。结果获得4个控制芥菜型油菜黄籽性状的主效QTL,其中A09连锁群上获得1个主效QTL,其贡献率为14.2%,置信区间为47.6~49.6;B08连锁群上获得3个主效QTL,其贡献率分别为19.2%、12.9%和20.5%,置信区间分别为54.8~57.2、61.0~63.4和72.2~73.9。这为芥菜型油菜粒色性状基因的精细定位和分子标记辅助育种提供理论支撑。  相似文献   

9.
MYB类转录因子KAN4有调控植物原花青素合成的功能。为了探究芥菜型油菜中MYB转录因子KAN4对原花青素合成的调控机理,本研究以芥菜型油菜紫叶芥为实验材料,克隆了一个BjuB.KAN4基因,编码266个氨基酸,BjuB.KAN4蛋白包含一段高度保守的MYB-like DNA结合结构域,属于1R-MYB转录因子家族成员。基因表达分析表明, BjuB.KAN4在根中表达量显著高于叶和茎中, GUS组织化学染色分析试验推测,该基因可能在根茎叶的维管组织中表达。利用毛状根体系过表达BjuB.KAN4发现,类黄酮合成途径的部分关键酶基因Bju.CHS和Bju.DFR等的表达量在紫叶芥和四川黄籽的转基因根系中均显著增加,紫叶芥转基因根系中总黄酮含量为2.798 mg g~(-1),是对照组的1.3倍,四川黄籽中总黄酮含量为2.567 mg g~(-1),是对照组的1.2倍。在拟南芥中异源表达BjuB.KAN4发现,转基因植株总黄酮含量为0.237mgg~(-1),是野生型的1.5倍,原花青素含量为0.363mgg~(-1),较野生型含量下降。本研究表明,BjuB.KAN4基因参与调控芥菜型油菜类黄酮合成,为研究芸薹属植物原花青素合成的调控机理提供了参考。  相似文献   

10.
经遗传研究证明,甘蓝型纯黄籽油菜YR 5602种子粒色为1对隐性基因控制,种皮颜色受母本基因型控制,不受花粉和胚基因的影响,种子粒色能稳定遗传。  相似文献   

11.
By using RACE (rapid amplification ofcDNA ends) based homologous cloning strategy, we have successfully isolated the genomic and full-length cDNA sequences of a gene encoding typical DFR (dihydroflavonol-4-reductase) from black-seeded Brassica campestris L. var. oleifera DC.. The gene, designated BcDFR here, is 1 722bp in length and harbors 5 introns with typical splice sites of plant DFR genes. BcDFR cDNA is 1311bp in length with a 1 158bp ORF as well as a 25bp 5‘ UTR and a 128bp 3‘ UTR. The encoded BcDFR protein is 385 aa with a calculated Mw of 42.85kD and a pI value of 5.55. The nucleotide and amino acid sequences of this gene share extensive homologies to plant DFR genes of wide origins especially high similarities to Cruciferous DFR genes. Sequence analyses such as phylogenetic analysis, conserved domain search and substrate specificity region detection all indicated that BcDFR gene is a quite potentially biofunctional gene. Its cloning enables us to further dissect the possible relatedness between DFR gene and Brassica seed coat color traits and to create transgenic novel yellow-seeded rapeseed germplasm through antisense- or RNAi-suppression of DFR gene expression in black-seeded elite cultivars.  相似文献   

12.
以3对遗传背景相同的甘蓝型黄籽和黑籽油菜为材料,研究甘蓝型油菜种子发育过程中內源细胞分裂素(ZR)、各种色素、色素合成相关酶活性的动态变化及其相互关系,并以外源细胞分裂素类物质(6-BA)加以验证,结果表明,相同遗传背景下的黄籽油菜种子的ZR含量较黑籽油菜高,花后27 d比黑籽高4~5倍; 在甘蓝型黄籽油菜种子发育前期(27 d阶段)种子中细胞分裂素含量越高其成熟种子色泽就越浅; 种子的ZR含量与种皮中类黄酮、花色素、黑色素含量显著负相关,与多酚含量显著正相关,与酪氨酸酶显著负相关,与苯丙氨酸解氨酶、多酚氧化酶无显著相关性; 施用外源细胞分裂素6-BA (50 mg L–1)可显著提高黄籽油菜黄籽度,明显降低甘蓝型油菜种皮中黑色素、花色素、类黄酮含量,对黑籽种皮的多酚含量无显著影响,但可增加黄籽种皮多酚含量; 6-BA处理可降低油菜种皮中酪氨酸酶、苯丙氨酸解氨酶活性,对多酚氧化酶活性无显著影响。表明细胞分裂素可减缓甘蓝型油菜种皮各色素合成,从而影响黄籽油菜色泽;该过程可能是通过调控色素合成的相关酶活性来实现的。  相似文献   

13.
甘蓝型黄籽油菜与黑籽油菜苗期生理特性的比较研究   总被引:1,自引:0,他引:1  
油菜苗期的植株长势与抗性及后期产量密切相关。为探索甘蓝型黄籽油菜抗逆性较弱和产量较低的原因,以2对不同遗传来源的甘蓝型黄、黑籽油菜近等基因系为材料,研究了苗期植株的主要生理特性。结果表明,甘蓝型黄籽油菜苗期生长势弱,叶绿素含量和类胡萝卜素含量,光合速率和叶面积指数(LAI)均比相同遗传背景下的黑籽油菜低;与黑籽油菜相比,甘蓝型黄籽油菜无论是在不同的叶龄期,还是在植株的不同部位,均表现出“糖高氮低”的代谢特点,且越冬期叶片的硝态氮含量和硝酸还原酶活性也低;根颈粗和单株干物质重也明显小。甘蓝型黄籽油菜苗期生长势弱,冬前干物质积累偏少,进而影响其春后的生殖生长,这可能是其产量较低的重要原因之一。  相似文献   

14.
甘蓝型黄籽油菜主要品质性状间的相关性分析   总被引:2,自引:1,他引:1  
【研究目的】为探讨不同田间环境条件下,同一甘蓝型黄籽油菜基因型各品质性状之间的相关关系,【方法】以甘蓝型黄籽油菜基因型GH01为材料,研究了由播期与密度形成的9种田间环境条件下粒色及其它主要品质性状间的相关性。【结果】结果表明:黄籽度与胚含油量、种子含油量间呈明显的负相关关系(相关系数分别为r=-0.6617和r=-0.7458*),胚含油量与胚蛋白质含量、种子含油量之间仍保持着极其显著的负相关和正相关关系(相关系数分别为r=-0.9071**和r=0.8973**)。【结论】甘蓝型黄籽油菜黄籽度、种子含油量之间的相关关系随供试基因型的不同而发生变化,但另一些品质性状(含油量、蛋白质含量)间的相关关系并不因供试基因型间的差异而改变。  相似文献   

15.
甘蓝型黄籽油菜主要品质性状分析   总被引:1,自引:0,他引:1  
以不同来源的51份甘蓝型黄籽油莱种质为材料,对粒重、色泽、蛋白质、硫甙和芥酸含量等主要性状进行研究,结果表明:种质间千粒重差异大,变幅在1.54~4.76 g之间,平均为3.65 g,多数集中在3.4~3.8 g之间;影响种皮色泽的主要是黑色素和花色素;根据其含量的不同,可分为高花色素类、高黑色素类和低色素3个类群;种子颜色等级与种子含油量呈极显著的正相关,种子颜色等级与种子蛋白质含量呈极显著的负相关;种子舍油量为31.8%~46.4%,蛋白质含量为23%~34.9%,芥酸含量为0.56%~5.40%,硫甙含量为6.95%~76.43%;且种子的含油量与蛋白质含量呈极显著负相关,芥酸含量与硫甙含量呈极显著正相关,硫甙含量与含油量呈显著正相关.  相似文献   

16.
卢坤  曲存民  李莎  赵会彦  王瑞  徐新福  梁颖  李加纳 《作物学报》2015,41(11):1758-1766
类黄酮途径中,TT3编码的4-二氢黄铜醇还原酶是参与原花色素和花青素合成的关键酶。为了明确该基因可能的上游调控网络,利用黄籽母本GH06和黑籽父本ZY821构建的遗传图谱,以Bn TT3基因在高世代重组自交系群体中随机选取的94个株系花后40 d种子的表达量作为性状,采用复合区间作图法进行e QTL分析。结果共检测到5个表达量相关的e QTL,分别位于A03、A08、A09和C01染色体,单个e QTL解释表型变异的5.22%~24.05%。A09染色体上存在2个主效e QTL,单个e QTL分别解释24.05%和16.55%的表型变异,分别位于标记KS10260~KBr B019I24.15和B055B21-5~KS30880之间,微效e QTL分布于A03、A08和C01染色体上。A09染色体上的2个主效e QTL区间(包含200 kb侧翼序列)与拟南芥、白菜、甘蓝和芸薹族近缘物种基因组同源区段具有很好的共线性关系。基因注释结果表明检测到的e QTL均为trans-QTL,2个主效e QTL区段共包含78个基因,包括MYB51、MYB52和b ZIP5转录因子,可能为Bn TT3基因的上游直接调控因子,对这些基因功能的深入分析将有助于阐明甘蓝型油菜黄籽性状形成的分子调控机制,为黄籽候选基因的克隆筛选奠定基础。  相似文献   

17.
Condensed tannins (proanthocyanidins, PAs) in the seed meal of oilseed rape can potentially have a negative impact on non-ruminant livestock nutrition, particularly because of their ability to form indigestible, astringent or bitter-tasting complexes with proteins. One option to overcome this problem is the breeding of oilseed rape varieties with reduced condensed tannins in the seed coat. This might be achievable via selection of genotypes with thinner seed coats and consequently reduced condensed tannin accumulation (seed coat structural cell mutants), or alternatively by selection of genotypes with reduced biosynthesis of condensed tannins (flavonoid biosynthesis mutants). Both types of transparent testa (TT) mutants are well-characterised in Arabidopsis; however the genetic basis of the yellow-seed trait in the polyploid genome of rapeseed is still not completely understood. In this study, genetic and chemical analyses of PAs were performed in 166 doubled haploid (DH) rapeseed lines from the segregating Brassica napus doubled haploid population YE2-DH (black seed × yellow seed). Using these analyses, the relationship between seed colour and PA fractions in B. napus was investigated with a view to improving the rapeseed meal quality. Proanthocyanidin contents were estimated by vanillin and HPLC assays and the obtained values were used to identify quantitative trait loci. Closely linked molecular markers that were identified during this study for the target traits (seed colour, condensed tannins) can be valuable tools for breeding of new oilseed rape cultivars with reduced levels of antinutritive PA compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号