共查询到16条相似文献,搜索用时 78 毫秒
1.
为探明大豆产量与株高、主茎节数、单株荚数、单株粒数、百粒质量等产量构成因素间的相关性,定位控制这些性状的QTL进而提高大豆产量,以4个产量相关性状差异较大的大豆亲本配制双交组合(垦丰14×垦丰15)×(黑农48×垦丰19)衍生的包含160个株系的四向重组自交系群体(FW-RIL)为材料,在哈尔滨(2013-2015年)和克山(2013,2015年)种植,获得的株高、主茎节数、单株荚数、单株粒数、百粒质量的表型数据,结合已经构建的包含275个SSR标记的大豆遗传图谱对产量相关性状QTL进行定位。结果表明:在多个环境下重复稳定检测到产量相关性状的QTL 28个,其中10个株高QTL可解释表型变异率在3.20%~11.72%,3个主茎节数QTL可解释表型变异率分别为6.55%,5.70%,3.77%,9个单株荚数QTL可解释表型变异率在2.60%~11.25%,4个百粒质量QTL可解释表型变异率在3.83%~9.35%,2个单株粒数QTL可解释表型变异率分别为8.58%,7.52%;28个多环境重复检测到的产量性状QTL,其中16个QTL是本研究新检测到的,12个与国内外报道过的产量相关性状... 相似文献
2.
大豆是食用植物蛋白质和油脂的主要来源,提高大豆蛋白质和油分含量是主要的育种目标,与传统育种相比,利用分子标记定位QTL辅助育种,在实用价值和理论意义上都对大豆育种具有十分重要的价值。利用蛋白质与油分含量差异较大的大豆亲本东农L13和合农60、黑河36,分别构建了以东农L13为共同亲本的2个重组自交系群体RIL3613(东农L13×黑河36)和RIL6013(东农L13×合农60),分别包含134,156个株系;利用3个生态环境下数据对大豆蛋白含量和油分含量进行了表型数据分析,分别利用150,137个SSR标记构建遗传图谱,采用完备区间作图法(ICIM),对3个环境下的油分和蛋白质含量进行了QTL定位。通过对表型数据的分析,2个RIL群体的蛋白质与油分含量在基因型间或不同环境条件下的差异均达极显著水平,且基因型与环境间存在极显著的互作效应。2个群体中,共检测到8个蛋白质含量QTL,分布于7个连锁群上;共检测出5个控制油分含量的QTL,分布于5个连锁群上,有1个油分含量的QTL在2个种植环境下重复检测到。在定位的QTL中,7个蛋白质含量相关的QTL和3个油分含量相关的QTL与前人研究一致,... 相似文献
3.
中国栽培和野生大豆豆腐与豆乳得率的遗传变异 总被引:1,自引:0,他引:1
我国不同生态区大豆种质豆腐与豆乳得率的遗传变异是专用型品种选育的基础。以来自各生态区的564份地方品种、101份育成品种、193份野生大豆加上88份国外品种,合计946份大豆种质为材料,采用小样品定量分析技术,测定干豆腐与干豆乳得率,研究其遗传变异。结果表明,全国野生大豆和栽培大豆的干豆腐与干豆乳得率均存在很大变异,干豆腐得率变幅分别为25.32~69.59、25.52~85.89 g 100 g-1,干豆乳得率变幅分别为40.75~82.86、39.05~91.86 g 100 g-1,栽培大豆两者的得率在野生豆基础上均有较大幅度改进;各生态区均存在与全国相同的变异情况,区内变异大于区间变异,但南方一些生态区栽培种豆腐(乳)得率变异程度相对较大,高得率材料相对较多,因本底(野生种)得率与地理纬度无关,推测与各地区栽培大豆利用方向的不同有关而形成了栽培种微弱的地理相关性;栽培材料中2.75%干豆腐得率超过75 g 100 g-1,5.50%干豆乳得率超过85 g 100 g-1,从中优选出来自Ⅱ、Ⅲ、Ⅳ、Ⅵ生态区的双高种质14份,可供各地区豆腐(乳)育种利用。 相似文献
4.
大豆重组自交系群体荚粒性状的QTL分析 总被引:16,自引:1,他引:16
利用大豆重组自交系soy01群体中的255个家系进行2年田间试验,采用两种作图方法,寻找一粒荚、四粒荚、每荚粒数等5个荚粒性状稳定的QTL。结果表明,利用区间作图法,2年共找到24个荚粒性状QTL,解释的遗传变异为5%~80%;利用复合区间作图法,2年共找到27个荚粒性状QTL,解释的遗传变异为4%~73%。利用复合区间作图法,2年找到2个重复出现、稳定的四粒荚QTL和2个每荚粒数QTL,为大豆荚粒性状QTL的精细定位和分子标记辅助育种提供了基础和依据。 相似文献
5.
蛋白质和油分含量是大豆重要的育种目标,蛋白质和油分含量QTL定位和优异等位变异的发掘对大豆分子设计育种具有重要意义。本研究以(垦丰14×垦丰15)×(黑农48×垦丰19)衍生的后代株系为材料,构建含有204个株系的大豆四向重组自交系群体,利用区间作图法,应用前期构建的SSR遗传图谱,对2013、2014和2015年在哈尔滨和克山2地共8个环境下的蛋白质和油分含量进行QTL定位分析。结果表明,8个环境中检测到29个蛋白质含量QTL和39个油分含量QTL。在所定位的蛋白质含量QTL中,有5个能够在2个以上环境被定位到,这些蛋白质含量QTL分布在 A1、D2、J、N和O等6个连锁群上,对表型效应的贡献率为 7.65%~20.08%,其中qPC-A1-1、qPC-D2-1、qPC-J-1和qPC-O-2的贡献率在10%以上。在39个油分含量QTL中,有10个在多环境下被重复检测到,这些QTL分布在8个(A1、A2、B1、D1b、G、I、J、N)连锁群上,对表型效应的贡献率为7.30%~25.68%,其中qOC-A2-1、qOC-B1-1、qOC-G-1和qOC-J-1的贡献率在10%以上。 相似文献
6.
7.
大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位 总被引:1,自引:0,他引:1
以云南特有的紫色大麦紫光芒裸二棱和澳大利亚引进的黄色大麦Schooner构建的193个重组自交系为材料,对2013—2015年3年3个试验点的大麦籽粒总花色苷含量和千粒重进行相关性分析和QTL定位。大麦总花色苷含量和千粒重之间呈显著或极显著负相关。共检测到12个总花色苷含量QTL,分别位于1H、2H、4H、6H和7H染色体,贡献率为5.06%~23.86%; 8个千粒重QTL,分别位于2H、4H和7H染色体,贡献率为4.67%~42.32%。贡献率大于10%的QTL有10个,大于20%的有5个,最大的可达42.32%。其中至少2年2点重复检测到2个总花色苷含量QTL,分别位于2H Bmag0125–GBM1309和7H EBmatc0016–Bmag0206区间,可分别解释表型变异的13.66%~17.76%和13.07%~16.43%;3年3点重复检测到2个千粒重QTL,分别位于2HScssr03381–scssr07759和7H GBM1297-GBM1303区间,可分别解释表型变异的4.67%~14.55%和34.51%~42.32%,其加性作用方向均一致。控制总花色苷含量与千粒... 相似文献
8.
利用重组自交系群体分析籼稻A232抗三化螟相关QTL 总被引:2,自引:0,他引:2
水稻种质资源中抗螟虫种质较少,A232为中抗二化螟和三化螟的籼稻材料。为发掘A232抗螟性相关QTL,本研究利用以抗虫材料A232为父本与籼稻保持系岗46B(感三化螟)为母本所杂交构建的重组自交系(recombinant inbred line,RIL)F9群体为材料,2012-2013年在海南自然条件下对RIL群体中的104个株系进行三化螟抗性鉴定,利用130个在A232和岗46B表现多态性的简单重复序列(SSR)标记构建遗传连锁图谱,并同时采用复合区间作图法(CIM)和MCIM方法进行QTL分析。研究结果表明,采用复合区间作图法(CIM)共检测到7个枯心指数QTL,分布在第1、第2、第6、第10和第11染色体上。其中,q DHI-2-1的效应值最大,LOD值为3.83,位于第2染色体,两侧连锁标记为RM1358和RM35494,可解释表型变异的25.12%。q DHI-1-1、q DHI-6-1、q DHI-6-2和q DHI-10四个QTLs的加性效应负值,说明增效的抗虫等位基因来源于父本A232,具有弱化枯心指数作用,这些位点有望用于抗虫育种研究。采用MCIM方法检测到2个QTLs,位于第1和2染色体,可分别解释变异的11.68%和6.59%;在第4和第6染色体检测到1对上位QTLs,可以解释7.57%的表型变异。这些研究结果为阐明A232对螟虫抗性的遗传基础及进一步开展抗螟虫水稻育种提供依据。 相似文献
9.
大豆苗期耐淹性的遗传与QTL分析 总被引:4,自引:0,他引:4
洪涝灾害是大豆生产的主要逆境之一,培育耐涝品种是抗灾保收的重要措施。大豆耐涝性育种方案的设计必须以耐涝性遗传为前提。以苏88-M21(淹水不敏感)×新沂小黑豆(淹水敏感)衍生的175个重组自交系(NJRISX)为材料,在盆栽V2期土壤表层保持5~7 cm水层20 d的淹水条件下,研究大豆苗期耐淹性的遗传和QTL定位。通过对8个耐淹性有关性状的相关分析和主成份分析,确定以处理前后株高变化量、处理终叶龄和成熟期株高3个性状的平均耐淹指数为评价指标。NJRISX家系间耐淹性差异极显著,存在超亲分离。主基因+多基因分离分析表明该群体的耐淹性为2对连锁主基因+多基因遗传,主基因遗传率为62.83%,多基因的遗传率为8.90%。WinQTLCart2.5复合区间及多区间QTL定位分析均检测到2个QTL,位于连锁群L2上的satt229~satt527和satt527~satt286区间,对表型的解释率分别为11.76%~25.20%和10.10%~12.34%。大豆NJRISX群体苗期耐淹性遗传分离分析与QTL定位结果相对一致。 相似文献
10.
鉴定低氧发芽力强的水稻资源,进而挖掘控制低氧发芽的QTL,可以为改良直播稻低氧发芽能力提供材料基础和基因资源。在装满无菌水的10 cm高的离心管中鉴定了云南省籼稻地方品种扎西玛、江苏省优良食味粳稻品种南粳46及包含135个家系的扎西玛/南粳46 RIL群体的低氧发芽力。以28℃黑暗培养7 d的胚芽鞘长度作为低氧发芽力的评价标准。结果表明:在淹水7 d后,扎西玛和南粳46胚芽鞘长度分别为2.92,6.68 cm,二者在P=0.01水平上存在极显著差异。进而对扎西玛/南粳46 RIL群体135个家系低氧发芽力QTL分析发现,在水稻第12号染色体上的RM1300和RM1227之间检测到一个控制低氧发芽力的QTL(qAG-12)。该QTL的LOD值为3.04,可以解释11.24%的表型变异。生物信息学分析表明,qAG-12位于第12染色体上26.00~27.34 Mb的1.34 Mb范围内。该区域共有200多个注释基因,未见已报道控制低氧发芽力的QTL。以上结果表明:扎西玛和南粳46低氧发芽力存在极显著差异;qAG-12是一个新的控制低氧发芽力的QTL。 相似文献
11.
大豆苗期耐淹性的遗传与QTL分析 总被引:2,自引:0,他引:2
涝害是世界上许多国家的重大自然灾害。耐涝性可分为耐湿(渍)性和耐淹性。以科丰1号(高度耐淹)×南农1138-2(不耐淹)衍生的RIL群体(NJRIKY)为材料, 以盆栽全淹条件下的存活率为耐淹性指标, 采用主基因+多基因混合遗传模型分离分析法进行遗传分析, 并利用WinQTL Cartographer Version 2.5程序的复合区间作图法(CIM)及多区间作图法(MIM)进行QTL定位。结果表明, 两次试验的耐淹性均存在超亲变异, 试验间、家系间以及试验与家系互作间的差异均极显著; NJRIKY大豆群体的耐淹性为3对等加性主基因遗传模型, 主基因遗传率为42.40%; 在QTL分析中, 用CIM和MIM共同检测到3个耐淹QTL, 分别位于A1、D1a和G连锁群上的Satt648~K418_2V、Satt531~A941V、Satt038~Satt275 (B53B~Satt038)区间, 表型贡献率为4.4%~7.6%。分离分析与QTL定位的结果相对一致, 可相互印证。 相似文献
12.
大豆光合气体交换参数的QTL分析 总被引:3,自引:0,他引:3
光合气体交换参数是用来表示植物光合能力的常用指标。利用来自大豆品种科丰1号和南农1138-2的重组自交系群体NJRIKY(184个家系)及其分子遗传图谱,通过两年盆栽试验定位与光合速率、气孔导度、胞间CO2浓度和蒸腾速率有关的QTL。结果表明,4个参数的遗传力中等偏低,在0.48~0.60之间;两两间存在极显著正相关关系,相关系数在0.192~0.686之间;两年共检测到15个QTL,分别位于C1、C2、D2、E、H、I和O连锁群上,LOD值在2.25~6.31之间,贡献率为4.80%~12.30%,;有6个QTL在不同环境下稳定表达,它们分别是控制光合速率的qPnC1.1、控制气孔导度的qSCD2.1和qSCI.1、控制胞间CO2浓度的qCiI.1和qCiO.1,以及控制蒸腾速率的qTrO.1;检测到4个同时控制两个或两个以上参数的标记区间,它们分别是C1连锁群上控制光合速率和气孔导度的sat_311~sct_191区间,E连锁群上控制光合速率、气孔导度和胞间CO2浓度的sat_172~satt268区间,I连锁群上控制气孔导度和胞间CO2浓度的satt726~satt330区间,以及D2连锁群上控制气孔导度和胞间CO2浓度的sat_296~sat_277区间。 相似文献
13.
一张含有227个SSR标记的大豆遗传连锁图 总被引:12,自引:0,他引:12
利用由大豆主栽种晋豆23和农家种灰布支(ZDD2315)杂交培育的F10代大豆重组自交系群体Jinf,共474个家系作为作图群体。依据1999年Cregan等发表的大豆“公共图谱”,选用441对SSR引物,建成了含有227个SSR座位的大豆SSR连锁图,该图覆盖大豆基因组1900cM,两个相邻标记的平均间距为8.3cM,归属于20个大豆连锁群,与Song等2004年发表的公共图谱相比,所有标记都被定位于相同的连锁群,且排列顺序大致相同,具有很好的线性关系。 相似文献
14.
Sugarcane mosaic virus (SCMV) is one of devastating pathogens in maize (Zea mays L.), and causes serious yield loss in susceptible cultivars. An effective solution to control the virus is utilizing resistant
genes to improve the resistance of susceptible materials, whereas the basic work is to analyze the genetic basis of resistance.
In this study, maize inbred lines Huangzao4 (resistant) and Mo17 (susceptible) were used to establish an F9 immortal recombinant inbred line (RIL) population containing 239 RILs. Based on this segregation population, a genetic map
was constructed with 100 simple sequence repeat (SSR) markers selected from 370 markers, and it covers 1421.5 cM of genetic
distance on ten chromosomes, with an average interval length of 14.2 cM. Analysis of the genetic map and resistance by mapping
software indicated that a major quantitative trait locus (QTL) was between bin6.00 and bin6.01 on chromosome 6, linked with
marker Bnlg1600 (0.1 cM of interval). This QTL could account for 50.0% of phenotypic variation, and could decrease 27.9% of
disease index. 相似文献
15.
利用爱字棉1517×德州047重组近交系(recombinant inbred lines, RIL)中G6群体构建的SSR遗传连锁图谱及基于混合线性模型的复合区间作图法对QTL进行定位,并对主效QTL,加性×加性上位性QTL及与环境互作效应进行分析,为利用分子聚合方法提高产量提供理论依据。对2006年、2008年以及2009年的产量性状进行分离分析,检测到24个不同年份的主效QTL,其中相关于单株籽棉、单株皮棉、衣分、子指以及单株铃数的分别检测到1个不同年份稳定存在的主效QTL;对3年的产量性状作环境因子联合分析,检测到14个主效QTL,其中6个与环境互作,检测到20对加加上位性QTL,其中7对与环境互作。不同年份检测的稳定且受环境影响小或不受环境影响的与近处标记紧密连锁的主效QTL可用于分子标记辅助选择,以提高育种的效率。 相似文献
16.
大豆重组自交系群体NJRIKY遗传图谱的加密及其应用效果 总被引:1,自引:0,他引:1
作物基因组研究,包括基因或数量性状位点(QTL)定位、图位克隆以及物理图谱构建等,首先必须建立具有丰富标记信息的高密度遗传连锁图谱。由科丰1号和南农1138-2杂交组合衍生的重组自交系群体NJRIKY已经构建了4张大豆遗传连锁图谱,但由于遗传信息和标记数目不够充分,在基因和QTL作图时仍然存在精确度和准确度问题。为增加NJRIKY图谱密度,本研究在967对SSR引物中获得了401个多态性SSR标记。结合其他分子数据,使用作图软件Mapmaker/Exp3.0b,获得一张含有553个遗传标记,25个连锁群,总长2071.6cM,平均图距3.70cM的新遗传连锁图谱,其中SSR标记316个,RFLP标记197个,EST标记39个,形态标记1个。连锁群上大于20cM的标记间隔由原来42个减少到2个。原图谱的3个SMV抗性基因定位于D1b连锁群末端的开放区间上且仅与一个RFLP标记连锁,利用加密图谱对Rsc-3、Rsc-7、Rsc-9、Rsc-13、Rsa、Rn1和Rn3等7个SMV抗性基因重定位,全部位于D1b连锁群,与相邻分子标记距离均小于6cM,其中Rsc-9、Rn1、Rsa的距离小于1cM,Rsc-13与EST标记GMKF168a共分离。对本群体农艺性状进行QTL重定位,获得8个性状相关的42个主效QTL,其中20个QTL遗传贡献率大于10%,与原图谱比较,新定位的各QTL的标记区间明显缩短,与相邻标记的连锁更加紧密。 相似文献