首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of VA-mycorrhiza on heavy metal uptake of oat (Avena sativa L.) from soils differing in heavy metal contamination The heavy metal uptake of mycorrhizal oat-plants (Avena sativa L.) was evaluated in pot experiments with two soils differing in heavy metal accumulation. The effect of the fungal isolates on the uptake of the immobile metals Zn and Cu differed between the two soils: In the soil “Kleinlinden” mycorrhizal colonization increased heavy metal uptake by up to 37%. In the highly contaminated soil “München”, mycorrhizal infection lead to a higher uptake (max. 59 %) in roots but to a reduced translocation to the aerial plant fractions. The higher uptake of Zn and Cu into the roots was related to the higher heavy metal concentrations in this soil. The Cd uptake showed no difference between the two soils, but was increased in the roots by VAM together with a lower translocation into the shoots. VAM-formation changed the root architecture by increasing the specific root length (m g?1 root dry matter) and the total root length (km per pot). This increased absorbing surface of the roots was a major, but not the only cause for the differences in heavy metal uptake.  相似文献   

2.
Three pot experiments were set up to determine how efficiently mycorrhizal fungi affect the uptake, translocation, and distribution of labeled phosphorus (32P), phosphorus (P), and heavy metals in alfalfa (Medicago sativa L.). In experiments 1 and 2, the efficiencies of different arbuscular mycorrhizal fungi (AMF) species including Glomus mosseae, G. etunicatum, G. intraradices and a mixed strain (G. mosseae, Gigaspora hartiga, and G. fasciculatum) on uptake, translocation, and distribution of 32P and P in alfalfa were investigated, respectively. In a third experiment, the efficiency of G. mosseae on uptake and distribution of heavy metals [cadmium (Cd), cobalt (Co), lead (Pb), and combinations] was tested. Results of experiments 1 and 2 suggest that G. mosseae was the most effective at increasing the uptake of 32P and P. Experiment 3 result showed that in the triple-metal-contaminated soil, inoculated plants had greater Co (32.56 mg kg?1) and Pb (289.50 mg kg?1) concentration and G. mosseae enhanced the translocation of heavy metals to shoot. Hence, mycorrhizal alfalfa in symbiosis with G. mosseae can be used for remediation of heavy metals polluted soils with high efficiency.  相似文献   

3.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake.  相似文献   

4.
采用横式三隔室盆栽试验方法,研究了丛枝菌根真菌(AMF)根内球囊霉(Glomus intraradices,G.i)对紫花苜蓿(Medicago sativaL.)吸收土壤中菲和芘的影响。结果表明:G.i可与紫花苜蓿形成良好的共生体,侵染率平均达61.20%,不同强度菲和芘污染对G.i菌根侵染率的影响差异不显著;接种G.i的植株根系干重增加59.08%。接种G.i增加了根系和茎叶中菲和芘的含量及积累量,根系和茎叶中菲积累量与其生物量(干重计)间呈显著正相关;与菲相比,接种G.i处理后植株芘含量和积累量的增幅更大。G.i限制了菲和芘从植株根系向茎叶的传输,对芘尤为明显,接种G.i植株根系向茎叶转运芘的比例比不接种对照降低了13.85%~37.47%。  相似文献   

5.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

6.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

7.
A pot experiment was carried out to study the effects of three arbuscular mycorrhizal fungi (AMF), including Glomus intraradices, Glomus constrictum and Glomus mosseae, on the growth, root colonization and Cd accumulation of marigold (Tagetes erecta L.) at Cd addition levels of 0, 5 and 50 mg kg-1 in soil. The physiological characteristics, such as chlorophyll content, soluble sugar content, soluble protein content and antioxidant enzyme activity, of Tagetes erecta L. were also investigated. The symbiotic relationship between the marigold plant and arbuscular mycorrhizal fungi was well established under Cd stress. The symbiotic relationship was reffected by the better physiobiochemical parameters of the marigold plants inoculated with the three AMF isolates where the colonization rates in the roots were between 34.3% and 88.8%. Compared with the non-inoculated marigold plants, the shoot and root biomass of the inoculated marigold plants increased by 15.2%- 47.5% and 47.8%-130.1%, respectively, and the Cd concentration and accumulation decreased. The chlorophyll and soluble sugar contents in the mycorrhizal marigold plants increased with Cd addition, indicating that AMF inoculation helped the marigold plants to grow by resisting Cd stress. The antioxidant enzymes reacted differently with the three AMF under Cd stress. For plants inoculated with G. constrictum and G. mosseae, the activities of superoxide dismutase (SOD) and catalase (CAT) increased with increasing Cd addition, but peroxidase (POD) activity decreased with increasing Cd addition. For plants inoculated with G. intraradices, three of the antioxidant enzyme activities were significantly decreased at high levels of Cd addition. Overall, the activities of the three antioxidant enzymes in the plants inoculated with AMF were higher than those of the plants without AMF inoculation under Cd stress. Our results support the view that antioxidant enzymes have a great influence on the biomass of plants, and AMF can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Tagetes erecta L. from Cd stress.  相似文献   

8.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

9.
采用温室盆栽试验方法,研究了镉(Cd)、锌(Zn)污染土壤中,8种不同丛枝菌根真菌(AMF)Glomus lamellosum(G.la)、Acaulospora mellea(A.m)、Glomus mosseae(G.m)、Glomus intraradices(G.i)、Glomus etunicatum(G.e)、Glomus constrictum(G.c)、Diversispora spurcum(D.s)、Glomus aggregatum(G.a)对紫花苜蓿(Medicagosativa L.)吸收Cd、Zn的影响。结果表明,Cd、Zn污染下AMF仍然明显侵染紫花苜蓿,并促进紫花苜蓿对Cd、Zn的吸收积累,但不同AMF影响的效应和植株不同部位对重金属的吸收积累规律存在差异。AMF处理下紫花苜蓿根部Cd、Zn含量和积累量明显增加,但地上部Cd、Zn的含量则降低,地上部Zn的积累量也减小,这表明AMF处理减弱了Cd、Zn由根部向地上部的运移,减轻了植物地上部毒害。接种AMF条件下,植株尤其是根部生物量增加是Cd、Zn在其体内含量和积累量增加的重要因素,不同种类AMF促进植株生物量增加的幅度不同,导致植株对Cd、Zn的积累和抗性存在差异。  相似文献   

10.
It has been previously indicated that arbuscular mycorrhizal (AM) fungi can enhance the bioremediation abilities of their host plant. Barley (Hordeum vulgare L.) is a crop plant with some unique physiological properties, such as tolerance to salinity. However, its tolerance to other stresses such as heavy metals must be tested. Accordingly, it was hypothesized that barley can be efficiently used to treat heavy metals in symbiotic and non-symbiotic association with AM fungi. In a greenhouse experiment barley plants were inoculated with the AM species Glomus mosseae and grown in a soil polluted with cadmium (Cd), cobalt (Co), and lead (Pb). Relative to Cd and Co, mycorrhizal barley absorbed significantly higher amounts of Pb. AM species also significantly decreased Cd and Co uptake by barley indicating the alleviating effects of G. mosseae on the stress of such heavy metals.  相似文献   

11.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

12.
We conducted a study to determine if inoculation with arbuscular mycorrhizal fungi (AMF) would enhance the tolerance of vinca [Catharanthus roseus (L.) G. Don] plants to sodium chloride (NaCl)-induced salinity in irrigation water. Vinca tolerated salinity levels up to 40 mM. Chlorophyll concentration, proline synthesis, and total antioxidant activity were increased with saline irrigation, while leaf potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and boron (B) content decreased, suggesting a detrimental salinity effect. Despite the limited effect of increasing salinity on N content, NaCl-stressed vinca plants showed a marked decrease in nitrate reductase activity, which was associated with decreased leaf K and Fe total content. Mycorrhizal inoculation resulted in reduced growth when compared to non-AMF plants, regardless of salinity level. The K/sodium (Na) ratio decreased dramatically with increasing salinity regardless of AMF treatment. Suggesting, that the AMF isolate was not able to selectively uptake K and Ca, and avoid uptake of Na.  相似文献   

13.
Abstract

Plants grown in acidic soil usually require relatively high amounts of available phosphorus (P) to optimize growth and productivity, and sources of available P are often added to meet these requirements. Phosphorus may also be made available at relatively high rates in native soil when roots are colonized with arbuscular mycorrhizal fungi (AMF). Addition of P to soil usually reduces root‐AMF colonization and decreases beneficial effects ofAMF to plants. In glasshouse experiments, soil treatments of P [0 P (Control), 50 mg soluble‐P kg?1 as KH2PO4 (SP), and 200 mg P kg?1 as phosphate rock (PR)], organic matter (OM) at 12.5 g kg?1, AMF (Glomus darum), and various combinations of these (OM+SP, OM+PR, AMF+SP, AMF+PR, AMF+OM, AMF+OM+SP, and AMF+OM+PR) were added to steam treated acidic Lily soil (Typic Hapludult, pHw=5.8) to determine treatment effects on growth and mineral acquisition by chickpea (Cicer areitinum L.). The various treatment applications increased shoot dry matter (DM) above the Control, but not root DM. Percentage AMF‐root colonization increased 2‐fold or more when mycorrhizal plants were grown with AMF, OM+SP, and OM+PR. Regardless of P source, plant acquisition of P, sulfur (S), magnesium (Mg), calcium (Ca), and potassium (K) was enhanced compared to the Control, and mineral enhancement was greater in PR compared to SP plants. Mycorrhizal plants also had enhanced acquisition of macronutrients. OM+SP and OM+PR enhanced acquisition of P, K, and Mg, but not Ca. Concentrations of Fe, Mn, Cu, and Al were generally lower than Controls in SP, RP, AMF+PR, AMF+SP, and OM plants, and mycorrhizal plants especially had enhanced micronutrients. Relative agronomic effectiveness values for shoot DM and shoot P, Ca, and Mg contents were considerably higher for PR, including OM+PR, AMF+PR, and AMF+OM+PR, than for SP. PR and OM applications to AMF plants are low‐cost attractive and ecologically sound alternatives to intensive use of P fertilizers for crops grown in acidic soils.  相似文献   

14.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on potassium (K), calcium (Ca) and some micronutrient concentrations in cotton plant. Indigenous AMF were a mixture of Glomus viscosum, Glomus mosseae and Glomus intraradices initially isolated from a cotton field. Cotton was grown for 12 weeks and the elements of shoot were determined at three stages of plant growth. Inoculated cotton plants with AMF had higher concentrations of K, Ca, manganese (Mn), iron (Fe), copper (Cu) and zinc (Zn) than non-mycorrhizal plants. Shoot concentrations of these elements increased significantly when SM was added to mycorrhizal plants. Maximum plant micronutrient uptake was found in the treatment of AMF inoculation with SM. Mn, Fe, Cu and Zn uptake increased significantly by 457%, 282%, 272% and 295%, respectively, over control. Indigenous AMF combined with SM resulted in better plant growth and micronutrient uptake.  相似文献   

15.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

16.
ABSTRACT

The exploitation of phosphate mines generates an important quantity of phosphate sludge that remains accumulated and not valorized. In this context, composting with organic matter and rhizospheric microorganisms offers an interesting alternative and that is more sustainable for agriculture. This work aims to investigate the synergetic effect of arbuscular mycorrhizal fungi (AMF), phosphate-solubilizing bacteria (PSB) and phospho-compost (PC), produced from phosphate-laundered sludge and organic wastes, and their combination on plant growth, phosphorus solubilization and phosphatase activities (alkaline and acid). Inoculated mycorrhizae and bacteria strains used in this study were selected from plant rhizosphere grown on phosphate-laundered sludge. Significant (p < .05) increases in plant growth was observed when inoculated with both consortia and PC (PC+ PSB+ AMF) similar to those recorded in plants amended with chemical fertilizer. Tripartite inoculated tomato had a significantly (p < .05) higher shoot height; shoot and root dry weight, root colonization and available P content, than the control. Co-inoculation with PC and AMF greatly increased alkaline phosphatase activity and the rate of mycorrhizal intensity. We conclude that PC and endophytic AMF and PSB consortia contribute to a tripartite inoculation in tomato seedlings and are coordinately involved in plant growth and phosphorus solubilization. These results open up promising prospects for using formulate phospho-compost enriched with phosphorus-solubilizing microorganisms (PSM) in crop cultivation as biofertilizers to solve problems of phosphate-laundered sludge accumulation.  相似文献   

17.
Soil acidification has become a serious problem for citrus cultivation in China. As a soil amendment, biochar is expected to increase soil pH as well as soil fertility. In this study, we assessed the effect of biochar on Trifoliate orange, the most frequently used citrus rootstock, in a pot experiment using acidic red soil from the Gannan citrus production area. Plant height and shoot diameter of Poncirus trifoliata (L.) Raf. seedlings increased significantly after biochar was added to soils. This positive effect was further evidenced by the increased plant biomass and leaf net photosynthetic rate. The root system architecture (RSA) was evaluated based on root length, root surface area, root volume and root tip. Biochar amendment significantly increased the total absorptive surface area of the root system. Due to the significant role of arbuscular mycorrhizal fungi (AMF) in citrus root nutrient uptake, the AMF colonization and community in Poncirus roots were investigated. The AMF colonization rate was not significantly affected by biochar, whereas AMF diversity increased upon biochar treatment. In addition, the biochar treatment resulted in increases in soil pH, organic matter and mineral nutrients. Together, our results suggest that the positive effects of biochar on the growth performance of Poncirus seedlings can be attributed to the substantial augmentation of soil fertility, increased soil pH, optimized RSA and improved AMF species composition.  相似文献   

18.
The aim of this experiment was to evaluate the impact of colonization with arbuscular mycorrhizal (AM) fungus Glomus constrictum on the biomass production, flower quality, chlorophyll content, macronutrients and heavy metals content of marigold (Tagetes erecta L.) planted under uncontaminated soil and watered with various rates of sewage water. Sewage water utilization significantly decreased biomass production, characters of flower, nutrient concentration and rates of mycorrhizal colonization of mycorrhizal (M) and non-mycorrhizal (NM) marigold as compared to control untreated plants especially at the higher rates, but the reduction rate was proportionally higher in non-AM treatments. Mycorrhizal plants had significantly greater yield, relative chlorophyll content, leaf area, flower quality and element (P, N, K and Mg) content compared to non-inoculated marigold plants irrigated with or without sewage water. Furthermore, AM inoculation had highly decreased heavy metal (Zn, Co, Mn, Cu) content in tissues as compared to equivalent non-inoculated plants grown under sewage water application. Growing marigold with AM inoculum can reduce toxicity of heavy metals and enhance biomass production and P uptake. The results support the view that AM have a protective function for the host plant, hence playing a potential function in soil polluted immobilization processes, and thus are of assessing the potential of phytoremediation of heavy metals in sewage water contaminated soil.  相似文献   

19.
接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明, AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。  相似文献   

20.
Crocus sativus L. cultivation is expanding to areas with low soil fertility, where mycorrhizal fungi are supposed to be essential for plants growth and ecosystems functioning. Agricultural practices applied under these conditions should lead to good saffron productivity and quality. Our objective was to study the density and diversity of mycorrhizal fungi populations associated with saffron grown in Taliouine (Morocco) under different agricultural management practices (fertilization type, age and plantation method). Morpho-anatomical studies identified rhizospheric mycorrhizal spores and assessed root colonization by arbuscular mycorrhizal fungi (AMF). Molecular identification of AMF was realized by sequencing the Large Subunit (LSU) rDNA gene region. Among the eleven species of AMF spores identified, Funneliformis and Rhizoglomus species were the most abundant (> 35%). Modern saffron plantation showed higher roots colonization rates (mycorrhization intensity (100%) and frequency (51.6%)), while in traditional plantations lower mycorrhization frequency values were found (17.4%). LSU sequencing identified five AMF genera and three unknown genomic groups, whereas Shannon diversity index indicated that AMF community composition changed significantly according to plantation age and fertilization type. Our results contribute to a better knowledge of saffron AMF communities and open new perspectives for a rational utilization of the agricultural practices for organic saffron production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号