首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When highly pathogenic avian influenza H5N1 (HPAI H5N1) arrived at Lake Constance in February 2006, little was known about its ecology and epidemiology in wild birds. In order to prevent virus transmission from wild birds to poultry, the adjacent countries initiated the tri-national, interdisciplinary research program ?Constanze? to investigate avian influenza infections in water birds at Lake Constance. In collaboration with government agencies scientists examined the prevalence of AI virus in the region of Lake Constance for a period of 33 months, compared the effectiveness of different surveillance methods and analysed the migration behaviour of water birds. Although virus introduction from regions as far as the Ural Mountains seemed possible based on the migration behaviour of certain species, no influenza A viruses of the highly pathogenic subtype H5N1 (HPAIV) was found. However, influenza A viruses of different low pathogenic subtypes were isolated in 2.2 % of the sampled birds (swabs). Of the different surveillance methods utilised in the program the sampling of so called sentinel birds was particularly efficient.  相似文献   

2.
Objective   To identify and gain an understanding of the influenza viruses circulating in wild birds in Australia.
Design   A total of 16,303 swabs and 3782 blood samples were collected and analysed for avian influenza (AI) viruses from 16,420 wild birds in Australia between July 2005 and June 2007. Anseriformes and Charadriiformes were primarily targeted.
Procedures   Cloacal, oropharyngeal and faecal (environmental) swabs were tested using polymerase chain reaction (PCR) for the AI type A matrix gene. Positive samples underwent virus culture and subtyping. Serum samples were analysed using a blocking enzyme-linked immunosorbent assay for influenza A virus nucleoprotein.
Results   No highly pathogenic AI viruses were identified. However, 164 PCR tests were positive for the AI type A matrix gene, 46 of which were identified to subtype. A total of five viruses were isolated, three of which had a corresponding positive PCR and subtype identification (H3N8, H4N6, H7N6). Low pathogenic AI H5 and/or H7 was present in wild birds in New South Wales, Tasmania, Victoria and Western Australia. Antibodies to influenza A were also detected in 15.0% of the birds sampled.
Conclusions   Although low pathogenic AI virus subtypes are currently circulating in Australia, their prevalence is low (1.0% positive PCR). Surveillance activities for AI in wild birds should be continued to provide further epidemiological information about circulating viruses and to identify any changes in subtype prevalence.  相似文献   

3.
Vaccination against avian influenza (AI) infections caused by viruses of the H5 and H7 subtypes has been used in several occasions in recent years with the general objective of controlling and in some cases eradicating the disease. To contain AI infections effectively, vaccination should only be used as part of a comprehensive control strategy that also includes biosecurity, quarantine, surveillance, education, and elimination of infected and at-risk poultry. Although properly used, potent AI vaccines can prevent disease and death, increase resistance to infection, reduce virus replication and shedding, and reduce viral transmission, they cannot completely prevent AI virus replication. A wide variety of vaccines against AI has been developed and tested in experimental conditions, but only inactivated whole AI virus vaccines and recombinant H5-AI vaccines have been licensed and widely used in various countries. AI vaccination programmes should be adapted to local conditions to guarantee efficacy and sustainability. In particular, vaccination programmes should be modulated in diverse situations according to the virus strain involved, the characteristics of the poultry producing sector, the capacity of the veterinary infrastructure, and the availability of adequate resources. Based on the eco-epidemiological situation in the affected region/area/compartment and the assessment of the risk of AI introduction, different vaccination strategies could be implemented to control AI: (i) routine vaccination performed in endemic areas; (ii) emergency vaccination in the face of an epidemic; and (iii) preventative vaccination carried out whenever a high risk of virus incursion is identified.  相似文献   

4.
In the light of experience gained with avian influenza (AI) outbreaks in Europe and elsewhere in the world, the European Union (EU) legislation has recently been updated. The strategy to control the introduction and spread of AI relies on rapid disease detection, killing of infected birds, movement restrictions for live birds and their products, cleaning and disinfection and vaccination. Measures are not only to be implemented in case of outbreaks of highly pathogenic AI (HPAI), but are now also directed against occurrence of low pathogenic AI of H5 and H7 (LPAI) subtypes in poultry, albeit in a modified manner proportionate to the risk posed by these pathotypes. Enhanced surveillance in poultry holdings and wild birds, as well as preventive vaccination, has also been introduced. EU Measures are flexible and largely based on risk assessment of the local epidemiological situation. The occurrence of HPAI H5N1 of the Asian lineage in the EU and its unprecedented spread by wild migratory birds necessitated the adoption of additional control measures. Although HPAI H5N1 has affected wild birds and poultry holdings in several EU Member States, EU legislation and its implementation in Member States has so far successfully limited the impact of the disease on animal and human health.  相似文献   

5.
Although it is well accepted that the present Asian H5N1 panzootic is predominantly an animal health problem, the human health implications and the risk of human pandemic have highlighted the need for more information and collaboration in the field of veterinary and human health. H5 and H7 avian influenza (AI) viruses have the unique property of becoming highly pathogenic (HPAI) during circulation in poultry. Therefore, the final objective of poultry vaccination against AI must be eradication of the virus and the disease. Actually, important differences exist in the control of avian and human influenza viruses. Firstly, unlike human vaccines that must be adapted to the circulating strain to provide adequate protection, avian influenza vaccination provides broader protection against HPAI viruses. Secondly, although clinical protection is the primary goal of human vaccines, poultry vaccination must also stop transmission to achieve efficient control of the disease. This paper addresses these differences by reviewing the current and future influenza vaccines and vaccination strategies in birds.  相似文献   

6.
Wildlife surveillance was conducted for influenza viruses in conjunction with the 1983-84 lethal H5N2 avian influenza epizootic in domestic poultry in Pennsylvania, New Jersey, Maryland, and Virginia. Virus-isolation attempts made on cloacal and tracheal swabs from 4,466 birds and small rodents within the quarantined areas and 1,511 waterfowl in nearby Maryland yielded only a single H5N2 isolate from a pen-raised chukar in Pennsylvania. Antibodies against hemagglutinin type 5 and/or neuraminidase type 2 were found in 33% of the aquatic birds tested; however, this finding could not be used to confirm previous H5N2 avian influenza virus activity because of the possibility of prior infections with multiple influenza subtypes. The low prevalence of lethal H5N2 avian influenza virus in wild birds and small rodents strongly indicated that these animals were not responsible for dissemination of the disease among poultry farms during the outbreak.  相似文献   

7.
A review of avian influenza in different bird species   总被引:6,自引:0,他引:6  
Only type A influenza viruses are known to cause natural infections in birds, but viruses of all 15 haemagglutinin and all nine neuraminidase influenza A subtypes in the majority of possible combinations have been isolated from avian species. Influenza A viruses infecting poultry can be divided into two distinct groups on the basis of their ability to cause disease. The very virulent viruses cause highly pathogenic avian influenza (HPAI), in which mortality may be as high as 100%. These viruses have been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. All other viruses cause a much milder, primarily respiratory disease, which may be exacerbated by other infections or environmental conditions. Since 1959, primary outbreaks of HPAI in poultry have been reported 17 times (eight since 1990), five in turkeys and 12 in chickens. HPAI viruses are rarely isolated from wild birds, but extremely high isolation rates of viruses of low virulence for poultry have been recorded in surveillance studies, giving overall figures of about 15% for ducks and geese and around 2% for all other species. Influenza viruses have been shown to affect all types of domestic or captive birds in all areas of the world, but the frequency with which primary infections occur in any type of bird depends on the degree of contact there is with feral birds. Secondary spread is usually associated with human involvement, probably by transferring infective faeces from infected to susceptible birds.  相似文献   

8.
9.
Zoonotic agents challenging the world every year afresh are influenza A viruses. In the past, human pandemics caused by influenza A viruses had been occurring periodically. Wild aquatic birds are carriers of the full variety of influenza virus A subtypes, and thus, most probably constitute the natural reservoir of all influenza A viruses. Whereas avian influenza viruses in their natural avian reservoir are generally of low pathogenicity (LPAIV), some have gained virulence by mutation after transmission and adaptation to susceptible gallinaceous poultry. Those so-called highly pathogenic avian influenza viruses (HPAIV) then cause mass die-offs in susceptible birds and lead to tremendous economical losses when poultry is affected. Besides a number of avian influenza virus subtypes that have sporadically infected mammals, the HPAIV H5N1 Asia shows strong zoonotic characteristics and it was transmitted from birds to different mammalian species including humans. Theoretically, pandemic viruses might derive directly from avian influenza viruses or arise after genetic reassortment between viruses of avian and mammalian origin. So far, HPAIV H5N1 already meets two conditions for a pandemic virus: as a new subtype it has been hitherto unseen in the human population and it has infected at least 438 people, and caused severe illness and high lethality in 262 humans to date (August 2009). The acquisition of efficient human-to-human transmission would complete the emergence of a new pandemic virus. Therefore, fighting H5N1 at its source is the prerequisite to reduce pandemic risks posed by this virus. Other influenza viruses regarded as pandemic candidates derive from subtypes H2, H7, and H9 all of which have infected humans in the past. Here, we will give a comprehensive overview on avian influenza viruses in concern to their zoonotic potential.  相似文献   

10.
11.
Newcastle disease (ND) and avian influenza (AI) are two of the most important zoonotic viral diseases of birds throughout the world. These two viruses often have a great impact upon the poultry industry. Both viruses are associated with transmission from wild to domestic birds, and often display similar signs that need to be differentiated. A rapid surveillance among wild and domestic birds is important for early disease detection and intervention, and is the basis for what measures should be taken. The surveillance, thus, should be able to differentiate the diseases and provide a detailed analysis of the virus strains. Here, we described a fast, simultaneous and inexpensive approach to the detection of Newcastle disease virus (NDV) and avian influenza virus (AIV) using oligonucleotide microarrays. The NDV pathotypes and the AIV haemagglutinin subtypes H5 and H7 were determined at the same time. Different probes on a microarray targeting the same gene were implemented in order to encompass the diversified virus strains or provide multiple confirmations of the genotype. This ensures good sensitivity and specificity among divergent viruses. Twenty-four virus isolates and twenty-four various combinations of the viruses were tested in this study. All viruses were successfully detected and typed. The hybridization results on microarrays were clearly identified with the naked eyes, with no further imaging equipment needed. The results demonstrate that the detection and typing of multiple viruses can be performed simultaneously and easily using oligonucleotide microarrays. The proposed method may provide potential for rapid surveillance and differential diagnosis of these two important zoonoses in both wild and domestic birds.  相似文献   

12.
Avian influenza (AI) is a listed disease of the World Organisation for Animal Health (OIE) that has become a disease of great importance both for animal and human health. Until recent times, AI was considered a disease of birds with zoonotic implications of limited significance. The emergence and spread of the Asian lineage highly pathogenic AI H5N1 virus has dramatically changed this perspective; not only has it been responsible of the death or culling of millions of birds, but this virus has also been able to infect a variety of non-avian hosts including human beings. The implications of such a panzootic reflect themselves in animal health issues, notably in the reduction of a protein source for developing countries and in the management of the pandemic potential. Retrospective studies have shown that avian progenitors play an important role in the generation of pandemic viruses for humans, and therefore these infections in the avian reservoir should be subjected to control measures aiming at eradication of the Asian H5N1 virus from all sectors rather than just eliminating or reducing the impact of the disease in poultry. Collection and analysis of information in a transparent environment and close collaboration between the medical and veterinary scientific community are crucial to support the global AI crisis.  相似文献   

13.
14.
This study aimed to investigate the prevalence of influenza A viruses in birds and humans residing in the same localities of Sharkia Province, Egypt and the risk factors' assessment in poultry farms. A total of 100 birds comprised of 50 chickens, 25 ducks and 25 wild egrets were sampled. Swab samples were collected from 65 people (50 poultry farm workers and 15 hospitalized patients). All samples were screened for the presence of influenza A viruses using isolation and molecular assays. Avian influenza viruses were only detected in chicken samples (18%) and molecularly confirmed as subtype H5. The infection rate was higher in broilers (40%) than layers (8.6%). Influenza A (H1) pdm09 virus was detected in a single human case (1.54%). All the isolated AI H5 viruses were clustered into clade (2.2.1.2) and shared a high similarity rate at nucleotides and amino acid levels. In addition, they had a multi-basic amino acid motif (ـــPQGEKRRKKR/GLFـــ) at the H5 gene cleavage site that exhibited point mutations. Chicken breed, movement of workers from one flock to another, lack of utensils' disinfection and the introduction of new birds to the farm were significant risk factors associated with highly pathogenic AI H5 virus infection in poultry farms (p ≤ 0.05). Other factors showed no significant association. The HPAI H5 viruses are still endemic in Egypt with continuous mutation. Co-circulation of these viruses in birds and pdm09 viruses in humans raises alarm for the emergence of reassortant viruses that are capable of potentiating pandemics.  相似文献   

15.
低致病性禽流感主要是由H9N2亚型禽流感病毒所引起,近几年在世界上许多国家都暴发了H9N2亚型禽流感疫情.研究表明,H9N2亚型禽流感病毒在陆禽中至少可分为北美和欧亚两个种系,该病毒在自然环境中很容易发生变异,通过混合基因组分而形成不同的病毒亚型.H9N2亚型禽流感病毒已经能传播至哺乳动物,包括猪和人类,从而引发对其是...  相似文献   

16.
AIM: To determine if migratory birds arriving in New Zealand in the Southern Hemisphere spring of 2004 were infected with the highly pathogenic avian influenza (AI) virus, H5N1.

METHODS: Cloacal and faecal samples were collected from migratory red knots following their arrival in New Zealand in October 2004. Two species of resident sympatric birds, wrybill and mallard duck, were sampled prior to, and following, the arrival of migratory birds.

RESULTS: No AI viruses were isolated from migratory or resident shorebirds. Non-pathogenic AI viruses were isolated from six resident mallard ducks, comprising the endemic subtypes H4 (n=2), H7 (non-pathogenic), H10, and H11 (n=2).

CONCLUSIONS: Highly pathogenic AI H5N1 virus was not detected in migratory shorebirds or sympatric water birds in the Firth of Thames, New Zealand, in 2004-2005, despite the possible proximity of migratory birds to outbreaks of the disease in East Asia in 2004.  相似文献   

17.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

18.
During the latter stages of the lethal H5N2 influenza eradication program in domestic poultry in Pennsylvania in 1983-84, surveillance of waterfowl was done to determine if these birds harbored influenza viruses that might subsequently appear in poultry. From late June to November 1984, 182 hemagglutinating viruses were isolated from 2043 wild birds, primarily ducks, in the same geographical area as the earlier lethal H5N2 avian influenza outbreak. The virus isolates from waterfowl included paramyxoviruses (PMV-1, -4, and -6) and influenza viruses of 13 antigenic combinations. There was only one H5N2 isolate from a duck. Although this virus was antigenically related to the lethal H5N2 virus, genetic and antigenic analysis indicated that it could be discriminated from the virulent family of H5N2 viruses, and it did not originate from chickens. Many of the influenza viruses obtained from wild ducks were capable of replicating in chickens after experimental inoculation but did not cause disease. These studies show that many influenza A virus strains circulating in waterfowl in the vicinity of domestic poultry in Pennsylvania did not originate from domestic poultry. These influenza viruses from wild ducks were capable of infecting poultry; however, transmission of these viruses to poultry apparently was avoided by good husbandry and control measures.  相似文献   

19.
Outbreaks of H7N9 avian influenza in humans in 5 provinces and 2 municipalities of China have reawakened concern that avian influenza viruses may again cross species barriers to infect the human population and thereby initiate a new influenza pandemic. Evolutionary analysis shows that human H7N9 influenza viruses originated from the H9N2, H7N3 and H11N9 avian viruses, and that it is as a novel reassortment influenza virus. This article reviews current knowledge on 11 subtypes of influenza A virus from human which can cause human infections.  相似文献   

20.
Public health risk from avian influenza viruses   总被引:9,自引:0,他引:9  
Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号