首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular genetic assessment of herbicide-resistant Sinapis arvensis   总被引:1,自引:0,他引:1  
MEIKLE  FINCH  McROBERTS  & MARSHALL 《Weed Research》1999,39(2):149-158
The acquisition of resistance to both the auxinic herbicide dicamba and the sulfonylurea herbicide chlorsulfuron has been recorded in Canadian populations of the weed species Sinapis arvensis L. (charlock, wild mustard) To study the effect of this selection for herbicide resistance on levels of genetic variation, polymerase chain reaction-based DNA fingerprinting techniques were used to characterize two herbicide-resistant and one susceptible population of S. arvensis . Analysis of the resultant DNA marker profiles revealed extensive polymorphism between individuals. However, segregation of the three biotypes was detectable despite high levels of intrabiotype polymorphism. No reduction in the levels of heterozygosity within the resistant populations were found compared with the susceptible population.  相似文献   

2.
The 1995/6 International Survey of Herbicide-Resistant Weeds recorded 183 herbicide-resistant weed biotypes (124 different species) in 42 countries. The increase in the number of new herbicide-resistant weeds has remained relatively constant since 1978, at an average of nine new cases per year worldwide. Whilst 61 weed species have evolved resistance to triazine herbicides, this figure now only accounts for one-third of all documented herbicide-resistant biotypes. Triazine-resistant weeds have been controlled successfully in many countries by the use of alternative herbicides. Due to the economic importance of ALS and ACCase inhibitor herbicides worldwide, and the ease with which weeds have evolved resistance to them, it is likely that ALS and ACCase inhibitor-resistant weeds will present farmers with greater problems in the next five years than triazine-resistant weeds have caused in the past 25 years. Thirty-three weed species have evolved resistance to ALS-inhibitor herbicides in 11 countries. ALS-inhibitor-resistant weeds are most problematic in cereal, corn/soybean and rice production. Thirteen weed species have evolved resistance to ACCase inhibitors, also in 11 countries. ACCase inhibitor resistance in Lolium and Avena spp. threatens cereal production in Australia, Canada, Chile, France, South Africa, Spain, the United Kingdom and the USA. Fourteen weed species have evolved resistance to urea herbicides. Isoproturon-resistant Phalaris minor infesting wheat fields in North West India and chlorotoluron-resistant Alopecurus myosuroides in Europe are of significant economic importance. Although 27 weed species have evolved resistance to bipyridilium herbicides, and 14 weed species have evolved resistance to synthetic auxins, the area infested and the availability of alternative herbicides have kept their impact minimal. The lack of alternative herbicides to control weeds with multiple herbicide resistance, such as Lolium rigidum and Alopecurus myosuroides, makes these the most challenging resistance problems. The recent discovery of glyphosate-resistant Lolium rigidum in Australia is a timely reminder that sound herbicide-resistant management strategies will remain important after the widespread adoption of glyphosate-resistant crops. ©1997 SCI  相似文献   

3.
Resistance to acetyl-coenzyme A carboxylase (ACCase) inhibitors has developed in at least 10 grass weed species in recent years. In most instances, resistance is conferred by an ACCase alteration in the resistant biotypes that reduces sensitivity to aryloxyphenoxypropionate (AOPP) and cyclohexanedione (CHD) herbicides. Analysis of ACCase from many of these resistant weed biotypes suggests the presence of different mutations, each conferring a different pattern and level of resistance to various AOPP and CHD herbicides. In all cases analyzed to date, resistance is controlled by a single dominant or semi-dominant nuclear gene. In several weed biotypes, resistance is conferred by enhanced herbicide detoxification, primarily through elevated expression or activity of cytochrome P450 monooxygenase(s). This mechanism can confer cross-resistance to herbicides from other chemical classes with different modes of action. Finally, multiple herbicide resistance, i.e. the acquisition of several different resistance mechanisms, has been reported in some weed biotypes. ©1997 SCI  相似文献   

4.
The expansion of weed species is a major problem in agriculture, especially when the number of herbicide-resistant biotypes is rising continuously. The major ecological questions associated with the evolution of herbicide resistance involve an intricate understanding of the interplay between gene frequency, fitness, inheritance and gene flow. In this study, the RAPD (Random Amplified Polymorphic DNA) technique, which facilitates detection of variability at DNA level, was used to examine the spread of Solanum nigrum L. populations. Twenty-five populations, from Poland, France and the UK, were analysed. Six populations from Poland and one from France showed target site-based triazine resistance. The genetic relationship between individuals was studied using the RAPD technique. It was found that some resistant populations from the Gabin and Grojec areas show very high affinity levels compared with individuals from France. Three groups of populations in which resistance had developed independently were distinguished. The results of the present investigation suggest that migratory birds, such as Turdus pilaris L. and Sturnus vulgaris L., play an important in spreading S. nigrum seeds.  相似文献   

5.
Herbicide resistance is a widespread issue that impacts management of conventional farms, but also has ramifications for the weed community assembly; it is therefore important to see how these species factor into the weed community assembly of farms throughout the countryside. This research analysed species richness and community diversity in 98 field relevés from 48 organic and 50 conventional farms evenly distributed between two major production regions of the Czech Republic and then evaluated the incidence of species which have been reported resistant in the Czech Republic and its neighbouring countries. Farms were selected independently of any acknowledged resistant species. Out of 164 species found in this survey, only eight species have had herbicide-resistant biotypes reported in the Czech Republic, while a total of 19 species had herbicide-resistant biotypes reported in neighbouring countries. Species with recorded resistance to PSII inhibitors in the Czech Republic tended to be found together and were mostly associated with the beet production region, characterised by low altitude: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli and Solanum nigrum. Species with reported resistance to ALS and ACCase-inhibiting herbicides were not clearly associated with a particular region or farming type. Of the species which have had reported herbicide resistance in the neighbouring countries, several were found in conventional fields within the growing season and we recommend immediate screening for herbicide resistance in these species and more diligent action in management according to anti-resistance strategies: Bromus sterilis resistant to ACCase-inhibiting herbicides, A. retroflexus resistant to ALS-inhibiting herbicides or Avena fatua resistant to ACCase and ALS-inhibiting herbicides. This work is unique in that it is evaluating weed species diversity in organic and conventional farms and using the context to frame the prevalence of high-risk herbicide-resistant species; thereby putting the potential incidence of herbicide resistance into perspective at the landscape level.  相似文献   

6.
Herbicide-resistant weed biotypes are an increasing problem in agriculture, with reports of resistance to almost every herbicide class at some place in the world, and the total number of resistant biotypes at over 250. Agricultural Research Service (ARS) scientists have been key players in this area since the first substantiated occurrence of these resistant biotypes in the 1970s. The most significant of their contributions is the complete unraveling of the mechanism of triazine resistance by Arntzen and colleagues, then with ARS at the University of Illinois. These studies established a high benchmark for research in this area and are a model for all studies in this area. Other ARS scientists have investigated a large number of weed biotypes with resistance to a wide range of herbicide classes and mechanisms of resistance. Collectively, these studies have been used to generate herbicide resistance-management schemes for growers, based upon the herbicide site and the potential for resistance development.  相似文献   

7.
全球气候变化有利于外来杂草的入侵与传播,因为外来种通常可以快速适应环境。除草剂和抗除草剂作物的滥用使抗性杂草严重威胁现代农业的发展,这就需要新技术有效缓解当前的和未来的杂草问题。分子生物学是研究DNA、RNA以及蛋白质分子之间相互作用的科学,该技术已在杂草科学中广泛应用,如决定杂草抗药性机制、抗性杂草的起源、杂草基因型和基因流动的传播、杂草特征的生态适应与进化发展等。这些信息有利于建立可持续发展的杂草管理方案。分子生物技术也具有可直接用于防除杂草的潜力,如可用于开发新的除草措施的技术,包括宏基因组学、病毒诱导基因沉默、转基因雌性不育性等。  相似文献   

8.
Weed species shifts in glyphosate-resistant crops   总被引:4,自引:0,他引:4  
The adoption of glyphosate-based crop production systems has been one of the most important revolutions in the history of agriculture. Changes in weed communities owing to species that do not respond to current glyphosate-based management tactics are rapidly increasing. Clearly, glyphosate-resistant crops (GRCs) do not influence weeds any more than non-transgenic crops. For most crops, the trait itself is essentially benign in the environment. Rather, the weed control tactics imposed by growers create the ecological selection pressure that ultimately changes the weed communities. This is seen in the adoption of conservation tillage and weed management programs that focus on one herbicide mode of action and have hastened several important weed population shifts. Tillage (disturbance) is one of the primary factors that affect changes in weed communities. The intense selection pressure from herbicide use will result in the evolution of herbicide-resistant weed biotypes or shifts in the relative prominence of one weed species in the weed community. Changes in weed communities are inevitable and an intrinsic consequence of growing crops over time. The glyphosate-based weed management tactics used in GRCs impose the selection pressure that supports weed population shifts. Examples of weed population shifts in GRCs include common waterhemp [Amaranthus tuberculatus (Moq ex DC) JD Sauer], horseweed (Conyza canadensis L), giant ragweed (Ambrosia trifida L) and other relatively new weed problems. Growers have handled these weed population shifts with varying success depending on the crop.  相似文献   

9.
Fluridone was applied to a 98-8-ha lake in Orange County, Florida, USA, in five different treatment plots between October 1982 and February 1983 to control a severe infestation of Hydrilla verticillata. Hydrosoil residues and submersed aquatic plant biomass were monitored within the lake. Fluridone did not affect the submersed vegetation during the 4-month fall-winter treatment period. As water temperatures increased during spring, Hydrilla biomass declined at an average of 0.178 kg m?2 per month. By summer (192 days after last treatment), the target species could not be found within the lake. Fluridone residues were detected in the hydrosoil immediately following treatments and generally peaked coinciding with the decline in aquatic plant biomass. The maximum fluridone detected in the hydrosoil was only 5% of the 2.25 kg ha?1 applied, and this amount was obtained from outside of a treatment area. Residue concentrations were highly variable between sampling sites and sampling periods and unexpectedly increased 14 months after treatment. Winter-killed marginal vegetation is a possible source of this increase. Detectable concentrations of fluridone, and vegetation control, persisted for a total of 86 weeks from the date of the last treatment and non-detectable residues may have persisted after 86 weeks. This study indicates that a lower application rate might have provided adequate control of Hydrilla and possibly decreased residue concentrations in non-target areas.  相似文献   

10.
Taking stock of herbicide-resistant crops ten years after introduction   总被引:11,自引:0,他引:11  
Since transgenic, bromoxynil-resistant cotton and glufosinate-resistant canola were introduced in 1995, planting of transgenic herbicide-resistant crops has grown substantially, revolutionizing weed management where they have been available. Before 1995, several commercial herbicide-resistant crops were produced by biotechnology through selection for resistance in tissue culture. However, non-transgenic herbicide-resistant crops have had less commercial impact. Since the introduction of glyphosate-resistant soybean in 1996, and the subsequent introduction of other glyphosate-resistant crops, where available, they have taken a commanding share of the herbicide-resistant crop market, especially in soybean, cotton and canola. The high level of adoption of glyphosate-resistant crops by North American farmers has helped to significantly reduce the value of the remaining herbicide market. This has resulted in reduced investment in herbicide discovery, which may be problematic for addressing future weed-management problems. Introduction of herbicide-resistant crops that can be used with selective herbicides has apparently been hindered by the great success of glyphosate-resistant crops. Evolution of glyphosate-resistant weeds and movement of naturally resistant weed species into glyphosate-resistant crop fields will require increases in the use of other herbicides, but the speed with which these processes compromise the use of glyphosate alone is uncertain. The future of herbicide-resistant crops will be influenced by many factors, including alternative technologies, public opinion and weed resistance. Considering the relatively few recent approvals for field testing new herbicide-resistant crops and recent decisions not to grow glyphosate-resistant sugarbeet and wheat, the introduction and adoption of herbicide-resistant crops during the next 10 years is not likely to be as dramatic as in the past 10 years.  相似文献   

11.
杂草对AHAS抑制剂的抗药性分子机理研究进展   总被引:3,自引:1,他引:2  
除草剂在田间的重复及不合理使用,导致了杂草抗药性的发生和发展。其中AHAS抑制剂由于靶标单一,抗性发展十分迅速。截至2009年,已有103种杂草对AHAS抑制剂产生了抗药性,占19类化学除草剂总抗药性杂草生物型的近1/3。从AHAS基因突变位点及种类与杂草抗药性水平的关系、AHAS基因突变与AHAS酶活性的关系、AHAS基因拷贝数与杂草抗药性的关系以及AHAS酶与除草剂结合前后的三维结构等方面,综述了杂草对AHAS抑制剂产生抗药性的机理,旨在为AHAS抑制剂抗性研究提供参考。并对自然种群目标基因的等位基因检测技术(ECOTILLING)和衍生型酶切扩增多态性序列(dCAPS)两种通过检测等位基因多态性的手段快速诊断抗药性杂草的新技术进行了介绍,讨论了延缓杂草抗药性发生和发展的策略。  相似文献   

12.
The management of weeds in Malaysian rice fields is very much herbicide‐based. The heavy reliance on herbicide for weed control by many rice‐growers arguably eventually has led to the development and evolution of herbicide‐resistant biotypes in Malaysian rice fields over the years. The continuous use of synthetic auxin (phenoxy group) herbicides and acetohydroxyacid synthase‐inhibiting herbicides to control rice weeds was consequential in leading to the emergence and prevalence of resistant weed biotypes. This review discusses the history and confirmed cases and incidence of herbicide‐resistant weeds in Malaysian rice fields. It also reviews the Clearfield Production System and its impact on the evolution of herbicide resistance among rice weed species and biotypes. This review also emphasizes the strategies and management options for herbicide‐resistant rice field weeds within the framework of herbicide‐based integrated weed management. These include the use of optimum tillage practices, certified clean seeds, increased crop competition through high seeding rates, crop rotation, the application of multiple modes of action of herbicides in annual rotations, tank mixtures and sequential applications to enable a broad spectrum of weed control, increase the selective control of noxious weed species in a field and help to delay the resistance evolution by reducing the selection pressure that is forced on those weed populations by a specific herbicidal mode of action.  相似文献   

13.
ALS抑制剂的杂草抗性概述   总被引:4,自引:0,他引:4  
随着化学除草剂的不断推广和使用,杂草抗性问题也日益加重。本文搜集了2003年和2007年各种不同作用机制药剂的杂草抗性的报道,重点搜集、整理并分析了ALS抑制剂的最近杂草抗性研究报道,其相关抗性机理,并探讨了ALS抑制剂抗性杂草治理措施。  相似文献   

14.
Herbicide-resistant crops and weed resistance to herbicides   总被引:10,自引:0,他引:10  
The adoption of genetically modified (GM) crops has increased dramatically during the last 3 years, and currently over 52 million hectares of GM crops are planted world-wide. Approximately 41 million hectares of GM crops planted are herbicide-resistant crops, which includes an estimated 33.3 million hectares of herbicide-resistant soybean. Herbicide-resistant maize, canola, cotton and soybean accounted for 77% of the GM crop hectares in 2001. However, sugarbeet, wheat, and as many as 14 other crops have transgenic herbicide-resistant cultivars that may be commercially available in the near future. There are many risks associated with the production of GM and herbicide-resistant crops, including problems with grain contamination, segregation and introgression of herbicide-resistant traits, marketplace acceptance and an increased reliance on herbicides for weed control. The latter issue is represented in the occurrence of weed population shifts, the evolution of herbicide-resistant weed populations and herbicide-resistant crops becoming volunteer weeds. Another issue is the ecological impact that simple weed management programs based on herbicide-resistant crops have on weed communities. Asiatic dayflower (Commelina cumminus L) common lambsquarters (Chenopodium album L) and wild buckwheat (Polygonum convolvulus L) are reported to be increasing in prominence in some agroecosystems due to the simple and significant selection pressure brought to bear by herbicide-resistant crops and the concomitant use of the herbicide. Finally, evolution of herbicide-resistant weed populations attributable to the herbicide-resistant crop/herbicide program has been observed. Examples of herbicide-resistant weeds include populations of horseweed (Conyza canadensis (L) Cronq) resistant to N-(phosphonomethyl)glycine (glyphosate). An important question is whether or not these problems represent significant economic issues for future agriculture.  相似文献   

15.
What have the mechanisms of resistance to glyphosate taught us?   总被引:2,自引:0,他引:2  
The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are (1) target-site mutations, (2) gene amplification and (3) altered translocation due to sequestration. What have we learned from the selection of these mechanisms, and how can we apply those lessons to future herbicide-resistant crops and new mechanisms of action? First, the diversity of glyphosate resistance mechanisms has helped further our understanding of the mechanism of action of glyphosate and advanced our knowledge of plant physiology. Second, the relatively rapid evolution of glyphosate-resistant weed populations provides further evidence that no herbicide is invulnerable to resistance. Third, as new herbicide-resistant crops are developed and new mechanisms of action are discovered, the weed science community needs to ensure that we apply the lessons we have learned on resistance management from the experience with glyphosate. Every new weed management system must be evaluated during development for its potential to select for resistance, and stewardship programs should be in place when the new program is introduced. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

17.
Glyphosate [N-(phosphonomethyl) glycine] is currently the most important non-selective, wide-spectrum herbicide used worldwide. Introduced in 1974, glyphosate was initially a non-crop herbicide and plantation crop herbicide, although it is now widely used in no-till crop production and, more recently, for weed control in herbicide-resistant transgenic crops, such as maize, soybean and cotton ( Baylis 2000 ; Caseley & Copping 2000 ). Despite its widespread and long-term use, no case of evolved resistance to glyphosate was documented until 1996 ( Pratley et al . 1996 ). Since then, a few other cases have been reported. To date, evolved resistance to glyphosate has been identified and documented in Lollium rigidum in Australia ( Powles et al . 1998 ; Pratley et al . 1999 ), Eleusine indica in Malaysia ( Lee & Ngim 2000 ), and L. rigidum in South Africa and California (USA), and Conyzia canadensis in Delawere (USA) ( Van Gessel 2001 ). Also, accessions of L. rigidum from South Africa and California have been reported to resist glyphosate ( Heap 2001 ). In Chile, the first case of glyphosate-resistance in Lolium multiflorum was reported in 1999 and documented in 2003 ( Pérez & Kogan 2003 ). This case was the result of an intensive selection pressure caused by the continuous applications of glyphosate in fruit orchards over 8–10 years. The present study is a first approach to elucidating the mechanism involved in the resistance of one biotype of L. multiflorum selected in Chilean orchards.  相似文献   

18.
我国水稻田杂草抗药性研究进展   总被引:13,自引:0,他引:13  
水稻是我国最主要的粮食作物之一,杂草的危害严重影响了水稻的产量与品质。化学防除仍然是治理水稻田杂草最有效的途径。目前我国水稻田稗属杂草、千金子、马唐、雨久花、野慈姑、异型莎草、耳叶水苋、眼子菜、节节菜、萤蔺等多种杂草对二氯喹啉酸、五氟磺草胺、氰氟草酯、噁唑酰草胺、苄嘧磺隆、吡嘧磺隆、双草醚、噁草酮、乙氧氟草醚等多种常用除草剂产生了抗药性。面对日趋严重的水稻田抗药性杂草的危害,对抗药性杂草进行深入系统的研究以达到科学防治的目的显得尤为重要。本文总结了我国水稻田抗药性杂草的抗药性水平、靶标酶抗药性机理、代谢酶抗药性机理和其他抗药性机理,归纳了抗药性杂草的交互抗性、多抗性发生情况以及抗药性治理现状,分析了我们在杂草抗药性研究与治理方面面临的问题。  相似文献   

19.
Glyphosate is one of the most commonly used broad‐spectrum herbicides over the last 40 years. Due to the widespread adoption of glyphosate‐resistant (GR) crop technology, especially corn, cotton and soybean, several weed species have evolved resistance to this herbicide. Research was conducted to confirm and characterize the magnitude and mechanism of glyphosate resistance in two GR common ragweed ( A mbrosia artemisiifolia L.) biotypes from Mississippi, USA. A glyphosate‐susceptible (GS) biotype was included for comparison. The effective glyphosate dose to reduce the growth of the treated plants by 50% for the GR1, GR2 and GS biotypes was 0.58, 0.46 and 0.11 kg ae ha?1, respectively, indicating that the level of resistance was five and fourfold that of the GS biotype for GR1 and GR2, respectively. Studies using 14 C‐glyphosate have not indicated any difference in its absorption between the biotypes, but the GR1 and GR2 biotypes translocated more 14 C‐glyphosate, compared to the GS biotype. This difference in translocation within resistant biotypes is unique. There was no amino acid substitution at codon 106 that was detected by the 5‐enolpyruvylshikimate‐3‐phosphate synthase gene sequence analysis of the resistant and susceptible biotypes. Therefore, the mechanism of resistance to glyphosate in common ragweed biotypes from Mississippi is not related to a target site mutation or reduced absorption and/or translocation of glyphosate.  相似文献   

20.
Mesotrione is a new callistemone herbicide that inhibits the HPPD enzyme (p-hydroxyphenylpyruvate dioxygenase) and introduces a new naturally selective tool into weed-management programmes for use in maize. Mesotrione provides control of the major broad-leaved weeds, and it can be used in integrated weed-management programmes depending on the grower's preferred weed-control strategy. At post-emergence rates of 150 g AI ha-1 or less, mesotrione provides naturally selective control of key species that may show triazine resistance (TR), e.g. Chenopodium album L, Amaranthus species, Solanum nigrum L, as well as species of weed that show resistance to acetolactase synthase (ALS) inhibitors e.g. Xanthium strumarium L, Amaranthus spp and Sonchus spp. The data presented show that resistant and susceptible biotypes of these species with resistance to triazine herbicides, such as atrazine, simazine, terbutylazine and metribuzin, or ALS-inhibitor herbicides, such as imazethepyr, remain susceptible to mesotrione. These results confirm that there is no cross-resistance in biotypes with target site resistance to triazine or ALS-inhibiting herbicides. It is important that herbicide choice and rotation becomes an integral part of planning weed management, so as to minimise the risks of crop losses from weed competition, build-up of weed seed in the soil and the further development of weed resistance across a range of herbicide modes of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号