首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
  1. Although it is well established that human activities are linked to the loss of seagrasses worldwide, the influence of anthropogenic disturbances on the habitat fragmentation of seagrass meadows is less understood. This information is essential to identify how humans are modifying seascapes and what disturbances pose the greatest risk to seagrasses, which is pertinent given the rapid urbanization occurring in coastal areas.
  2. This study examined how the habitat fragmentation of an endangered seagrass Posidonia australis varied in relation to several anthropogenic disturbances (i.e. human population, marine infrastructure, terrestrial run-off and catchment land-usage) within 10 estuaries across 620 km of coastline in New South Wales, Australia.
  3. When comparing between estuaries, the fragmentation of P. australis meadows was significantly greater in estuaries adjacent to highly populated metropolitan centres – generally in the Greater Sydney region. At sites within estuaries, the density of boat moorings was the most important predictor of habitat fragmentation, but there was also evidence of higher fragmentation with increased numbers of jetties and oyster aquaculture leases.
  4. These results suggest that the fragmentation of seagrass meadows will become more pervasive as the human population continues to grow and estuarine development increases. Strategies to mitigate anthropogenic disturbances on seagrass meadow fragmentation could include prohibiting the construction of boat moorings and other artificial structures in areas where seagrasses are present or promoting environmentally friendly designs for marine infrastructure. This knowledge will support ongoing management actions attempting to balance coastal development and the conservation of seagrasses.
  相似文献   

3.
4.
5.
  • 1. Maintaining ecological processes that underpin the functioning of marine ecosystems requires planning and management of marine resources at an appropriate spatial scale.
  • 2. The Great Barrier Reef World Heritage Area (GBR) is the world's largest World Heritage Area (approximately 348 000 km2) and second largest marine protected area. It is difficult to inform the planning and management of marine ecosystems at that scale because of the high cost associated with collecting data. To address this and to inform the management of coastal (approximately 15 m below mean sea level) habitats at the scale of the GBR, this study determined the presence and distribution of seagrass by generating a Geographic Information System (GIS)‐based habitat suitability model.
  • 3. A Bayesian belief network was used to quantify the relationship (dependencies) between seagrass and eight environmental drivers: relative wave exposure, bathymetry, spatial extent of flood plumes, season, substrate, region, tidal range and sea surface temperature. The analysis showed at the scale of the entire coastal GBR that the main drivers of seagrass presence were tidal range and relative wave exposure. Outputs of the model include probabilistic GIS‐surfaces of seagrass habitat suitability in two seasons and at a planning unit of cell size 2 km×2 km.
  • 4. The habitat suitability maps developed in this study extend along the entire GBR coast, and can inform the management of coastal seagrasses at an ecosystem scale. The predictive modelling approach addresses the problems associated with delineating habitats at the scale appropriate for the management of ecosystems and the cost of collecting field data. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

6.
  1. Identification, protection and enhancement of essential habitats are priority issues for management and restoration of exploited species. The shores utilized by Asian horseshoe crabs as nurseries were surveyed and the coastal habitat characteristics were described in the northern Beibu Gulf of China. Regression models were applied to explore species‐habitat relationships.
  2. Fourteen and ten nursery sites were identified for Tachypleus tridentatus and Carcinoscorpius rotundicauda populations, respectively. Xiacun and Jinhaiwan in the eastern region of the northern Beibu Gulf were the essential nurseries for T. tridentatus, whereas Shanxin and Jiaodong in the western part were the primary nursery shores for C. rotundicauda. These shores supported high densities (4–6 individuals/100 m2) of juvenile horseshoe crab populations.
  3. Mangrove and seagrass coverage area, coupled with sediment physico‐chemical parameters, particularly grain size, and the environmental heterogeneity of nursery habitats explained the distribution pattern of juvenile populations. Most juvenile populations were found along the outer fringe of mangroves in the small shallow estuary, particularly near outflows of tidal creeks with generally higher chlorophyll a and organic carbon contents. The distribution of high‐density juvenile populations of both species also overlapped with areas of seagrass patches.
  4. These findings highlight the importance of mangroves and seagrasses in the nursery habitat use of Asian horseshoe crabs. Preserving the estuarine habitats with these vegetation types and identifying the high‐use nursery sites should be prioritised in China and other Asian places to conserve the declining Asian horseshoe crab populations.
  相似文献   

7.
  • 1. Knowledge about processes and dynamics underlying organic matter accumulation in transitional waters is crucial for the protection of these ecologically important coastal habitats. This study investigated the relationship between large particle accumulation and decomposition in a coastal lake included in a Site of Community Interest (SCI) using sediment trap and litterbag techniques.
  • 2. Two sets of sediment traps were deployed at five sites along the longitudinal axis of the lake. One set was emptied once a month for 12 months, and the other twice a year. The contents of the monthly and the 6‐monthly traps and the superficial sediments were then compared to estimate the organic matter accumulation and loss. To determine the mass loss rate of the three major allochthonous sources of detritus (the reed Phragmites australis, the cordgrass Spartina juncea, and the seagrass Posidonia oceanica), litterbags were placed near the sediment traps at three out of the five sites at the beginning of each 6‐month period and retrieved monthly.
  • 3. The amount of annual particulate organic matter (POM) deposition in the traps was 1320.2±58.5 g m?2 y?1 and consisted of 25% large particles (CPOM). Allochthonous litter comprised an important fraction of CPOM, and its breakdown rate changed with the plant species, site and season. Loss rate of CPOM accumulated at the lake bottom was significantly related with the mass loss rate of reed and cordgrass litter, but not with that of seagrass.
  • 4. Due to slow litter breakdown and tidal landward advection, the lake acted as a sediment trap for allochthonous matter, especially from Posidonia. The important role of marine‐derived litter in organic matter sedimentation suggests addressing conservation strategies of the lake functioning towards the selective control of allochthonous CPOM inputs, in particular at the mouth where the incoming tide brings suspended material and salinity decelerates matter flow to the sea and decomposition. This study supports the hypothesis that sedimentation and decomposition dynamics are important factors for coastal lake evolution, and shows litterbag and sediment trap techniques as simple useful investigation tools in management strategies aiming at conserving transitional waters.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
9.
10.
  • 1. The conservation of highly mobile and migratory species remains one of the most serious challenges to resource managers.
  • 2. Intense mortality of immature green turtles has been identified at principal developmental–feeding habitats in Baja California, and is considered a great threat to the stability of the eastern Pacific population. Thus, coastal lagoons of the Baja California peninsula, such as Bahía Magdalena, have been identified as high priority areas for their protection.
  • 3. Conservation efforts to date have focused on creating a sea turtle refuge in the northwestern part of the bay, but this area may not be sufficient for protecting all of the critical feeding areas used by green turtles.
  • 4. The diet of green turtles was investigated through analysis of digestive tract contents from 24 green turtles that were drowned incidentally in fishing nets at feeding grounds in Bahía Magdalena and adjacent areas along the Pacific coast of the Baja California peninsula, Mexico.
  • 5. Mean straight carapace length (SCL) differed significantly between localities: mean: 55.5 cm (range: 47.7–76.9 cm, n=11) in Bahía Magdalena; mean: 67.7 >cm (range: 49–87 cm, n=11) in adjacent coastal waters.
  • 6. Green turtle diet consisted largely of marine algae and seagrasses, but food items varied spatially. The red algae Gracilaria pacifica, Gracilariopsis lemaneiformis and Hypea johnstonii were the most abundant diet items inside Bahía Magdalena, and the seagrass Phyllospadix torreyi was the most commonly ingested food in coastal areas outside of the bay.
  • 7. Results indicate that green turtles utilize spatially distinct foraging habitats within this region. Therefore, it is recommended that any design of protected areas for sea turtles in Bahía Magdalena should consider a regional approach instead of a local approach, taking into account the most important feeding areas used by green turtles at different life stages.
Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
12.
  • 1. The European Water Framework Directive (WFD) requires that Member States differentiate the transitional water bodies into types.
  • 2. WFD assigns coastal lagoons to two different water categories, ‘transitional waters’ and ‘coastal waters’ on the basis of freshwater influence.
  • 3. The main physical factors that contribute to the genesis and characterization of coastal lagoons are coastal typology, tidal range and climate.
  • 4. Italian lagoons are presented as an example of how these physical factors can be used in coastal lagoon characterization and typology. On this basis, a clear distinction of Italian lagoons into two main groups is possible: Northern Adriatic and Mediterranean.
  • 5. Large lagoons can be profitably subdivided into a hierarchical system of sub‐basins facilitating both the comparison of parts of the same lagoon and the comparison between different lagoons.
  • 6. The basins are consistent water bodies that can be used as managerial units for environmental conservation, species protection and wise use of resources.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
  • 1. Habitat loss and habitat fragmentation are usually correlated while habitat degradation may occur independently of them. Natural and anthropogenic disturbances increase the spatial fragmentation of seagrass meadows with unknown consequences on the vegetative development achieved by seagrass.
  • 2. Cover and spatial fragmentation of Thalassia testudinum meadows in three coral reef lagoons of the Veracruz Reef System,VRS (SW Gulf of México) were quantified by analysing low‐altitude images acquired by photographic and digital video cameras from a helium‐filled blimp. Spatial fragmentation was quantified as the ratio of the length of meadow edge to meadow area. The number of blowouts (erosive gaps in seagrass meadows) was also recorded.
  • 3. Meadow cover was negatively correlated with the length of meadow edge to meadow area ratio. The number of blowouts per ha of T. testudinum meadow was negatively correlated with meadow cover and positively with the length of meadow edge to meadow area ratio. Wave exposure is probably a main component of the processes determining the cover and spatial fragmentation of T. testudinum meadows in VRS.
  • 4. Low cover and high spatial fragmentation of T. testudinum meadows in VRS are associated with low vegetative development of this seagrass species. Copyright © 2011 John Wiley & Sons, Ltd.
  相似文献   

14.
15.
16.
An Erratum has been published for this article in Aquatic Conservation: Marine and Freshwater Ecosystems 12(2), 2002 577
  • 1. This research extends techniques of predictive mapping from their application in terrestrial environments to marine landscapes by investigating the relationship between seagrass and hydrodynamics in Core Sound, North Carolina, USA.
  • 2. An empirically derived logistic multiple regression model and a Boolean logic suitability model were used to produce several predictive map products, including: susceptibility of seagrasses to storms, probability of seagrass cover, and suitability of areas for restoration of seagrasses. A visual comparison between these maps and conventional seagrass polygon maps allows for a discussion of ‘field’ versus ‘object’ mapping, and the ramifications for management based on different cartographic techniques.
  • 3. The predictive method used here showed that only a small portion (19%) of the seagrass bed in the study area would be expected to have a high probability of seagrass coverage. The majority of the seagrass habitat in the study area was predicted to have less than 50% probability of seagrass cover. In addition, 16% of the nearly 2000 ha of seagrass within the study area were predicted to be highly susceptible to acute storm events. Moreover, using a conservative set of site selection criteria, only 7% of the study area encompassed by seagrass habitat was predicted to have a high probability of successful restoration if injured.
  • 4. This method provides for an inexpensive way to scale‐up from high‐resolution data to a coarser scale that is often required for conservation and management.
Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
  1. Seagrasses such as Zostera marina L. play a key role in coastal ecosystems because of the ecological goods and services that they provide, enhancing biodiversity, productivity and carbon sequestration. Despite their ecological relevance, their distribution is, to date, insufficiently documented and it is estimated that only one‐quarter of their global extent is mapped.
  2. This study aims to develop a new method to accurately detect and map subtidal seagrass meadows, using Irish seagrass populations as a case study. This method consists of four steps: (i) the development of a species distribution model (SDM); (ii) the use of satellite‐derived images to visually appraise the potential presence and extent of seagrass beds; (iii) field surveys to validate the presence or absence of the seagrass; and finally (iv) the construction of an up‐to‐date detailed map of the seagrass distribution for the region under investigation.
  3. Results indicate that along the Irish coast, and in western regions in particular, the actual distribution of seagrass is considerably greater than is currently reported. Using the proposed method, 16 new regions occupied by seagrass in areas of interest in County Galway (Kilkieran Bay, Bertraghboy Bay, and Chasla Bay) were identified, accounting for a total of 267.92 ha, which increased the previously documented distribution in this area by 44.74%.
  4. In this study, we demonstrate the potential of this novel method to efficiently identify and map undocumented subtidal seagrass meadows. As seagrass habitats are under threat globally, the development of new mapping strategies is a critical contribution to current international efforts in seagrass monitoring and management.
  相似文献   

18.
  • 1. The objectives of the present study were to describe and analyse the composition and structure of aquatic Coleoptera and Hemiptera assemblages in three coastal lagoons of north‐western Spain during a one year cycle, in order to evaluate their relative adequacy to provide information about the conservation value of lagoonal habitats and sites. The lagoons are designated as Special Areas of Conservation (SAC) under the European Union Habitats Directive and two of them are also protected by the Ramsar Agreement. Several abiotic variables, including salinity, were recorded at the time of sampling.
  • 2. In total, 67 species (52 Coleoptera and 15 Hemiptera) and 6568 adult individuals (2664 Coleoptera and 3904 Hemiptera) were collected. In all pair‐wise comparisons Kendall's coefficients of concordance between lagoons were higher for Hemiptera than for Coleoptera, indicating that Hemiptera assemblages were more similar across sites.
  • 3. Most species recorded had a wide Palearctic distribution and only three species of water beetles could be considered endemic to Iberia: Hydroporus vagepictus, Hydroporus vespertinus and Hydrochus angusi. Similarly, the species collected had a widespread distribution in the Iberian Peninsula as the only species considered to be rare taxa at this scale were Hydrochus angusi and Cymbiodyta marginella among the Coleoptera and Sigara scotti and Notonecta glauca glauca among the Hemiptera.
  • 4. The results do not support the idea of distinct aquatic insect assemblages for coastal lagoons in the Iberian Peninsula. Comparisons of the numbers of interior (non‐coastal) and coastal provinces of the Iberian Peninsula where the species had been recorded showed they had been recorded in a larger proportion of interior provinces.
  • 5. Salinity seemed to reduce species richness in both groups while the results of a canonical correspondence analysis (CCA) showed that the majority of species responded negatively to salinity.
  • 6. This study suggests that species richness and rarity of aquatic insect assemblages may underestimate the conservation value of lagoonal habitats because their net contribution to catchment biodiversity is likely to be low.
Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
1. In the Gulf of Aqaba (GoA), coral reefs are considered the dominating ecosystem, while seagrass meadows, recognized worldwide as important ecosystems, have received little attention. Absence of comprehensive seagrass maps limits awareness, evaluations of associated ecosystem services, and implementation of conservation and management tools. 2. Presented here are the first detailed maps of seagrass meadows along the Israeli coast of the northern GoA. Mapping was performed by snorkelling along transects perpendicular to the shore above meadows growing at 15–25 m. Measurements along these transects included position, meadow depth and visual estimations of seagrass cover. Shallow boundaries of meadows, parallel to shore, were recorded by GPS tracking. Supplementary work included drop‐camera boat surveys to determine the position of the deeper edge of meadows. In addition, GIS layers were created that indicated shoreline infrastructures, near‐shore human activities and potential pollution threats. Ecosystem services of seagrass meadows mapped were valuated using a benefit transfer approach. 3. In total, 9.7 km of the 11 km shoreline were surveyed and 2830 data points collected. Seagrasses were growing along 7.5 km of the shoreline, with shallow (15–25 m) meadows found to cover an area of 707 000 m2 and valued at more than US$ 2 000 000 yr‐1 in associated ecosystem services. Pilot drop‐camera surveys (additional 283 data points) indicated that meadows can extend down to 50 m in some places. Coastal uses and threats varied in character and location. A municipality runoff point and drainage canal located close to the largest meadow were identified as the main threats to local seagrasses. 4. These low‐cost methods enhance our understanding of seagrass distribution in the northern GoA. They demonstrate a GIS‐based tool for assessing how environmental changes might affect the cover and state of seagrasses, improving efforts to conserve seagrass, and have particular relevance to seagrass mapping in developing countries and/or island nations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
  • 1. Aerial photograph classification was used to map perennial thick canopy seagrass presence/absence over a large area (85 km2) off the coast of Western Australia. Within those areas mapped as seagrass, a geostatistical nonparametric interpolation method was applied to map the probability of seagrass species presence from underwater tow video. Multiple species mixtures were mapped at fixed probability thresholds of 0.95, 0.75, 0.50, and 0.25. Taxa included Amphibolis spp., Posidonia coriacea, P. sinuosa, P. australis and ephemeral species (Halophila and Zostera tasmanica (newly named as Heterozostera polychlamys)).
  • 2. The most commonly occurring species were respectively Amphibolis spp., Posidonia coriacea, P. sinuosa, P. australis, and the ephemeral species. Amphibolis, P. coriacea, and the ephemeral species were mapped predominantly as mixed assemblages (71–89% mixed), whereas P. sinuosa and P. australis were typically mapped as single species.
  • 3. Different species growth habits led to distinctive differences in large area distributions. All species were highly variable over short distances (<500 m), and spatial dependence persisted over more than 5 km. However, Posidonia sinuosa meadows were oriented with the longest axis running north–south, and a shorter axis running east–west perpendicular to the coastline (spatial dependence to 2.8 km and 0.8 km, respectively). The ephemeral species were less successfully mapped, largely owing to the potentially different growth patterns of the grouped species, and because their full extent could not be captured by the aerial photograph classification.
  • 4. The individual biology of each species results in unique landscape features where Posidonia sinuosa forms larger continuous and predominantly monospecific meadows, whereas the more common Amphibolis and P. coriacea form multi‐species patchy meadows. These mapped features suggest that the emergence of species patterns in seagrass landscapes is influenced by differences in clonal growth among seagrass species.
  • 5. Probabilistic species mapping provided information unavailable from discretely classified maps, and facilitates targeted sampling for improving map accuracy, and for more realistically evaluating species and mixed species distribution predictions. The kriging approach, although not well suited for all types of vegetation data, performed well for clonal seagrasses.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号