首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research was to determine the influence of various forms, diverse doses, and dates of application of nitrogen fertilizers and foliar nutrition on the concentration of sugars, carotenoids and phenolics compound in carrot. Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot ‘Kazan F1’ were conducted in Trzciana (50°06′N; 21°85′E) in Poland. Both experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: sub-block (A) without foliar nutrition and sub-block (B) with plant foliar nutrition. In sub-block (B), plants were sprayed three-times with: 2% (w/v) urea, a 1% (v/v) solution of multi-component ‘Supervit R’ fertilizer, and again with 2% (w/v) urea. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. The treatments in Experiment I consisted of: (1) Control, (2) 70 kg N ha−1 as Ca(NO3)2, (3) 70 + 70 kg N ha−1 as Ca(NO3)2, (4) 70 kg N ha−1 as (NH4)2SO4 and (5) 70 + 70 kg N ha−1 as (NH4)2SO4, where 70 kg N ha−1 was used preplant and 70 + 70 kg N ha−1 was applied preplant and as a top dressing, respectively. The treatments in Experiment II consisted of: (1) Control, (2) 35 + 35 kg N ha−1 as ENTEC-26, (3) 70 + 70 kg N ha−1 as ENTEC-26, (4) 105 + 105 kg N ha−1 as ENTEC-26, (5) 35 + 35 kg N ha−1 as NH4NO3, (6) 70 + 70 kg N ha−1 as NH4NO3, (7) 105 + 105 kg N ha−1 as NH4NO3, where 35 + 35, 70 + 70, 105 + 105 kg N ha−1 was applied preplant and as top dressing, respectively. Solid nitrogen fertilizer was added to the soil, as produced: Ca(NO3)2—Yara International ASA (Hydro), (NH4)2SO4—Zak?ady Azotowe w Tarnowie, Poland, NH4NO3—Zak?ady Azotowe w Pu?awach, Poland and ENTEC-26–COMPO GmbH & Co., KG, Germany. In Experiment I, the highest sugar concentrations were found in carrot fertilized with (NH4)2SO4 70, while in Experiment II in the control and after fertilization with ENTEC-26 35 + 35 kg N ha−1. In both experiments N-fertilization affected an increase in phenolic compound concentrations in comparison with the control. Experiment I revealed no significant effect of N-fertilization on carotenoid concentrations in carrot, however in Experiment II the highest concentration of these compounds was characteristic for the control plants and carrot fertilized with ENTEC-26 35 + 35. The foliar nutrition applied in Experiment I caused a decline in sugar concentration and an elevated carotenoid concentration, however it had no influence on the phenolic compound concentrations in carrot. Yet the foliar nutrition in Experiment II led to a decrease in phenolic and carotenoid compound concentrations, but it did not affect sugar concentration in carrot.  相似文献   

2.
In order to establish a rational nitrogen (N) fertilisation and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its dynamics inside the plant is crucial. In two successive years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to determine the uptake of N fertiliser, applied by means of fertigation at different stages of plant growth, and to follow the translocation of N in the plant using 15N-labelled N. In 2006, two experiments were carried out. In the first experiment, labelled 15N fertiliser was supplied at the female-bloom stage and in the second, at the end of fruit ripening. Labelled 15N fertiliser was made from 15NH415NO3 (10 at.% 15N) and 9.6 kg N ha−1 were applied in each experiment over 6 days (1.6 kg N ha−1 d−1). In 2007, the 15N treatment consisted of applying 20.4 kg N ha−1 as 15NH415NO3 (10 at.% 15N) in the middle of fruit growth, over 6 days (3.4 kg N ha−1 d−1). In addition, 93 and 95 kg N ha−1 were supplied daily by fertigation as ammonium nitrate in 2006 and 2007, respectively. The results obtained in 2006 suggest that the uptake of N derived from labelled fertiliser by the above-ground parts of the plants was not affected by the time of fertiliser application. At the female-flowering and fruit-ripening stages, the N content derived from 15N-labelled fertiliser was close to 0.435 g m−2 (about 45% of the N applied), while in the middle of fruit growth it was 1.45 g m−2 (71% of the N applied). The N application time affected the amount of N derived from labelled fertiliser that was translocated to the fruits. When the N was supplied later, the N translocation was lower, ranging between 54% at female flowering and 32% at the end of fruit ripening. Approximately 85% of the N translocated came from the leaf when the N was applied at female flowering or in the middle of fruit growth. This value decreased to 72% when the 15N application was at the end of fruit ripening. The ammonium nitrate became available to the plant between 2 and 2.5 weeks after its application. Although the leaf N uptake varied during the crop cycle, the N absorption rate in the whole plant was linear, suggesting that the melon crop could be fertilised with constant daily N amounts until 2–3 weeks before the last harvest.  相似文献   

3.
Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot c.v. ‘Kazan F1’ were conducted at Trzciana village (50°06′N, 21°85′E). The experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: I, without foliar nutrition; II, receiving plant foliar nutrition. The plants were sprayed three times alternately with: 2% urea solution, 1% solution of multi-component ‘Supervit R’ fertilizer (produced by Intermag, Poland) and again with 2% urea solution. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. Experiment I comprised of: (1) Control, (2) Ca(NO3)2 70, (3) Ca(NO3)2 70 + 70, (4) (NH4)2SO4 70 and (5) (NH4)2SO4 70 + 70. Experiment II included: (1) Control, (2) ENTEC-26 35 + 35, (3) ENTEC-26 70 + 70, (4) ENTEC 26 105 + 105, (5) NH4NO3 35 + 35, (6) NH4NO3 70 + 70, (7) NH4NO3 105 + 105. Where 70 kg N ha−1 was used before sowing, whereas 35 + 35, 70 + 70 and 105 + 105 kg N ha−1 were applied before sowing and as top dressing. Solid nitrogen fertilizer was added to the soil (produced by): Ca(NO3)2, Yara International ASA (Hydro); (NH4)2SO4, Zak?ady Azotowe in Tarnów, Poland; NH4NO3, Zak?ady Azotowe in Pu?awy, Poland; and ENTEC-26, COMPO GmbH & Co. KG, Germany. The research aimed at determining the effect of diversified nitrogen fertilization and foliar nutrition on NO3, NH4+, N-total and dry matter (d.m.) concentrations in carrot, and N uptake by storage roots. In Experiment I, nitrogen fertilization did not affect NO3 concentration, whereas in Experiment II, the applied N treatment increased NO3 concentration in carrot in relation to the control, except for the storage roots of plants fertilized with ENTEC-26 35 + 35. Nitrogen fertilization applied in both experiments caused a significant increase in N-total concentration in carrot and N uptake by storage roots in comparison with the control plants. In both experiments, nitrogen fertilization had a different effect on the concentrations of NH4+ and d.m. in carrot. What is more, foliar nutrition treatments in both experiments had a different effect on the concentrations on NO3, N-total, d.m. in carrot and N uptake by carrot storage roots.  相似文献   

4.
The effect of different fertilisation (i.e. broadcast application and fertigation) and irrigation practices (tank sprinkler and drip irrigation) on yield, yield quality (nitrate content), nitrogen uptake of white cabbage (Brassica oleracea var. capitata L.) and the potential for N losses was assessed on sandy-loam agricultural soil. 15N-labelled fertiliser was used as a tracer. It was found that different practices significantly affected yield, nitrate content in plants, N uptake, as well as fertiliser use efficiency. The highest yield (93 t ha−1), plant N uptake (246 kg ha−1), and fertiliser use efficiency (42%) were obtained under treatment with broadcast fertilisation with farmer's practice of irrigation (tank sprinkler). The N surplus after harvest was −41 kg N ha−1, indicating the lowest potential for N losses. Treatment by fertigation and drip irrigation covering 100% of the crop's water requirements did not result in the highest yield as expected (72 t ha−1), the N surplus after harvest was about +38 kg ha−1. The lowest yield (58 t ha−1), fertiliser use efficiency (30%) and hence the highest potential for N losses (N surplus after harvest +68 kg ha−1) were found in treatment with broadcast fertilisation and drip irrigation covering 50% of the crop's water requirements.  相似文献   

5.
Three greenhouse experiments were carried out to determine the growth, yield, nitrate, total N and S concentration in shoots, and water uptake of hydroponically grown Brassica rapa L. subsp. nipposinica var. chinoleifera and Brassica juncea L. In each experiment, daily photosynthetically active radiation (PAR) level was 5.0 mol m−2 (low), 6.8 mol m−2 (medium) or 9.0 mol m−2 (high). Plants were supplied with nutrient solutions having equal N concentrations of 11 mM in different forms: 100% NH4, 50% NH4 + 50% NO3, and 100% NO3. Nitrogen supplied as 100% NH4 reduced fresh and dry shoot biomass, leaf area, and leaf number in both Brassica species, especially at low and medium PAR levels. In both Brassica species, S concentrations were highest, while nitrate concentrations were lowest in leaves of plants grown at N supplied as 100% NH4. No differences in leaf nitrate concentrations were observed between 50% NH4 + 50% NO3 and 100% NO3 treatments. Low and high PAR levels increased the nitrate concentrations and decreased the N/S ratio in leaves of both crops compared to medium PAR level. Fresh shoot biomass was maximized in Brassica rapa when PAR level was above the medium value and nitrate was supplied in the nutrient solution as NO3 or as a mixture of 50% NO3 and 50% NH4. The highest fresh shoot biomass of Brassica juncea was observed in all nutrient solution treatments at high PAR level.  相似文献   

6.
In a field experiment in the 1988-89 season, fertilizer formulations of NH4NO3, Ca(NO3)2, NaNO3, NaKNO3, and KNO3 as N sources were applied at 84 and 168 kg N ha?1 to onion plots direct seeded in the fall. A second experiment in the 1990-91 season tested the same N sources, except KNO3, at rates of 168 and 224 kg ha?1. Application strategy involved both splitting the total amount of fertilizer over two periods of the growing season (October–December and January—April) and the application frequency. With medium and high application rates (168 and 224 kg ha?1), NH4NO3, NaNO3, and NaKNO3, increased high-value jumbo and large onions (premium marketable grade). Increased premium grades was due to increased bulb size and weight. Only NH4NO3 and Ca (NO3)2 increased total onion weight when N rate was increased from 84 to 168 kg ha?1. Less frequent applications of split amounts of 84 kg N ha?1 reduced marketable weight in the 1988–89 season, but doubling the rate to 168 kg ha?1 restored the higher yields. At 224 kg N ha?1 in the 1990–91 season, differences in onion grades were more pronounced among the different N sources, and NH4 NO3 was superior in producing jumbo and large size onions. High N rates (224 kg ha?1) and more frequent applications of split portions also increased the weight of jumbo onions. Split applications, providing 33% of the total N in the first 12 weeks of the growth period plus three applications of 22% each in the second 12 week period, increased bulb size and maximized yield of premium marketable grades. Effect of N rate on onion rot was dependent on split methods of applying the N during early and late growth periods. However, reduction in onion rot by the split application strategy was dependent on N source. Bulb decay was highest with NH4NO3 and least with Ca(NO3)2 and NaNO3.  相似文献   

7.
Different N sources (NO3, NH4+, or NH4NO3) at different relative addition rates (RAR) were supplied to cucumber (Cucumis sativus L.), a species sensitive to NH4+ toxicity. For comparison, cucumber plants were also grown at constant concentrations of 1 and 5 mM NH4+ or 5 mM NO3. The fresh weight of NH4+-fed plants at RAR 0.15 and RAR 0.25 day−1 was similar to that of NO3-fed plants, while at RAR 0.35 or RAR 0.45 day−1 growth reduction occurred. When available as a constant concentration, NH4+ decreased plant growth at 5 mM. It is concluded that at low rates of N supply the relative addition rate technique can be used for growing cucumber plants with NH4+ as sole N source without deleterious effects.  相似文献   

8.
Summary

The effect of nitrogen availability and nitrogen form on the yield and nitrate content of butterhead lettuce (Lactuca sativa var. capitata L.) grown in soil under greenhouse conditions was studied. The extent to which chloride application can reduce nitrate content by supplying the plant with an alternative osmotically active anion, and whether the presence of ammonium in the soil is a necessary prerequisite for an effect of chloride, was also examined. Reducing NO3-N availability from 260 to 200 kg N ha–1 significantly reduced nitrate content while head fresh weight was unaffected. Further reducing NO3-N availability to 120 kg N ha–1 significantly reduced both nitrate content and fresh weight. Substituting 40% of the available NO3-N with NH4-N significantly reduced nitrate content while fresh weight was unaffected. The effect of NH4-N application on plant nitrate content was enhanced by the application of the nitrification inhibitor dicyandiamide (DCD). Despite increasing chloride uptake, the application of chloride had no significant effect on head fresh weight or nitrate content when available nitrogen was in the nitrate form irrespective of the level of nitrogen application. Chloride application similarly had no effect on head fresh weight or nitrate content when applied together with ammonium without the nitrification inhibitor DCD, despite a greater uptake of chloride. Where both ammonium and DCD were applied, however, chloride application significantly reduced head nitrate content.  相似文献   

9.
《Scientia Horticulturae》2005,106(3):330-340
In this study, effects of ammonium sulphate (AS) and urea fertilizers on NO3 and NO2 accumulation, N, P, K, Ca, Mg, Fe, Cu, Zn, Mn contents and some yield criteria in spinach were investigated. Increments in nitrogen doses of AS and urea from 0 (control) to 150 kg N level ha−1 increased NO3, NO2, total N contents and yield of spinach significantly, but usually decreased P, Zn and Mn contents. NO3 contents of spinach in 120 and 150 kg N ha−1 of urea applications were higher than that of AS applications, while the NO3 contents of spinach in the lower application doses of AS were higher than that of urea applications. Increasing phosphorus availability in the higher doses of AS applications due to possibility of decreasing soil pH might be decrease NO3 accumulation in spinach by assimilating NO3 in protein form. NO3 and NO2 contents also gave the significant negative relationships with yield and P content in spinach. Decreasing micronutrient contents in spinach at the higher nitrogen doses might be due to dilution effect by increasing the plant biomass.  相似文献   

10.
Elevated levels of nitrate-nitrogen (NO3-N) in the surficial aquifer above the drinking water quality standard, i.e. maximum contaminant limit (MCL; 10 mg L−1), have been reported in some part of central Florida citrus production regions. Soils in this region are very sandy (sand content >95%), hence are vulnerable to leaching of soluble nutrients and chemicals below the rooting depth of the trees. The objective of this research was to develop N and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize potential leaching of nitrate below the root zone. Six years of field experiment was conducted in a high productive (mean fruit yield > 80 Mg ha−1yr−1) >20-year-old ‘Hamlin’ orange trees [Citrus sinensis (L.) Osbeck] on ‘Cleopatra mandarin’ (Citrus reticulata Blanco) rootstock grown on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland county, FL. Nitrogen rates ranged from 112 to 280 kg ha−1 yr−1 applied as fertigation (FRT), water soluble granular (WSG), 50:50 mix of FRT and WSG, and controlled-release fertilizer (CRF). Tensiometers were used to monitor the soil water content as a basis to schedule optimal irrigation. Fruit yield response over the entire range of N rates was greater for the FRT and WSG sources as compared to that for the WSG + FRT or CRF sources. Using the regression analysis of the fruit yield in relation to N rate, the optimum N rate appeared to be at 260 kg ha−1 yr−1. Based on fruit production response in this study, the N requirement for production of 1 Mg of fruit varied from 2.2 to 2.6 kg across four N sources. This study demonstrated an increased N uptake efficiency, as a result of best management of N and irrigation applications. The optimal N and K concentration in the 4–6-month-old spring flush leaves were 26–30, and 15–18 g kg−1, respectively. However, fruit yield response showed no significant relationship with concentrations of P in the 4–6-month-old spring flush leaves over a range of 0.8–2.4 g kg−1. The results of fate and transport of N in soil and in soil solution with application of different rates and sources of N, and components of citrus tree N budget, are reported in a companion paper.  相似文献   

11.
Applications of 0.85, 1.70 or 2.55 kg N m?3 were made to Ilex crenata Thunb. Hetzi. Nitrogen sources included weekly applications of liquid fertilizer (NH4NO3) and single application of TVA's Sulfur coated urea (SCUT), Gold N (SCUG), Nitroform (NITR), isobutylidene diurea (IBDU), and an experimental N-containing Osmocote (OSCN). Shoot dry matter and leaf N from recently matured leaves were determined. Analyses of NH4-N and NO3-N were also conducted on the monthly leachates collected from the containers. Most controlled-release fertilizers (CRFs) produced greater dry weights at 1.70 kg N, while NH4NO3 produced more dry weight than CRF's at 0.85 or 2.55 kg N. Initially, for CRF's ammonium was more abundant than nitrate in the leachate; subsequently, nitrate became the dominant N form for most of the growing-season. All urea-based fertilizers had higher NH4 levels in the leachate when compared with NH4NO3-based fertilizers.  相似文献   

12.
In conservation tillage systems based on legume mulches it is important to optimize N management strategies. The present study evaluated the effect of some winter legume cover crops converted into mulches on the following no-tillage tomato (Solanum Lycopersicum L.) yield, tomato nitrogen uptake, tomato use efficiency (NUE), soil nitrate and the apparent N remaining in the soil (ARNS) in a Mediterranean environment. Field experiments were carried out from 2002 to 2004 in a tomato crop transplanted into: four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterranem L.), snail medic (Medicago scutellata L. Miller), and Italian ryegrass (Lolium multiflorum Lam.)]; a conventional tilled soil (CT); and a no-tilled bare soil (NT). All treatments were fertilized with three different levels of nitrogen (N) fertilizer (0, 75, and 150 kg N ha−1). Cover crop above-ground biomass at cover crop suppression ranged from 4.0 to 6.7 t ha−1 of DM and accumulated from 54 to 189 kg N ha−1, hairy vetch showed the highest values followed by subclover, snail medic and ryegrass. The marketable tomato yield was higher in no-tilled legume mulched soil compared to no-tilled ryegrass mulched soil, CT, and NT (on average 84.8 vs 68.7 t ha−1 of FM, respectively) and it tended to rise with the increase of the N fertilization level. A similar trend was observed on tomato N uptake. Hairy vetch mulch released the highest amount of N during tomato cultivation followed by subclover, snail medic, and ryegrass (on average 141, 96, 90 and 33 kg N ha−1). The tomato NUE tended to decrease with the increase of the N fertilization rates, it ranged from 39 to 60% in no-tilled legume mulched soil and from −59 to 30% in no-tilled ryegrass mulched soil when compared to the CT. The soil NO3-N content and the ARNS was always higher in the soil mulched with legumes compared to the soil mulched with ryegrass and in NT and CT. This study shows that direct transplanting into mulches coming from winter legume cover crops could be useful for improving the yield and the N-uptake in a no-tillage tomato crop. Furthermore, considering the high N content in the upper soil layer and the remaining N content in the organic mulch residues after tomato harvesting, there is a large amount of N potentially available which could be immediately used by an autumn–winter cash crop.  相似文献   

13.
Soils in central Florida citrus production region are very sandy, hence are vulnerable to leaching of soluble nutrients and chemicals. The objective of this study was to develop nitrogen (N) and irrigation best management practices for citrus in sandy soils to maintain optimal crop yield and quality, and to minimize N leaching below the rootzone. A replicated plot experiment was conducted in a highly productive 20+ year-old ‘Hamlin’ orange [Citrus sinensis (L.) Osbeck] trees on ‘Cleopatra mandarin’ [(Citrus reticulata Blanco)] rootstock grove located on a well drained Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) in Highland County, FL. Nitrogen rates (112–280 kg ha−1 year−1) were applied as fertigation (FRT), water soluble granular (WSG), a combination of 50% FRT and 50% WSG, and controlled release fertilizer (CRF). Tensiometers were used to monitor the soil moisture content at various depths in the soil profile as basis to optimize irrigation scheduling. Fruit yield and quality and nutritional status of the trees were reported in a companion paper. Soil solution was sampled at 60, 120, and 240 cm depths under the tree canopy using suction lysimeters. Concentrations of NO3-N in the soil solution at 240 cm deep, which is an indicator of NO3-N leaching below the tree rootzone, generally remained below the maximum contaminant limit (MCL) for drinking water quality (10 mg L−1) in most samples across all N sources and rates, but for few exceptions. Total N in the fruit was strongly correlated with fruit load, thus, at a given N rate N removal by the fruit was lower during years of low fruit yield as compared to that during the years of high fruit yield. Furthermore, there was a strong linear relation between N and K in the fruit. This supports the need to maintain 1:1 ratio between the rates of N and K applications. In a high fruit production condition, the N in the fruit accounted for about 45% of the total N input on an annual basis. Fifteen percent of the total N input at 280 kg N ha−1 year−1 was not accounted for in the citrus N budget, which could be due to leaching loss. This estimate of potential leaching was very close to that predicted by LEACHM simulation model. The improved N and irrigation management practices developed in this study contributed to an improved N uptake efficiency and a reduction in N losses.  相似文献   

14.
The effect of 50% shading and NO3:NH4 ratio (0:100, 75:25, 50:50, and 25:75) in the nutrient solution on growth, yield, quality and N metabolism in hydroponically grown strawberry (Fragaria × ananassa var Camarosa) was evaluated. Both fresh and dry weights of leaves were significantly lower when a high concentration of either NO3 (100%) or NH4 (75%) was the sole N source in the nutrient solution. In unshaded plants, increasing of both NH4 and NO3 ratio in the nutrient solution reduced photosynthetic (Pn) rate, however in shaded plants the reduction of Pn became more pronounced at a higher ratio of NH4 in the nutrient solution. The yield in terms of fresh and dry weight of fruit per plant was significantly increased at the 75:25 and 50:50 (NO3:NH4) treatments. Fruit size was significantly affected by the treatments, so that the biggest fruits in both shaded and unshaded plants were obtained under the 75:25 and 50:50 (NO3:NH4) treatments. Total soluble solid (TSS) in unshaded plants was increased with increasing NH4 ratio in the nutrient solution, however in shaded plants it was reduced at high NH4 ratio in the nutrient solution. In both shaded and unshaded plants, higher concentration of NH4 significantly reduced the post-harvest life of the fruits. The increase of tissue N concentration was nearly proportional to the NH4 concentration in the nutrient solution. The activity of nitrate reductase (NR) was increased by increasing NH4 from 0 to 50% and then reduced at a higher ratio of NH4 in the solution. Shading increased NH4 concentration so that the shaded plant had nearly twice as high NH4 concentration in the leaves. The increase of NH4 concentration induced by shading could be partially the reduction of NH4 assimilate because of the shortage of carbohydrate.  相似文献   

15.
Current experiment was laid out in order to compare different kinds of organic manure and chemical fertilizer application in growing spinach under the open-field conditions in two successive seasons. Matador type spinach (Spinacea oleracea L.) was cultivated organically and conventionally and spinach growth, yield, vitamin C and nitrate concentrations were checked throughout two successive seasons (autumn and winter). Commercial chemical fertilizer was used as conventional application, and chicken manure (CM), farmyard manure (FM) and blood meal (BM) were used as organic manure applications as a single and as mixtures at different quantities by aiming to receive 150 kg N ha−1 for each, totally 19 applications. In general, autumn season gave the better results in terms of spinach growth, yield and resulted in lower nitrate concentration, whereas the vitamin C concentration was found to be higher in winter season. Reasonable applications to be recommended should be as follows with regard to the seasons; 3.5 ton ha−1 CM and 0.6 ton ha−1 BM + 0.85 ton ha−1 CM + 4.0 ton ha−1 FM for spinach growth; 3.5 ton ha−1 CM and 5.0 FM + 1.2 CM + 0.4 BM applications for spinach yield; 5.0 ton ha−1 FM + 2.5 ton ha−1 CM and 15.0 ton ha−1 FM for vitamin C and nitrate concentration in the autumn and the winter season, respectively. In conclusion, FM and CM can be used effectively in growing organic spinach especially in the autumn season and can be transferred successfully into an asset.  相似文献   

16.
Elucidation of the effects of different quantities of nitrogen (N) and water applied through drip and furrow irrigation on fruit yield and water use efficiency (WUE) in eggplant is essential for formulating proper management practices for sustainable production. The present investigation was undertaken to evaluate the independent and interactive effects of four levels of N and different quantities of water applied through drip as well as furrow irrigation on eggplant fruit yield, agronomic efficiency of N and WUE. In the present field investigation, ridge planting with each furrow and alternate furrow irrigation were compared with drip irrigation at three levels of water: 100%, 75% and 50% of each furrow irrigation (designated as D1.0, D0.75 and D0.5). The four levels of N studied were 90, 120, 150 and 180 kg N ha−1 (designated as N90, N120, N150 and N180). The eggplant hybrid BH-1 was transplanted on August 5, 2004 at the spacing of 60 cm × 45 cm.  相似文献   

17.
This study was carried out in order to give some information that could improve spinach nutritional status and productivity. In this paper, the effect of two N forms (N was added either as 100% nitrate or as 80% nitrate and 20% ammonium) and three Fe levels (0 μM Fe; 20 μM FeEDDHA; 3 μM FeEDDHA + 10 mM NaHCO3) on the growth, chlorosis symptoms and shoot nutrient element accumulation was studied in spinach plants (var. Viroflay), grown in hydroponics; six treatments and three harvests (at about 20 days interval each, until plants reached their commercial size) were applied in total. The results indicated that under conditions of Fe sufficiency (20 μM Fe), mixed N nutrition induced higher production of dry matter as well as improved Fe, Mn and Zn plant nutritional status. In plants grown under Fe deprivation (0 μM Fe), shoot Fe concentration was not significantly affected by the N form until the end of the experiment despite mixed N nutrition induced higher dry matter production up to harvest 2; plants grown under Fe deprivation and with mixed N nutrition presented also higher shoot Mn and Zn concentration. Under conditions of high concentration of bicarbonates and low level of Fe (3 μM Fe + 10 mM NaHCO3), the N form had not a significant influence on total dry matter production whereas shoot Fe and Mn accumulation in 100% NO3-fed plants was found to be significantly reduced compared to mixed N nutrition; regardless of the N form, those plants presented the least dry matter production, highest intensity of leaf chlorosis as well as highest root ferric reducing activity compared to plants grown under Fe deprivation.  相似文献   

18.
Mobile nitrogen (N) forms may be better N indicators of the N status of trees than total nitrogen (TN) due to their higher sensitivity to increasing N supply. A field experiment was carried out over a 3-year period to compare foliar concentrations of total N (TN), soluble N (SN), chlorophyll (Minolta SPAD readings), NH4–N and NO3–N as indicators of soil N availability in nectarine, Prunus persica L. Batsch, cv. ‘Fantasia’ (grafted on ‘Nemaguard’ peach, P. persica × P. davidiana) trees. Young trees were exposed to a range of fertilizer-N application rates. Based on correlation analysis, the best association between leaf N compounds with soil N supply and trunk diameter and/or fruit yield was obtained with TN and chlorophyll SPAD readings. Leaf concentrations of mobile N compounds (NH4–N and NO3–N) increased more than any other N compound under high N supply; however, their inconsistency among years and low leaf concentration difficult their use as N indicators. The optimum foliar TN for growth decreased with tree age, 4.4%, 3.6% and 3.3% in non-bearing 1-year-old trees, non-bearing 2-year-old trees and 3.3 fruit-bearing 3-year-old trees. The optimum SPAD readings were 40 in 2-year-old trees and 42 in 3-year-old trees. Stable N compounds (TN and chlorophyll SPAD) could be used to N diagnosis in the zone of N deficiency, and soluble N compounds (NH4–N and NO3–N) to diagnoses N excess.  相似文献   

19.
Greenhouse field experiments on tomato were carried out at Shouguang, Shandong province, over four double cropping seasons between 2004 and 2008 in order to understand the effects of manipulating root zone N management (RN) on fruit yields, N savings and N losses under conventional furrow irrigation. About 72% of the chemical N fertilizer used in conventional treatment (CN) inputs could be saved using the RN treatment without loss of yield. The cumulative fruit yields were significantly higher in the RN treatment than in the CN treatment. Average seasonal N from irrigation water (118 kg N ha−1), about 59% of shoot N uptake, was the main nitrogen source in treatments with organic manure application (MN) and without organic manure or nitrogen fertilizer (NN). N losses in the RN treatment were lowered by 54% compared with the CN treatment. Lower N losses were found in the MN and NN treatments due to excessive inputs of organic manure and fruit yields were consequently substantially affected in the NN treatment. The critical threshold of Nmin supply level in the root zone (0–30 cm) should be around 150 kg N ha−1 for sustainable production. April to May in the winter–spring season and September to October in the autumn–winter season are the critical periods for root zone N manipulation during crop growth. However, control of organic manure inputs is another key factor to further reduce surplus N in the future.  相似文献   

20.
The effects of different irrigation regimes on yield and quality of green beans (Phaselous vulgaris L.) irrigated with a drip irrigation system under field conditions in the Mediterranean region of Turkey were evaluated along two years. Irrigation regimes consisted of four irrigation intervals based on four levels of cumulative pan evaporation (Epan) values (I1: 15; I2: 30; I3: 45 and I4: 60 mm); irrigations occurred on the respective treatments when Epan reached target values, and three plant–pan coefficients as for irrigation levels (Kcp1 = 0.50, Kcp2 = 0.75 and Kcp3 = 1.00). Irrigation intervals varied from 2 to 4 days in I1, 5 to 7 days in I2, 8 to 10 days in I3 and 10 to 12 days in I4 treatments in 2004 and 2005 growing seasons Both irrigation levels and intervals significantly affected the green bean yields. Maximum and minimum yields were obtained from the I1Kcp3 and I4Kcp1 treatments as 24,320 and 14,200 kg ha−1 in the first, and 23,850 and 13,210 kg ha−1 in the second experimental year, respectively. As the Kcp value decreased the total yields in each irrigation interval also decreased. However, with the longer irrigation interval (I4), lower yields were obtained with all Kcp coefficients. Seasonal water use (ET) values in the treatments varied from 276 mm in I4Kcp1 to 400 mm in I1Kcp3 in the first experimental year, and from 365 mm in I4Kcp1 to 472 mm in I1Kcp3 in the second experimental year. Significant linear relations were found between green bean yield and seasonal ET for each experimental year. Irrigation intervals resulted in similar water use in the treatments with the same Kcp value. Water use efficiency (WUE) and irrigation water use efficiency (IWUE) values were significantly influenced by the irrigation intervals and plant–pan coefficients. WUE ranged from 4.33 kg m−3 in I4Kcp3 to 6.08 kg m−3 in I1Kcp3 in 2004, and varied from 3.62 kg m−3 in I4Kcp1 to 5.43 kg m−3 in I2Kcp2 in the 2005 growing season. Maximum IWUE was observed in I2Kcp1 (6.16 kg m−3), and minimum IWUE was in I4Kcp3 treatment (3.83 kg m−3) in the experimental years. Both irrigation levels and irrigation frequencies had significantly different effects on quality parameters such as fresh bean length, width, number of seed per pod and 100 fresh bean weights. In conclusion, I1Kcp3 irrigation regime is recommended for field grown green beans under the Mediterranean conditions in order to attain higher yields with improved quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号