首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Hailu Tefera  W.E. Peat 《Euphytica》1997,96(2):185-191
Quantitative genetics of grain yield and other agronomic characters of t'ef (Eragrostis tef) were studied using the F1, F2, BC1, and BC2 of the cross Fesho × Kay Murri. The study was carried out to estimate gene effects controlling the inheritance of grain yield and related agronomic characters. Significant additive [d] and dominance × dominance [l] interaction effects were detected for grain yield. The variations of yield per panicle and panicle weight were explained in terms of [d], dominance [h], and additive × additive [i] interactions. Non-allelic gene interactions were also detected for kernel weight, harvest index, tiller number, plant height, days to heading and days to maturity. The simple additive-dominance model explained the variation for panicle length, culm diameter and plant weight, allowing unbiased estimates of additive (D) and dominance (H) variance components. Large dominance variances (H) were estimated for grain yield, yield per panicle, and panicle weight. The additive variances for plant height, panicle length, days to heading and days to maturity were higher than the respective dominance variances. High narrow-sense heritability (h2) values (> 0.50) were estimated for plant height, panicle length, days to heading and days to maturity. The lowest h2 (0.09) was obtained for kernel weight for which there was little variability. Since grain yield and several important agronomic characters of t'ef are influenced by non-allelic gene interaction, it is advisable to delay selection for yield to later generations with increased homozygosity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Three populations of winter wheat were formed by crossing Avrora to Sage, TAM W-101, and Danne. Approximately 10% of the F2 plants from these crosses were selected for high and low levels of number of tillers per plant, number of kernels per spike, 1000-kernel weight, and grain yield. Forty-eight solid seeded F3 lines obtained from the selected F2 plants were then selected for high and low expressions of yield components and grain yield. Realized heritabilities were estimated. Indirect responses of yield to yield component selection and direct response to selection for grain yield were measured. Heritabilities were low for tiller number, number of kernels per spike and kernel weights but were high or intermediate for grain yield when selection occurred in the F2 generation. When selection was practiced in the F3 generation, heritabilities for tiller number and yield were low, but were intermediate to high for number of kernels per spike and kernel weight and high heritabilities were found for kernel weight. Selection for kernel weight often increased grain yield; however, direct selection for grain yields was usually as effective.Journal article no. J-4488 of the Oklahoma Agri. Exp. Stn., Stillwater, Oklahoma 74074.  相似文献   

3.
Summary The inheritance of protein content in rice was studied in the six possible hybrid populations among four varieties: Calrose from the USA, Ku Jung Do from Korea, and Kitaminori and Isao Mochi from Japan. Each population consisted of 100 random lines.Standard unit heritabilities for the correlation of F2 panicle values with F3 hill-plot protein values were not significantly different from zero, and variance component heritabilities for F3 hill-plots were low. Among the F3 populations significant genetic variation for protein content was observed in the crosses of Ku Jung Do × Calrose, and Kitaminori × Calrose. Genotypic, phenotypic, and environmental estimates of correlations among protein content, kernel weight, heading date, and plant height were examined. High protein content was significantly correlated with light kernels, early heading, and short stature.Low protein heritabilities were tentatively attributed to genotype × year interaction, to an environmental gradient affecting protein content in the field, and to within-line segregation for the early generations tested. It was suggested that selection for protein content be deferred until later generations. However, selection for high protein content may in some cases be incompatible with selection objectives for other traits.  相似文献   

4.
M.A. Rahman  M.S. Saad 《Euphytica》2000,114(1):61-66
Inheritance of yield and yield contributing characters were investigated using generation mean analysis, utilising the means of six basic populations viz., P1, P2, F1, F2, BC1P1 and BC1P2 in four crosses of Vigna sesquipedalis. The analysis reiterated that the importance of dominance (h) gene effects for pod yield/plant and pods/plant as compared to additive (d) gene effects. However, significant and positive additive effects were noticed for pod yield/plant, pods/plant, pod weight and seed weight in different crosses. The three types of gene interactions (additive, dominance and epistasis) were significantly involved for pods/plant in cross KU 7 ×KU 8. Among the digenic epistatic interactions, both additive ×additive (i) and dominance × dominance (l) contributed more for pod yield/plant and pods/plant, however, it varied among the crosses. Populations having earliness can be developed as indicated by reducing dominance effects. Pedigree selection and heterosis breeding is suggested to exploit the fixable and non fixable components of variation respectively in Vigna sesquipedalis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
E. E. Mahdy 《Plant Breeding》1988,101(3):245-249
The breeding materials used in this study were the F3, F4 and F5-generations of the cross between Giza 158 × Sonora 64 (Triticum aestivum L.). The objective of this study was to compare the relative merits of Smith-Hazel, desired gain selection indices, independent culling levels and single trait selection in improving grain yield, heading date and several agronomic traits. Highly significant differences among F3 families and a satisfactory genotypic coefficient of variability were obtained for all the traits studied. The genotypic correlations were high between yield and each of spike weight, kernels/spike and spikes; plant, intermediate with 1000 kernel weight and very low with heading date, plant height and spike1 length-After two cycles of selection, the results of the gains realized indicated that the most effective method for improving yield was the Smith-Hazel index (SH7) of seven traits followed by the desired gain index of seven traits (DG7), SH5, independent culling levels, DG5 and direct selection (or grain yield/plant. Direct selection for heading date, plant height and spike length was the best method for improving these traits, but undesirable correlated responses in the other traits were obtained.  相似文献   

6.
Selection for biomass yield in wheat   总被引:2,自引:0,他引:2  
R. C. Sharma 《Euphytica》1993,70(1-2):35-42
Summary Biomass (above ground plant parts) yield may be a useful selection trait for yield improvement in wheat (Triticum aestivum L.). This study was conducted to estimate realized heritability of biomass yield and to determine the response to selection for high and low biomass yield in 8 genetically diverse populations of spring wheat under two production systems. Selections were made among the F3 lines. Progenies of the selected lines were evaluated in replicated field tests in the F4 generation under high fertility and low fertility production systems at Rampur, Nepal, in 1991. Fertility level had a significant effect on biomass yield, grain yield, effective tiller number, number of kernels per spike, thousand kernel weight, and harvest index. Selection in the F3 for high and low biomass yield was effective in identifying F4 lines with high and low biomass yield, respectively. Biomass yield differences between high and low selection groups in the F4 generation, expressed as percent of the mean of the low selection group and averaged over the eight populations, were 53.9 and 36.5% higher than the mean of the low selection group under the high and the low fertility production systems, respectively. The corresponding figures for grain yield were 48.8 and 34.9% under the high and the low production systems, respectively. Also, selection for high biomass yield resulted in higher effective tiller number, and number of kernels per spike, but lower harvest index. Realized heritability estimates for biomass yield were greater at high fertility (range 0.49 to 0.85) than at low fertility (range 0.22 to 0.44). Biomass yield showed positive genotypic correlations with grain yield, effective tiller number, and number of kernels per spike but a negative correlation with harvest index. The results indicated that selection for high biomass yield should bring about positive improvements in biomass yield, grain yield, effective tiller number, and number of kernels per spike. The correlation between F3 and F4 generations suggested that biomass yield in the F3 generation was a good predictor of biomass yield and grain yield in the F4 generation. Selection for biomass yield in wheat should be made under the standard production system to obtain a realistic response.  相似文献   

7.
The genetic basis of grain-filling duration (GFD, days from anthesis to maturity) in six spring wheat hybrids involving nine varieties (‘Son-alika’/‘Bobwhite’, ‘Sonalika’/‘Glennson 70’, ‘Lelija’/‘Bobwhite’, ‘Lelija’/‘Mitacore’, ‘Buckbuck’/‘Dugoklasa’, and ‘Vesna’/‘Radu?a’) and their F1, F2, BC1, and BC2 generations was studied in the field near Sarajevo, Yugoslavia. Parental means differed in four of the six crosses. Generation mean analyses of genetic effects indicated that an additive-dominance model was sufficient for only two crosses: Lel/Bow and Lel/Mco. One or more types of epistasis were significant in the remaining crosses. The F1 and F2 means were either intermediate, closer to the mean of the parent with the longer GFD, or closer to the mean of the Parent with the shorter GFD. Even though different modes of gene action controlled GFD among the six crosses, the heritabilities were reasonably high (narrow sense, 39-59) range for six crosses), indicating that progress could be made from selection in these crosses for either long or short GFD. The parents were selected to have a range in days from planting to anthesis and to maturity. The relationship between dates of anthesis or maturity and GFD was not consistent, but the two latest-maturing varieties had the longest GFD, indicating that anthesis or maturity dates are not a good criteria for choosing parents for modifying GFD. Additive genetic effects predominated in the crosses studied here, but epistasis involving dominance gene action was sufficiently important. To eliminate confounding epistatic dominance effects and to take advantage of favourable additive × additive effects during selection for GFD, a breeding strategy involving rapid approach to homozygosity followed by selection after the achievement of homozygosity was suggested.  相似文献   

8.
Summary Post-anthesis chemical desiccation of wheat (Triticum aestivum L.) plants in the field eliminates transtent photosynthesis by killing all green tissues, thus revealing the plant's capacity for grain filling from stored stem reserves, as the case is for post-anthesis stress such as drought or leaf diseases. This study was conducted to investigate whether mass selection for large kernels under chemical desiccation would lead to the improve ment of grain filling in the absence of transient photosynthesis.Six crosses of common spring wheat were subjected to three cycles of mass selection from F2 through F1 when selection was performed for large kernels by sieving grains from plants that were erther chemically desiccated after anthesis, or not (controls). The resulting 36 bulks (six crosses by three selection cycles by two selection environments) were compared with their respective F2 base populations, when tested with and without chemical desiccation.Selection for large kernels under potential conditions (without chemical desiccation) did not improve kernel weight under potnetial conditions, evidently because these materials were lacking in genetic variation for kernel weight under potential conditions. In four of the crosses, 3rd cycle selection for large kernels under potential conditions decreased kernel weight under chemical desiccation. On the other hand, selection for large kernels under chemical desiccation was effective in improving kernel weight and test weight under chemical desiccation, depending on the cross and the selection cycle, with no genetic shift in mean days to heading or mean plant height. Selection for large kernels under chemical desiccation was also effective in some cases in increasing kernel weight under potential conditions. The results are interpreted to show that selection under potential conditions and under chemical desiccation operate on two different sources for grain filling, namely transient photosynthesis and stem reserve utilization, respectively. In order to expose genetic variability for stem reserve utilization to selection pressure, transient photosynthesis must be eliminated, as done by chemical desiccation in this study.  相似文献   

9.
The inheritance of net photosynthesis and transpiration effciency in spring wheat under drought were studied in two years in order to determine their heritability. The parents, F1 and segregating generationsf (F1, BC1, BC1) of four crosses between each of two drought-resistant and two drought-susceptible genotypes were evaluated under drought in pots under glasshouse conditions. Measurements of gas exchange were made using a portable gas-analysis system. Generation means and variance component analyses of the data suggested that these traits are simply inherited and controlled mainly by additive genetic variation. Narrow-sense heritability estimates varied between crosses from 61% to 84% for net photosynthesis and from 88% to 89% for transpiration effciency.  相似文献   

10.
In order to investigate the direct and correlated responses to selection for heading date in barley, two F2 populations were subjected to four cycles of divergent selection. For each cross, eight populations selected for earliness (from 1E to 4E) and for lateness, (from 1L to 4L) and four unselected populations (1, 2, 3 and 4 SSD) were obtained and than compared together with parental lines. Selection caused a change greater than one day/cycle in Doth directions, and the cumulative responses were -5.4 and -5,9 days in the direction of earliness, 7.7 and 7,1 days in the opposite direction. Such results suggest that in the two base populations the heading, date is under the control of a polygenic system with prevailing additive effects and a slight directional dominance toward earliness. Early populations showed a reduction of ear moisture and an increase of plant height, ear extrusion, kernel weight and harvest index, whereas late populations showed the opposite changes. Grain yield was linearly reduced by selection for lateness, whereas no substantial change was evidenced in the opposite direction, so that 4E significantly out-yielded 4L in both crosses.  相似文献   

11.
Divergent Selection for Heading Date in Barley   总被引:1,自引:0,他引:1  
Divergent selection for heading time was performed in two F2 barley population. Five populations were obtained for each cross: F5 SSD (unselected control), 3E and 3L (from three cycles of selection for earliness or lateness), 2E1L and ZL1E (from two cycles of direct and one of reverse selection). These populations, together with corresponding parents and F2 generations, were evaluated over two years. The response to selection was 5.6 and 6.5 days inane direction (earlier heading) and 7.7 and 6.7 clays in the other direction (later heading) in the two crosses, respectively. 3E and 3L populations were highly transgressive as compared to their parents. A sizeable amount of genetic variability was still present after two cycles of selection. Heading was probably controlled by a polygenic system with prevailing additive effects and alleles for earliness and earliness somewhat equally distributed in the parents. Selection fur heading time led to significant changes in plant height, yield and kernel weight. Early progenies were higher yielding than lace ones.  相似文献   

12.
Increases in atmospheric carbon dioxide (CO2) concentration have stimulated interest in the response of agricultural crops to elevated levels of CO2. Several studies have addressed the response of C3 cereals to CO2, but the interactive effect of nutrient supply and CO2 on apical development and spikelet set and survival has not been investigated thoroughly. Hence, an experiment was conducted in the greenhouse to evaluate the effect of high (700 μmol CO2mol?1 air) and low (400 μmol mol?1) levels of atmospheric CO2 on apical development, spikelet set and abortion, and pre- and post-anthesis growth in spring barley (Hordeum vulgare L.) grown under high N (0.3 g N pot?1 before sowing ?1–0.11 g N pot?1 week?1) and low N (0.3 g N pot?1) regimes. The plants were grown in 5 L pots. Development of spike was hastened due to CO2 enrichment, and the C+ plants pollinated few days earlier than the C— plants. Carbon dioxide enrichment had no effect on date of ripening. Development of spike slowed following application of extra N, and plants pollinated 10 days later and matured 2 weeks later when compared with plants under low N. Carbon dioxide enrichment did not affect the number of spikelets at anthesis. Excess N decreased spikelet abortion and the increased maximum number of spikelets under both [CO2]. Barley plants did not tiller when grown in low [CO2] and low N. Increased endogenous IAA concentration in those plants, recorded three days before tillers appeared in other treatments, may have contributed to this. Carbon dioxide enrichment increased the C concentration of plants, but decreased the N concentration under high N regime. Both the C and N concentration of plants were increased under high N regime. Carbon dioxide enrichment increased the total dry matter of mature plants by 9 % under high N regime and by 21 % under low N regime. Under high [CO2] increased kernel number on tiller spikes, and increased kernel weight both on main stem and on tiller spikes resulted in a 23 % increase in kernel yield under low N regime and 76 % increase in kernel yield under high N regime. The rate of N application influenced growth and yield components to a greater extent than CO2 enrichment. At maturity, plant dry matter, kernel weight, the number of kernels per spike, and the number of spikes per plant were higher under high N regime than under low N regime. Long days (16 h), low light intensity (280 μmol m?2s?1), and at constant temperature of 20 °C high [CO2] increased kernel weight and the number of kernels on tiller spikes under high and low N application rate, but did not increase the number of kernels on main stem spike, or the number of tillers or tiller spikes per plant.  相似文献   

13.
M. R. Simón 《Euphytica》1994,76(3):235-238
Summary Gene action and heritability for photosynthetic activity were estimated from generation means in two wheat crosses during two stages (5 th leaf and flag leaf between 2 and 5 days after anthesis). Six generations were available for each cross: parents (P1 and P2), F1, F2 and backcrosses (BC1 and BC2).Correlations between some morphophysiological characters and photosynthetic activity of the flag leaf was also determined. The joint scaling test described by Mather & Jinks was used to determine the gene action. It showed that them; [d]; [h]; [i], [l] (mean, additivity, dominance, additive x additive interallelic interaction effects, dominance x dominance interallelic interaction effects) model fits the two crosses at both measurement times. All the model genetic components were significant for the flag leaf, however for the 5 th leaf only [h]; [i] and [l] were significant. The presence of additive and additive x additive effects suggested the possibility of selecting for this character using the flag leaf so as to obtain pure inbred lines. Dominance effects [h] were negative and dominance x dominance effects [l] were positive. Broad sense heritability values were medium to low. There were no correlations between the studied morphophysiological characters and the photosynthetic activity.  相似文献   

14.
Summary Data are presented which support early generation selection for white kernel color in the progeny of red/white kernel wheat crosses which are segregating at 12 or more loci for yield (or any other trait of interest). The optimum generation for selecting white kernels is determined by the frequency of seeds produced with the potential to produce plants having desired quantitative alleles from both parents, and by the frequency of white kernels produced. The F2-produced seed (F3 embryo) is shown to be the optimum generation for selecting white kernels, given that 12 or more loci are segregating for a quantitative character such as yield. When the red parent is a 2 or 3 loci red genotype, selection among F4-produced seed for white kernel color may be desirable when 5 or fewer genes are segregating for the second trait. The results have direct application for all highly heritable, recessive, sporophytic traits.Contribution from the Cornell Agricultural Research Station, Cornell Univ., Ithaca, NY 14853. Paper No. 723. Research supported by Hatch project 419  相似文献   

15.
Summary Maximizing the efficiency of selection for yield and baking quality of winter rye (Secale cereale L.) requires reliable knowledge on the pertinent population parameters. This study reports estimates of variances, heritabilities and genetic correlations from a) large (5 m2) drilled (LD) plots, b) micro drilled (MD) plots, and c) one-row plots of 4 spaced plants (SP). Thirty eight single crosses of rye were grown at two locations for two years in LD, MD and SP plots replicated 2, 4, and 6 times, respectively. Genotypic differences were significant in all plot types for all agronomic and quality traits, although estimates of genetic variances were smaller in LD than MD or SP plots for grain yield, 32-spike weight, and kernels per spike. Heritabilities on an entry mean basis (0.62 to 0.95) were similar among plot types, but on a single plot basis estimates were lower for SP than for MD or LD plots. Genetic correlations were high between all three plot types, with correlations between LD and SP plots being approximately 1.0 for falling number, thousand-kernel weight, and bloom date, 0.90 for grain yield, kernels per spike, test weight and height, and 0.70 for tiller number. Based on the high heritabilities achieved in small plots and the close agreement between MD- or SP- with LD-plot performance we conclude that greater use should be made of small plot types when selecting for yield and quality in winter rye.  相似文献   

16.
Fifty-five mungbean lines were evaluated for days to maturity and grain yield per plant. This material showed considerable range of variability for the target traits. Eight genetically diverse parents were selected and used for a full diallel set of crosses to study the mode of inheritance for earliness related parameters (days to flowering, days to maturity and length of reproductive phase) during summer 2005. The F1 generation of these crosses was sown during the spring of 2006 and the selfed seeds were used to raise the F2 generation during kharif season. The data recorded from two generations were subjected to genetic analysis. The formal ANOVA showed the significance of both additive and dominance effects for all the traits in both generations. Significance of D, H1 and H2 components also confirmed the contribution of both additive and dominance effects in controlling the inheritance of these traits. The estimates of narrow sense heritability were low to moderate except higher estimates for days to maturity in F2 generation, while the broad sense heritability estimates were relatively higher. Seasonal and environmental effects were also found to be significant. In view of the complex nature of gene action for earliness, it is suggested that breeders should look for transgressive recombinants of earliness and other desirable attributes in later segregating generations to gain higher genetic advance. The variety NM92 was found to be the best source of earliness in mungbean breeding.  相似文献   

17.
This study was conducted to evaluate the types of gene action governing the inheritance of resistance to peanut bud necrosis disease (PBND) in populations derived from three crosses involving two resistant (ICGV 86388 and IC 10) and one susceptible (KK 60–1) peanut lines. Populations were composed of P1 P2, F1 F2, BC11, BC12, BC11S and BC12S. These populations were evaluated for PBND incidence in a farmer's field in Kalasin province in north‐east Thailand, where PBND is a recurring problem. Results showed variations between crosses in the relative contributions of different types of gene effect. The results indicate that multiple genes control the PBND resistance trait, and that the two resistant lines differ in some of these genes. As non‐additive gene effects are important in all three crosses, selection for low PBND incidence in these crosses would be more effective in later generations.  相似文献   

18.
Gene effects were analyzed using mean spike length of 12 populations, viz., both parents, F1, F2, first back cross generation, BC1 and BC2, second backcross generations, BC11,BC12, BC21 and BC22 along with BC1 self and BC2 self derived by selfing BC1 and BC2populations of three crosses involving six diverse cultivars of Triticum durumto determine the nature of gene actions governing spike length through generation mean analysis under normal and late sown environments. The six-parameter model was adequate in most of the cases to explain genetic variation among the generation means under both the sowing environments. Additive (d) gene effect was significant in all the cases, whereas dominance (h) gene effect was not so frequently observed significant. Epistatic effects, particularly digenic types were predominant over additive and dominance effects in most of the cases under both normal and late sown environments except in the cross Cocorit 71 × A-9-30-1 (normal sown).Additive × dominance × dominance (y), trigenic interaction played significant role in controlling the inheritance of this trait in the cross HI 8062 × JNK-4W-128under late sown condition. Duplicate epistasis was observed in the cross HI 8062× JNK-4W-128 (normal sown). Non-fixable gene effects were of higher magnitude than fixable gene effects in almost all cases, confirmed the major role of non-additive gene effects to control the inheritance of spike length in durum wheat. Significant heterosis over better parent was not observed. Similarly, inbreeding depression was not commonly observed. Favourable and suitable environment must be considered before finalizing breeding programme for its simple inheritance to get desirable improvement for high grain yield. Hybridization systems, such as biparental mating and / or diallel selective mating, which exploit both additive and non-additive gene effects, simultaneously, could be useful in the improvement of spike length in durum wheat. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
H. Z. Cross  K. Djava 《Euphytica》1987,36(1):81-90
Summary Effectiveness of mass selection for kernel depth in an early maize (Zea mays L.) synthetic, i.e. NDSAB, was evaluated in eight North Dakato environments. Four cycles of selection for deeper kernels were evaluated for grain yield and associated traits by using corresponding randomly selected subpopulations of NDSAB to adjust out inbreeding effects on selected subpopulations. General combining ability (GCA) effects of selected subpopulations also were evaluated for these traits.Subpopulations selected from one to four cycles for deep kernels were reciprocally crossed to corresponding randomly selected subpopulations in a factorial mating design. Subpopulations, selfed subpopulations, and subpopulation crosses were evaluated for yield and associated traits. Subpopulations selected for deep kernels generally had deeper kernels, higher yields, heavier kernels, more kernel rows per ear, and lower test weights than corresponding randomly selected subpopulations. Differences in GCA effects among selected and unselected subpopulations generally corresponded to differences between selected and unselected parental subpopulations. Inbreeding effects from selfing were observed for all traits, but no average heterosis was detected when subpopulation crosses were compared to parental subpopulations. Reciprocal differences were observed for all traits except kernel depth, but these differences were inconsistent relative to whether deep kerneled females made superior hybrids to unselected females.Results supported the use of mass selection for kernel depth as a means of grain yield improvement in the short term for NDSAB. However, negative associations of kernel depth with test weight may restrict long term use of this procedure.Journal Article No. 1505 of the North Dakota Agric. Exp. Stn., Fargo  相似文献   

20.
Campbell  A. R.  Frey  K. J. 《Euphytica》1974,23(2):369-376
Summary Ten interspecific crosses of Avena sativa L. x A. sterilis L. were used to study inheritance of protein content in oat straw and its associations with selected seed and agronomic traits. Each cross was grown in a replicated experiment, and the materials for each cross consisted of parents and F2-derived lines in the F4 generation. Straw-protein percentages were transformed to square roots to normalize the data before statistical analyses were carried out.Frequency distributions were reasonably symmetrical for square roots of straw-protein percentages (SP%) in eight crosses, suggesting that additive gene action conditioned this trait. There was a preponderance of low SP% lines in the remaining two crosses. SP% was not consistently correlated with plant height, 10-groat weight, or groat-protein percentage. SP% was positively and significantly correlated with heading date in all crosses, so the SP% variances were adjusted for heading date by covariance analyses. Whereas all crosses had significant variability among F2-derived lines for SP% before covariance analysis, only two showed significant variability after adjustment for heading date.Mean per-plot and per-experiment heritabilities for SP% before adjustment for heading date were 56 and 69%, respectively, whereas after adjustment for heading date, they were 22 and 32%, respectively. Although the inheritance of SP% appears relatively simple, this trait is greatly influenced by date of maturity.Journal paper No J-7603 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, USA. Project 1752 Supported in part by a grant from the Quaker Oats Co., Chicago, Ill., USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号