首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles, were compared in three soils amended or not amended with dairy or swine manure at two temperatures (18 and 25°C) and two soil water regimes (constant and fluctuating) in laboratory incubation assays. Soil type was the dominant factor determining microbial community characteristics, resulting in distinct differences among all three soil types and some differing effects of manure amendments. Both dairy and swine manures generally increased bacterial populations, substrate diversity, and FAME biomarkers for gram-negative organisms in all soils. Microbial activity was increased by both manures in an Illinois soil but only by dairy manure in two Maine soils. Dairy manure had greater effects than swine manure on SU and FAME parameters such as increased activity, utilization of carbohydrates and amino acids, substrate richness and diversity, and fungal FAME biomarkers. Temperature and water regime effects were relatively minor compared with soil type and amendment, but both significantly affected some microbial responses to manure amendments. Overall, microbial characteristics were more highly correlated with soil physical factors and soil and amendment C content than with N levels. These results indicate the importance of soil type, developmental history, and environmental factors on microbial community characteristics, which may effect nutrient availability from manure amendments and should be considered in amendment evaluations.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture  相似文献   

2.
We sampled soil at four sites in the Laguna Mountains in the western Sonoran Desert to test the effects of site and sample location (between or beneath plants) on fatty acid methyl ester (FAME) and carbon substrate ulilization (Biolog) profiles. The four sites differed in elevation, soil type, plant community composition, and plant percent cover. Soil pH decreased and plant density increased with elevation. Fertile islands, defined as areas beneath plants with greater soil resources than bare areas, are present at all sites, but are most pronounced at lower elevations. Consistent with this pattern, fertile islands had the greatest influence on FAME and Biolog profiles at lower elevations. Based on the use of FAME biomarker and principal components analyses, we found that soil microbial communities between plants at the lowest elevation had proportionally more Gram-negative bacteria than all other soils. At the higher elevation sites there were few differences in FAME profiles of soils sampled between vs. beneath plants. Differences in FAME profiles under plants among the four sites were small, suggesting that the plant influence per se is more important than plant type in controlling FAME profiles. Since microbial biomass carbon was correlated with FAME number (r=0.85,P<0.0001) and with FAME named (r=0.88,P<0.0001) and total areas (r=0.84,P<0.0001), we standardized the FAME data to ensure that differences in FAME profiles among samples were not the result of differences in microbial biomass. Differences in microbial substrate utilization profiles among sampling locations were greatest between samples taken under vs. between plants at the two lower elevation sites. Microbial substrate utilization profiles, therefore, also seem to be influenced more by the presence of plants than by specific plant type.  相似文献   

3.
The aims of this study were to investigate soil microbial community characteristics and their interrelationships with soil geochemistry under different farmlands in Shouguang, China. The traditional dilution plate counts, BIOLOG system, and fatty acid methyl ester (FAME) analyses were used to assess microbial populations, substrate utilization, and fatty acid profiles. The number of aerobic heterotrophic bacteria varied significantly among untilled land, maize, and mungbean fields. The amounts of actinomycetes, fungal fatty acids, and Gram-positive/Gram-negative bacteria ratios varied greatly among celery, tomato, and aubergine fields. In the tomato field, the soil microbial community characteristics were significantly different from other fields. Principal component analysis of BIOLOG and FAME data revealed differences in the catabolic capability and fatty acid profiles of soil microbial communities among different farmlands. Spearman correlation analyses showed that in these sand clay soils of Shouguang, microbial communities in different farmlands were closely correlated with soil geochemical elements, moisture, and organic matter.  相似文献   

4.
Microbial biomass, size and community structure along with an estimate of microbial activity and soil chemical parameters were determined at three depths in two soils (e.g. sandy loam Ultic Hapludalf and silt loam Mollic Hapludalf) replicated three times under one winter and summer season. Microbial biomass and community structure were estimated from phospholipid-PO4 content and fatty acid methyl ester (FAME) measurements. Microbial activity and assimilative capacity were estimated using a 3H-acetate incorporation into phospholipids and by incubating the soil samples at the average winter and summer temperatures, 3 and 20 °C, respectively. We found that the size of the microbial biomass in both the surface and the subsurface soils was not significantly affected by the seasonal variation but activity increased by as much as 83% at the summer temperatures in the surface soil. We demonstrated using FAME analysis that for both soils seasonal changes in the subsurface microbial community occurred. These findings suggest that winter conditions will shift the population activity level in both the surface and subsurface systems and the biochemical structure of the community in the subsurface. In all cases, the inorganic chemical properties of the soil, as a function of season, remained constant. The greatly increased activity of microbial population at the higher temperature will favor the capacity of the system to utilize nutrients or organic materials that may enter soil. During low temperature seasons the capacity of either surface or subsurface soils to assimilate materials is generally diminished but the reduction reflects changes in metabolism and not a reduced biomass size.  相似文献   

5.
The effects of 11 different 2- and 3-yr potato crop rotations on soil microbial communities were characterized over three field seasons using several techniques. Assessments included microbial populations determined by soil dilution plate counts on various general and selective culture media, microbial activity by fluorescein diacetate (FDA) hydrolysis, single carbon source substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles. Potato rotation crops evaluated in research plots at Newport, ME, included barley/clover, canola, green bean, millet, soybean, sweet corn, and a continuous potato control. Soil populations of culturable bacteria and overall microbial activity tended to be highest following barley, canola, and sweet corn rotations, and lowest with continuous potato. Differences among rotations were less apparent during the potato phase of the rotations. Populations of actinomycetes and fluorescent pseudomonads tended to be greater in barley rotations than in most other rotations. SU profiles derived from BIOLOG GN2 plates indicated that certain rotations, including barley, canola, and sweet corn tended to have higher overall microbial activity, and barley and sweet corn rotations averaged higher substrate richness and diversity. Soybean and potato rotations tended to have lower substrate richness and diversity. Principal component analyses of SU data revealed differences among rotation soil communities in their utilization of individual carbon sources and substrate guilds, including carbohydrates, carboxylic acids, amines/amides, and amino acids. Analyses of soil FAME profiles demonstrated distinct differences among all the rotation soils in their relative composition of fatty acids, indicating differences in their microbial community structure. Fatty acids most responsible for differentiation among rotation soils included 16:1 ω5c, 16:1 ω7c, 18:2 ω6c, 18:1 ω9c, 12:0, and 13:0 anteiso, with 16:1 ω5c being the single greatest determinant. Overall, monounsaturated fatty acids, particularly 16:1 ω5c, were most prevalent in sweet corn rotations and polyunsaturates were highest in barley and millet rotations. Straight chain saturated fatty acids comprised the greatest proportion of fatty acids in soils under continuous potato. FAME biomarkers for microorganism groups indicated barley and millet rotations had the highest ratio of fungi to bacteria, and soybean and continuous potato had the lowest ratio. This research has demonstrated that different crop rotations have distinctive effects on soil microbial communities that are detectable using a variety of techniques. Further studies will identify more specific changes associated with particular rotations and relate these changes to potential effects on disease management, crop health, and crop productivity.  相似文献   

6.
Microbial communities vary across the landscape in forest soils, but prediction of their biomass and composition is a difficult challenge due to the large numbers of variables that influence their community structures. Here we examine the use of artificial neural network (ANN) models for extraction of patterns among soil chemical variables and microbial community structures in forest soils from three regions of the Atlantic Forest of Brazil. At each location, variations in soil chemical properties and FAME profiles of microbial community structures were mapped at 20 × 20 m intervals within 10 ha parcels. Geostatistical analyses showed that spatial variability in soil physical and chemical variables could be mapped at scale distances of 20 m, but that FAME profiles representing the microbial communities were highly variable and had no spatial dependence at the same scale in most cases. RDA analysis showed that FAME signatures representing different microbial groups were positively associated with soil pH, OM, P and base cations concentrations, whereas microbial biomass was negatively associated with the same environmental factors. In contrast, ANN models revealed clear relationships between microbial community structures at each parcel location, and generated verifiable predictions of variations in FAME profiles in relation to soil pH, texture, and the relative abundances of base cations. The results suggest that ANN modeling provides a useful approach for describing the relationships between microbial community structures and soil properties in tropical forest soils that were not able to be captured using geostatistical and RDA analyses.  相似文献   

7.
Neem (Azadirachta indica A. Juss) seedlings were inoculated with arbuscular mycorrhizal (AM) fungi, Glomus intraradices Schenck and Smith and G. geosporum (Nicol. and Gerd.) Walker, Azospirillum brasilense, and phosphate-solubilizing bacteria (PSB) individually or in various combinations in unsterile soil under nursery conditions. Seedlings were harvested at 60 and 120 days after transplantation. Microbial inoculation resulted in increased mycorrhizal colonization, greater plant height, leaf area and number, root collar diameter, biomass, phosphorus, nitrogen and potassium content, and seedling quality. Inoculated seedlings also had low root/shoot ratios and low nutrient utilization efficiencies. Populations of PSB declined with seedling growth; contrarily populations of A. brasilense increased. A. brasilense and PSB populations were related to each other and influenced root colonization by AM fungi. Microbial inoculation effects were greatest when seedlings were inoculated with a combination of microbes rather than individually. This clearly indicates that these microorganisms act synergistically when inoculated simultaneously, with maximum response being when both AM fungi were coinoculated with A. brasilense and PSB. The results emphasize the importance of microbial inoculations for the production of robust, rapidly growing seedlings in nurseries and illustrate the advantage of inoculating soils of a low microbial population with indigenous microbes.  相似文献   

8.
Humic substances are frequently applied to creeping bentgrass ( Agrostis palustris Huds.) on golf putting greens to improve turf health and are marketed to enhance nutrient acquisition and possibly aid in retaining water in drought prone environments, but information on the role of humic substances in increasing soil water retention is limited. Additionally, it is difficult to separate the beneficial effects of nutrients and other ingredients added to commercial humic formulations from the effects of the pure humic substance. In our study, pure humic acid, tannic and citric acids were added to simulated creeping bentgrass putting greens. The organic acids were applied at normalized carbon rates of 250 mg C per litre by watering solutions through an automated irrigation system. Volumetric water content (VWC) and irrigation frequency, shoot and root growth, and tissue nutrient concentration of the turf were measured. None of the organic acid treatments improved water retention in the simulated greens. The humic acid-treated greens required more frequent irrigation than the untreated greens indicating that they were drying out more quickly. In addition, the addition of humic acid did not result in an increased tissue concentration of nutrients in the creeping bentgrass, top growth or dry shoot mass compared with the other treatments. However, creeping bentgrass root length was greater in the greens treated with humic acid compared with the untreated control.  相似文献   

9.
The application of organic mulches as a soil cover is effective in improving the quality of soil. However, very little information is available on the effect of mulches on the soil microbial community. In this study, we investigated the effect of various organic mulches on soil dehydrogenase activity (DHA) and microbial community structures in the top 1 cm and 5 cm below the soil surface 1 year after application of the mulches. DHA was stimulated at both depths in plots mulched with grass clippings (GC), but was not significantly different from the control for the other mulch treatments. Fatty acid methyl ester (FAME) analysis and denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction-amplified 16S rDNA fragments were used to assess changes in the soil microbial community structure. Cluster analysis and principle component analysis of FAME profiles showed that only soil mulched with pine chips distinctively clustered from the other treatments. At the soil surface, bacterial DGGE profiles revealed that distinct shifts in several bacterial populations occurred in soils mulched with GC and eucalyptus yardwaste (EY), while DGGE profiles from soil at the 5 cm depth revealed no distinct changes. Changes in bacterial diversity at the soil surface under different mulches were calculated based on the number of bands in the DGGE profile using the Shannon-Weaver index of diversity ( H). Compared to the control ( H =0.9), the GC- and EY-treated soils showed slightly increased bacterial diversity, with an H of 1.1 and 1.0, respectively. These results indicate that the long-term effect of organic mulches on the soil microbial activity and community structure is highly dependent upon the type of mulch and is mostly exerted in the top few centimeters of the soil profile.  相似文献   

10.
Abstract

A soil sample taken for chemical analysis should be representative of the growing medium of the plant. Turfgrasses often have thatch layers between the zone of green vegetation and the soil surface, and this thatch layer is generally discarded in the process of soil analysis. These thatch layers contain both roots and nutrient elements. If turfgrass roots are actively involved in removing nutrignts from the thatch, there may be advantages to including it with the soil for testing purposes. In the present investigation, two radioactive isotopes of phosphorus (32P and 33P) were used to separately label the thatch layer and the underlying soil of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). The roots of creeping bentgrass were found to simultaneously remove phosphorus from the thatch and from the underlying soil.

If the soil samples taken from turfgrass areas are to be truly representative of the soils capacity to supply nutrients, the thatch should be retained with the samples. Further investigations should be conducted to determine the feasibility of including the thatch in the chemical analysis process.  相似文献   

11.
The effect of a change of tillage and crop residue management practice on the chemical and microbiological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.  相似文献   

12.
In this laboratory study using microcosms with seedlings of silver birch (Betula pendula), we explored whether Cognettia sphagnetorum (Enchytraeidae) can retain its important role of accelerating decomposition processes in soils and stimulating primary production under disturbance. We established systems with or without wood ash amendment (first-order disturbance) in the soil, either in the presence or absence of C. sphagnetorum. To test whether the systems treated with wood ash are more sensitive to an additional disturbance than the ash-free systems, the microcosms were later on disturbed by drought. To determine the influence of two disturbances on the enchytraeids and populations of other fauna, and the possible changes in the system functioning, measurements were made of the growth of birch seedlings, foliar N concentration, composition and biomass of soil microbial communities and leaching of N and dissolved organic carbon from the microcosms. Both wood ash application and drought exerted a clear negative influence on the populations of C. sphagnetorum. However, populations of this species were very resilient and recovered rapidly after drought in the ash-free soils. In the ash-free soils C. sphagnetorum tended to improve birch growth, increased the N content of the birch leaves, and decreased the root to shoot ratio. However, in the ash-treated soils enchytraeids had negative effects on these parameters. C. sphagnetorum impacted on neither N and C leaching nor soil microbes, whereas wood ash decreased microbial biomasses and changed their community structure (as determined by phospholipid fatty acids method and denaturing gel electrophoresis) and substrate utilisation potential (Biolog method). It was concluded that C. sphagnetorum can retain its influential role under varying environmental conditions, but that the stimulating or retarding effects of this species on system functioning can be context dependent.  相似文献   

13.
Bacterial populations in constructed and fumigated golf course putting greens is a topic that has not been widely explored. The objective of this project was to evaluate the root mass and rhizosphere bacterial populations of creeping bentgrass (Agrostris palustris Huds. Crenshaw) greens over time as affected by root-zone mix and nitrogen rate. Individual miniature putting greens (1x0.5 m) were built at ground level. Two root-zone mixes (80%/20% sand-peat and 100% sand) and two N rates (1.0 and 0.5 g N m–2 week–1 all year) were evaluated, with four replications of each root-zone x N rate treatment. Quarterly (February, May, August, November) root samples (10 cm deep) were removed from each green for 3 years. Standard dilution plating techniques were used to enumerate fluorescent pseudomonads, gram-positive bacteria, gram-negative bacteria, Stenotrophomonas maltophilia-like bacteria, actinomycetes, heat-tolerant bacteria, and total aerobic bacteria. There was rarely a significant N rate x root-zone mix interaction, although main effects of N rate and root-zone mix did affect microbial populations at some samplings. If differences did exist, bacterial populations were higher in the sand-peat root-zone mix or in the treatments receiving the higher N rate. While a significant decrease in all bacterial populations enumerated was observed between November 1998 and February 1999, no similar decrease was observed for the same time period in 1997–1998 or 1999–2000. In general, there were no obvious population trends in any microbial population over the 3-year sampling period. Populations of total bacteria ranged from a low of 5.4 to a high of 8.3 log10 CFU per gram of root and rhizosphere soil throughout the 3-year sampling period.  相似文献   

14.
Microbial community responses to alternative management may be indicative of soil quality change. In this study, soils were collected from research plots over 2 years and from commercial grower fields over 1 year. Treatments at the sites included 1-9 years of either winter cover cropping or winter fallow practices. Soils were assayed for microbial fatty acid methyl esters (FAMEs), direct count microscopy and Biolog substrate utilization potentials to assess management and environmental influences on soil communities. The strongest influence was season. Soils in early spring (prior to termination of the cover crop) utilized fewer carboxylic acids and generally were enriched in eukaryotic FAMEs, whereas proportionally more bacterial FAMEs were detected in soils at canopy closure and harvest of the summer vegetable crop. Within a season, community FAME and Biolog patterns were related to field properties. FAME profiles from grower fields in early spring and harvest were correlated significantly with soil texture, cation exchange capacity, and carbon content. Changes in community structure and Biolog potential occurred in some soils in response to winter cover crops, although effects were not observed until cover crop incorporation. Greater amounts of fungal and protozoan FAME markers were detected in some cover-cropped soils compared to winter fallow soils. Cover crop residues increased FAME diversity at one research station and Biolog diversity at two research stations and the grower fields. Although seasonal and field-dependent factors are major determinants of microbial community structure, shifts can occur as soil physical and chemical properties change in response to alternative practices, as demonstrated by this study.  相似文献   

15.
Humic acids (HAs) from a pseudogley soil with various metal contents were added as supplemental sources of nutrients, or as the sole sources of carbon or nitrogen, to aerobic cultures of complex microbial populations indigenous to the same individual soils. Depending on nutrient conditions in the individual cultures and origin of HAs, between 44% and 67% of the added HAs were utilized. The lowest utilization rate was obtained for HAs from soil heavily contaminated with Mg. The overall carbon mineralization in the microbial cultures was significantly reduced in the presence of HAs. Simultaneously, the formation of microbial biomass was enhanced up to 261%. Variovorax (Alcaligenes) paradoxus, Pseudomonas fluorescens, and a yeast Cryptococcus sp. have been identified as the dominant microbial species utilizing HAs. The individual HA preparations re-isolated from the microbial cultures exhibited distinct changes in elemental and structural characteristics. Diminished contents of ash and alterations in infra-red absorptions indicated a splitting of organic and mineral components in HAs exposed to microbial activities.  相似文献   

16.
 Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH4-N, CO2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns. Received: 8 March 2000  相似文献   

17.
Biochar amendments to soils may alter soil function and fertility in various ways, including through induced changes in the microbial community. We assessed microbial activity and community composition of two distinct clayey soil types, an Aridisol from Colorado (CO) in the U.S. Central Great Plains, and an Alfisol from Virginia (VA) in the southeastern US following the application of switchgrass (Panicum virgatum) biochar. The switchgrass biochar was applied at four levels, 0%, 2.5%, 5%, and 10%, approximately equivalent to biochar additions of 0, 25, 50, and 100 t ha-1, respectively, to the soils grown with wheat (Triticum aestivum) in an eight-week growth chamber experiment. We measured wheat shoot biomass and nitrogen (N) content and soil nutrient availability and N mineralization rates, and characterized the microbial fatty acid methyl ester (FAME) profiles of the soils. Net N mineralization rates decreased in both soils in proportion to an increase in biochar levels, but the effect was more marked in the VA soil, where net N mineralization decreased from -2.1 to -38.4 mg kg-1. The 10% biochar addition increased soil pH, electrical conductivity, Mehlich- and bicarbonate-extractable phosphorus (P), and extractable potassium (K) in both soil types. The wheat shoot biomass decreased from 17.7 to 9.1 g with incremental additions of biochar in the CO soil, but no difference was noted in plants grown in the VA soil. The FAME recovery assay indicated that the switchgrass biochar addition could introduce artifacts in analysis, so the results needed to be interpreted with caution. Non-corrected total FAME concentrations indicated a decline by 45% and 34% with 10% biochar addition in the CO and VA soils, respectively, though these differences became nonsignificant when the extraction efficiency correction factor was applied. A significant decline in the fungi:bacteria ratio was still evident upon correction in the CO soil with biochar. Switchgrass biochar had the potential to cause short-term negative impacts on plant biomass and alter soil microbial community structure unless measures were taken to add supplemental N and labile carbon (C).  相似文献   

18.
The influence of sugar foam amendment on the moisture-retention properties of three profiles of an acidic vineyard soil in Retuerta del Bullaque (Ciudad Real, Spain) has been studied. The values obtained for the surface horizons of modified soils and the original soil (under natural vegetation) were compared, as were those for the surface and subsurface horizons of the liming profiles. The water-retention curves (drying curve) were determined in triplicate on the sieved soil with Richards plates and the field capacity (FC), permanent wilting point (PWP), and available water-retention capacity (AWRC) were calculated. In the original soil FC, PWP, and AWRC values were greater than the average values for the amended soils (36.5 percent, 15.1 percent, and 21.5 percent versus 23.5 percent, 10.35 percent, and 13.1 percent, respectively). Comparison of the surface horizons and the subsurface horizons of the three profiles showed that the values for the AWRC were greater in the former (13.1 percent, 12.5 percent, and 14 percent for P1, P2, and P3, respectively) than in the latter (11.9 percent, 9 percent, and 8.6 percent for P1, P2, and P3, respectively), although FC and PWP were lower in A horizons than in B horizons.  相似文献   

19.
Thirty-two different basidiomycete isolates were inoculated separately into contaminated soil and the soil colonization ability was assessed visually. Large differences in the colonization ability and growth patterns were found between the different fungi. Phospholipid fatty acids (PLFAs) were extracted from the soils of the seven isolates with the best colonizing ability. All PLFAs that were not found in pure cultures of the seven fungi were considered as bacterial PLFAs. The bacterial PLFA data were subjected to principal component analysis (PCA) to indicate changes in the indigenous bacterial community. The experiment was repeated in a sandy agricultural soil. The bacterial PLFA patterns were altered when fungi were inoculated into soil, irrespective of whether it was polluted or not. In particular the PLFA cy19:0, indicative of Gram-negative bacteria, was higher in fungal-inoculated soil than in uninoculated controls. The PLFA patterns for each fungal treatment were distributed more or less similarly in the PCA plots of both contaminated and sandy agricultural soil. Soil inoculated with Antrodia vaillantii, Hypholoma fasciculare or Recinicium bicolor was considerably different from the control along PC 1. Soil inoculated with Phanerochaete chrysosporium was characterized by different values along PC 2 compared with the other fungal soils.  相似文献   

20.
The aim of this work was to study the effects of spreading olive mill wastewater (OMW) on the soil surface of an olive grove on the soil microbial communities. Analyses of ester-linked fatty acid methyl esters (EL-FAME) were used to assess variations in the soil microbial community structure following land spreading of OMW. Our data provide evidence that agronomic application of OMW has important effects on soil microbial community. Bacteria were relatively more reduced by these treatments than fungi and actinomycetes as revealed by an increased index of fungal/bacterial FAME and actinomycetes/bacterial FAME. Specific FAME markers indicated a significant reduction in the Gram-positive bacteria. However, the relative proportion of the Gram-negative bacteria was not significantly different after agronomic application of OMW. The ratios of cyclopropyl/monoenoic precursors decreased and the total monounsaturated/total saturated fatty acids increased in the OMW amended soils, suggesting that the microbes inhabiting the control soil are more carbon limited than the OMW amended soils. The changes in the FAME pattern of the soil organisms possibly were related (i) to an altered substrate quantity, that is the availability of substrates after the treatments, (ii) the complex nature of OMW which also contains high molecular-mass recalcitrant polyphenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号