首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The objective was to determine if the endocrine status of the animal dictates the responsiveness of gonadotrophs to estradiol, activin, inhibin and follistatin; hormones implicated in the differential release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Bovine pituitaries were obtained at 13 (n=8), 30 (n=24) and 66 (n=8) h after the onset of estrus, corresponding to before, during and the end of the first FSH increase of the estrous cycle which follows the pre-ovulatory gonadotropin surge in heifers. Heifers slaughtered at 30 h received no treatment, or were treated with progesterone with or without estradiol before slaughter to suppress the first transient FSH increase. Secretion of FSH from cultured pituitary cells, reflecting the prior in vivo status, was greater (P<0.01) at 30 h than 13 or 66 h, whereas, LH secretion was less (P<0.01) at 13 h compared with 30 h. Treatment with exogenous steroids decreased (P<0.05) the pituitary gland's ability to subsequently secrete FSH and LH. Inhibin and, to a greater extent, estradiol decreased (P<0.01) mean FSH secretion but increased (P<0.05) mean LH secretion. These findings suggest that estradiol and inhibin both have the ability to differentially modulate basal gonadotropin secretion during the first FSH increase of the bovine estrous cycle. Differential regulation of LH and FSH is mediated via an alteration in gonadotropin biosynthesis and basal secretion. Furthermore, the secretory capability of cultured pituitary cells and basal gonadotropin secretion reflect the prior endocrine status of the animal from which pituitaries were obtained.  相似文献   

2.
Hourly pulses of gonadotropin-releasing hormone (GnRH) or bi-daily injections of estradiol (E2) can increase luteinizing hormone (LH) secretion in ovariectomized, anestrous pony mares. However, the site (pituitary versus hypothalamus) of positive feedback of estradiol on gonadotropin secretion has not been described in mares. Thus, one of our objectives involved investigating the feedback of estradiol on the pituitary. The second objective consisted of determining if hourly pulses of GnRH could re-establish physiological LH and FSH concentrations after pituitary stalk-section (PSS), and the third objective was to describe the declining time trends of LH and FSH secretion after PSS. During summer months, ovariectomized pony mares were divided into three groups: Group 1 (control, n = 2), Group 2 (pulsatile GnRH (25 μg/hr), n = 3), and Group 3 (estradiol (5 mg/12 hr), n = 3). All mares were stalk-sectioned and treatment begun immediately after stalk-section. Blood samples were collected every 30 min for 8 h on the day before surgery (DO) and 5 d post surgery (D5) to facilitate the comparison of gonadotropin levels before and after pituitary stalk-section. Additionally, jugular blood samples were collected every 12 hr beginning the evening of surgery, allowing for evaluation of the gonadotropin secretory time trends over the 10 d of treatment. On Day 10, animals were euthanized to confirm pituitary stalk-section and to submit tissue for messenger RNA analysis (parallel study). Plasma samples were assayed for LH and FSH by RIA. Mean LH secretion decreased from Day 0 to Day 5 in Groups 1 and 3, whereas LH secretion tended (P < 0.08) to decrease in Group 2 mares. On Day 5, LH was higher (P < 0.01) in Group 2 (17.26 ± 3.68 ng/ml; LSMEANS ± SEM), than either Group 1 (2.65 ± 4.64 ng/ml) or group 3 (4.28 ± 3.68 ng/ml). Group 1 did not differ from Group 3 on Day 5 (P < 0.40). Similarly, mean FSH levels decreased in all groups after surgery, yet Group 2 mares had significantly (P < 0.001) higher FSH concentrations (17.66 ± 1.53 ng/ml) than Group 1 or Group 3 (8.34 ± 1.84 and 7.69 ± 1. 63 ng/ml, respectively). Regression analysis of bi-daily LH and FSH levels indicated that the time trends were not parallel. These findings indicate: 1) Pituitary stalk-section lowered LH and FSH to undetectable levels within 5 d after surgery, 2) pulsatile administration of GnRH (25 μg/hr) maintained LH and FSH secretion, although concentrations tended to be lower than on Day 0, and 3) E2 did not stimulate LH or FSH secretion.  相似文献   

3.
4.
本试验通过在饲粮中添加维生素与矿物质、调整饲粮能量蛋白质水平,旨在研究其对浙东白鹅母鹅繁殖性能、血液生殖激素浓度和生殖轴相关基因mRNA相对表达量的影响.选择138只月龄相近的浙东白鹅种母鹅,按体重相近原则分为3组,分别饲喂不同的饲粮,试验期150 d,测定繁殖性能(平均产蛋数、平均蛋重、受精率和孵化率)、血液生殖激素[卵泡刺激素(FSH)、促黄体生成素(LH)、孕酮(P4)、雌二醇(E2)、催乳素(PRL)]浓度和生殖轴相关基因[促性腺激素释放激素(GnRH)、卵泡刺激素-β(FSHβ)、雌激素受体1(ESR1)、雌激素受体2(ESR2)、卵泡刺激素受体(FSHR)、催乳素(PRL)、催乳素受体(PRLR)] mRNA相对表达量的变化.结果表明:1)添加维生素与矿物质可显著提高浙东白鹅母鹅第1产蛋周期平均蛋重和受精率(P<0.05);提高第2产蛋周期内血液FSH和P4的浓度,降低LH浓度,改变E2、P4和PRL浓度波动(P<0.05);下调下丘脑PRLR、垂体PRL和卵巢PRLR基因的mRNA相对表达量(P<0.05),上调卵巢ESR2基因的mRNA相对表达量(P<0.05).2)调整饲粮能量蛋白质水平可显著提高浙东白鹅母鹅第2产蛋周期平均蛋重(P<0.05);提高浙东白鹅第2产蛋周期内血液LH浓度,降低FSH浓度,改变E2和P4浓度波动(P<0.05);上调下丘脑GnRH、垂体PRL和PRLR基因的mRNA相对表达量(P<0.05),下调卵巢FSHR基因的mRNA相对表达量(P<0.05).由此得出,添加维生素与矿物质、调整饲粮能量蛋白质水平可通过影响产蛋周期内部分血液生殖激素浓度和波动,局部调节生殖轴相关基因的mRNA相对表达量,改善浙东白鹅母鹅的繁殖性能.  相似文献   

5.
GnRH (gonadotrophin releasing hormone) is a key hormone of reproductive function in mammals; agonist forms have been largely developed, and data concerning their use in small animal reproduction are now abundant. GnRH agonists act by a two-step mechanism. First, their agonist properties on the pituitary will cause marked LH (luteinizing hormone) and FSH (follicle-stimulating hormone) secretion into the bloodstream, accompanied by an increase in the concentrations of sex steroid hormones. Then, in case of constant administration, GnRH agonists will lead to pituitary desensitization, and FSH and LH levels will collapse. These two effects have been widely documented, and these compounds have many potential benefits in a clinical context, capitalizing both on their stimulating and sterilizing effects.  相似文献   

6.
7.
8.
Nutritionally induced anovulatory cows were ovariectomized and used to determine the relationships between dose, frequency, and duration of exogenous gonadotropin-releasing hormone (GnRH) pulses and amplitude, frequency, and concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in serum. In Experiment 1, cows were given pulses of saline (control) or 2 micrograms of GnRH infused i.v. during a 0.1-, 1.25-, 5-, 10-, or 20-min period. Concentrations of LH and FSH during 35 min after GnRH infusion were greater than in control cows (P < 0.01), and FSH concentrations were greater when GnRH infusions were for 10 min or less compared with 20 min. In Experiment 2, the effect of GnRH pulse frequency and dose on LH and FSH concentrations, pulse frequency, and pulse amplitude were determined. Exogenous GnRH (0, 2, or 4 micrograms) was infused in 5 min at frequencies of once every hour or once every 4th hr for 3 d. There was a dose of GnRH x frequency x day effect on LH and FSH concentrations (P < 0.01), indicating that gonadotropes are sensitive to changes in pulse frequency, dose, and time of exposure to GnRH. There were more LH pulses when GnRH was infused every hour, compared with an infusion every 4th hr (P < 0.04). Amplitudes of LH pulses were greater with increased GnRH dose (P < 0.05), and there was a frequency x dose x day effect on FSH pulse amplitude (P < 0.0006). We conclude that LH and FSH secretion in the bovine is differentially regulated by frequency and dose of GnRH infusions.  相似文献   

9.
Plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) were determined over a 24-h period using radioimmunoassay in sheep injected with corn oil (control) or various doses of zeranol or estradiol-17 beta. Injection of .333, 1 or 10 mg of zeranol caused dose-related increases (P less than .01) in plasma PRL (peak levels at 12 to 18 h) and LH (peak levels at 12 to 20 h) in ovariectomized ewes. Similarly, PRL and LH increased following doses of 33 or 100 microgram of estradiol. Before the LH surge, plasma LH levels were significantly depressed (4 to 8 h). Plasma FSH levels were significantly decreased 4 to 8 h after zeranol and estradiol injection. Slight surges of FSH were observed at times similar to those of LH, but the peak level was never greater than control levels. Injection of 1 mg of zeranol or 100 microgram of estradiol into wethers resulted in a 24-h pattern of PRL secretion not significantly different of LH concentration and significantly prolonged inhibition of FSH secretion. These results indicate similarities in the effects of zeranol and estradiol on anterior pituitary hormone secretion within groups of animals of the same sex or reproductive state. Differences in secretion and plasma concentrations of LH, FSH and PRL due to underlying sexual dimorphism are maintained and expressed even when animals are challenged with structurally different compounds of varying estrogenic potencies.  相似文献   

10.
Nutritionally induced anovulatory cows (n = 28) were used to determine the effect of steroids on regulation of synthesis and secretion of gonadotropins. Anovulatory cows were ovariectomized and received intravaginal inserts containing estradiol (E2), progesterone (P4), E2 and P4 (E2P4), or a sham intravaginal insert (C) for 7 d. Concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were quantified in serum and E2 and P4 were quantified in plasma. Cows were exsanguinated within 1 to 2 h after removal of intravaginal inserts and pituitary glands were collected and stored at -80 degrees C until messenger ribonucleic acid (mRNA) for gonadotropin-releasing hormone receptor (GnRH-R) and gonadotropin subunits, pituitary content of GnRH-R, and LH and FSH were quantified. Pituitary glands from five proestrous cows were harvested to compare gonadotropin characteristics between ovariectomized, anovulatory cows and intact cows. Plasma concentrations of E2 were greater (P < 0.05) in E2-treated cows than in sham-treated cows. Concentrations of P4 were greater (P < 0.05) in cows treated with P4 than in sham-treated cows. Mean serum concentrations of LH and FSH were not significantly influenced by steroid treatments. However, frequency of LH pulses of ovariectomized, nutritionally induced anovulatory cows was increased (P < 0.05) by treatment with E2 and amplitude of LH pulses was greater (P < 0.05) in cows treated with E2 or P4 than in cows treated with E2P4 or sham-treated. Quantity of mRNA for LHbeta in the pituitary gland was greater when cows were treated with P4. Concentrations of LH in the pituitary gland were not affected by steroid treatments; however, pituitary concentrations of FSH were less (P < 0.1) in E2 cows than in sham-treated cows. The number of GnRH-R was increased (P < 0.05) in cows treated with E2, but P4 treatment did not influence the number of GnRH-R. Abundance of mRNA for GnRH-R, common alpha-subunit, and FSHbeta were not affected by treatments. Pituitary concentrations of LH were greater (P < 0.05) and concentrations of FSH were less (P < 0.05) in proestrous cows than in ovariectomized, anovulatory cows treated with or without steroids. Abundance of mRNA for GnRH-R, common alpha-subunit, LHbeta and FSHbeta were similar for proestrous and anovulatory cows. We conclude that treatment of nutritionally induced anovulatory cows with progesterone and estradiol may cause pulsatile secretion of LH.  相似文献   

11.
Pregnant beef heifers (n = 24) were assigned randomly to four groups and slaughtered at day 1, 15, 30 or 45 postpartum. The day prior to slaughter blood samples were taken from each cow every 15 min for 8 hr. The anterior pituitary gland, preoptic area (POA) and medial basal hypothalamus (HYP) were collected from each cow. Contents of gonadotropin-releasing hormone (GnRH) in extracts of POA and HYP, and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in extracts of anterior pituitary were quantified by radioimmunoassay. In the anterior pituitary gland, membrane receptors for GnRH were quantified by a standard curve technique and cytosolic receptors for estradiol were quantified by saturation analysis. Concentrations of LH, FSH and prolactin in serum were quantified by radioimmunoassay. Only one cow of eight had a pulse of LH during the 8 hr bleeding period on day 1 postpartum. This increased to 8 pulses in 6 cows on day 30 postpartum. Contents of GnRH in POA (15.0 +/- 3.2 ng) and HYP (14.0 +/- 2.0 ng) did not change significantly during the postpartum period. Pituitary content of LH was low following parturition (.2 +/- .1 mg/pituitary) and increased significantly through day 30 postpartum (1.2 +/- .1 mg/pituitary). Pituitary content of FSH did not change over the postpartum period. Receptors for both GnRH (.9 +/- .2 pmoles/pituitary) and estradiol (5.0 +/- .9/moles/pituitary) were elevated on day 15 postpartum, possibly increasing the sensitivity of the anterior pituitary gland to these hormones and leading to an increased rate of synthesis of LH that restored pituitary content to normal by day 30 postpartum.  相似文献   

12.
In our research we focused our attention on the effect of the immune stress induced by bacterial endotoxin–lipopolysaccharide (LPS) on the hypothalamic–pituitary–gonadal axis (HPG) at the pituitary level. We examined the effect of intravenous (i.v.) LPS injection on luteinizing hormone (LH) and follicle‐stimulating hormone (FSH) release from the anterior pituitary gland (AP) in anestrous ewes. The effect of endotoxin on prolactin and cortisol circulating levels was also determined. We also researched the effect of immune challenge on the previously mentioned pituitary hormones and their receptors genes expression in the AP. Our results demonstrate that i.v. LPS injection decreased the plasma concentration of LH (23%; p < 0.05) and stimulates cortisol (245%; p < 0.05) and prolactin (60%; p < 0.05) release but has no significant effect on the FSH release assayed during 6 h after LPS treatment in comparison with the control levels. The LPS administration affected the genes expression of gonadotropins’β‐subunits, prolactin and their receptors in the AP. Endotoxin injection significantly decreased the LHβ and LH receptor (LHR) gene expression (60%, 64%; p < 0.01 respectively), increased the amount of mRNA encoding FSHβ, FSH receptor (FSHR) (124%, 0.05; 166%, p < 0.01; respectively), prolactin and prolactin receptor (PRLR) (50%, 47%, p < 0.01; respectively). The presented, results suggest that immune stress is a powerful modulator of the HPG axis at the pituitary level. The changes in LH secretion could be an effect of the processes occurring in the hypothalamus. However, the direct effect of immune mediators, prolactin, cortisol and other components of the hypothalamic pituitary–adrenal (HPA) axis on the activity of gonadotropes has to be considered as well. Those molecules could affect LH synthesis directly through a modulation at all stages of LHβ secretion as well as indirectly influencing the GnRHR expression and leading to reduced pituitary responsiveness to GnRH stimulation.  相似文献   

13.
Two experiments were conducted with ewes 9 to 11 days after estrus to determine whether the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are controlled differentially. In experiment 1, gonadotropin-releasing hormone (GnRH) was injected (100 (μg/ewe) at time = 0 min into ewes in four treatment groups. The treatment groups (9 ewes/group) were: 1) periodic iv sodium pentobarbital (NaPen) vehicle from 0 min; 2) periodic iv NaPen from 0 min; 3) vehicle iv for 120 min then iv NaPen from 120 min; 4) vehicle iv for 150 min then iv NaPen from 150 min. A surgical plane of anesthesia was maintained from the initiation of NaPen injection until the experiment ended. Jugular blood was sampled at 30-min intervals from ?30 to + 210 min for LH and FSH assays, and profiles of hormone concentrations were compared by time-trend analyses. GnRH released LH (P<.001) and FSH (P<.001), but NaPen did not affect the profiles of hormone concentrations; this indicated that NaPen did not reduce the ability of the pituitary to secrete gonadotropins in response to GnRH. Experiment 2 was a 2x2 factorial with ovariectomy (time = 0 hr) and NaPen as the main effects. One group of ovariectomized (n = 6) and one group of sham ovariectomized (n = 6) ewes were anesthetized only during surgery, while a group of ovariectomized (n = 7) and a group of sham ovariectomized (n = 6) ewes were kept at a surgical plane of anesthesia until 10 hr after surgery. Patterns of LH and FSH were compared in jugular blood collected hourly from 0 hr until 10 hr after surgery and in samples collected at 24 hr intervals from -24 to +72 hr of surgery. After ovariectomy, LH increased (P<.001) hourly and daily, but anesthesia suppressed (hourly, <.001 and daily, P<.005) these increases, which resulted in an interaction (hourly, P<.001 and daily, P<.01) of ovariectomy and anesthesia. FSH after ovariectomy increased hourly and daily (hourly, P<.02 and daily, P<.001), but the effect of anesthesia and interaction of ovariectomy and anesthesia were not significant. Because NaPen did not alter secretion of LH or FSH after exogenous GnRH in experiment 1 while it blocked the postovariectomy increase in LH but not FSH in experiment 2, we concluded that the postovariectomy increase in LH resulted from increased hypothalamic secretion of GnRH. The mechanisms responsible for the postovariectomy increase in FSH secretion are not identical to those for LH. The mechanisms that control the postovariectomy secretion of FSH might involve factors that are not suppressible by NaPen or, alternatively, the differences in LH and FSH release after ovariectomy might reflect the removal of ovarian factors that suppress FSH but not LH secretion in intact ewes.  相似文献   

14.
GPR30 is known as a membrane receptor for picomolar concentrations of estradiol. The GPR30-specific agonist G1 causes a rapid, non-genomic suppression of gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) secretion from bovine anterior pituitary (AP) cells. A few studies have recently clarified that protein kinase A (PKA) and phosphorylated extracellular signal-regulated kinase (pERK) might be involved in cytoplasmic signaling pathways of GPR30 in other cells. Therefore, we tested the hypothesis that PKA and ERK kinase (MEK) are important cytoplasmic mediators for GPR30-associated non-genomic suppression of GnRH-induced LH secretion from bovine AP cells. Bovine AP cells (n = 8) were cultured for 3 days under steroid-free conditions. The AP cells were previously treated for 30 min with one of the following: 5000 nM of PKA inhibitor (H89), 1000 nM of MEK inhibitor (U0126), or a combination of H89 and U0126. Next, the AP cells were treated with 0.01 nM estradiol for 5 min before GnRH stimulation. Estradiol treatment without inhibitor pretreatment significantly suppressed GnRH-induced LH secretion (P < 0.01). In contrast, estradiol treatment after pretreatment with H89, U0126 or their combination had no suppressive effect on GnRH-induced LH secretion. The inhibitors also inhibited the G1 suppression of GnRH-induced LH secretion. Therefore, these data supported the hypothesis that PKA and MEK (thus, also pERK) are the intracellular mediators downstream of GPR30 that induce the non-genomic suppression of GnRH-induced LH secretion from bovine AP cells by estradiol or G1.  相似文献   

15.
Recent studies (2005–2008) on the interrelationships among the preovulatory follicle and periovulatory circulating hormones are reviewed. Close temporal and mechanistic relationships occur between estradiol/inhibin and follicle-stimulating hormone (FSH), between estradiol and luteinizing hormone (LH), and between progesterone and LH. Estradiol from the dominant follicle forms a surge that reaches a peak 2 days before ovulation. Estradiol, as well as inhibin, has a negative effect on FSH, and estradiol has a negative effect on LH. When estradiol decreases, the negative effect diminishes and accounts for the beginning of an FSH increase and a transition from a slow to rapid increase in LH on the day of the estradiol peak. The decrease in estradiol and the reduction or cessation in the growth of the preovulatory follicle beginning 2 days before ovulation are attributable to the development of a reciprocal negative effect of LH on follicle estradiol production when LH reaches a critical concentration. The LH decrease after the peak of the LH surge on the day after ovulation is related to a negative effect of a postovulatory increase in progesterone. Measurable repeatability within mares between consecutive estrous cycles occurs during the preovulatory period in diameter of the ovulatory follicle and concentrations of LH and FSH. Hormone-laden follicular fluid passes into the peritoneal cavity at ovulation and transiently alters the circulating concentrations of LH and FSH. Double ovulations are associated with greater estradiol concentrations and reduced concentrations of FSH.  相似文献   

16.
哺乳类和鱼类的促性腺激素(GTH)细胞都是位于腺垂体,所分泌的激素有促卵泡激素(FSH)和促黄体素(LH),促卵泡激素可以促成卵细胞和精子的生成,而促黄体素可以促进孕酮和睾酮的产生,关于促性腺激素细胞的来源有三种假说,在所有的对促性腺激素细胞调节控制的因素中,最重要的是促性腺激素释放激素(GnRH)。文章从促性腺激素细胞的定位、功能、源泉细胞,以及对其调节控制等方面的研究进展作一综述,以期为在实践中加强对动物生殖规律的人工调控提供参考。  相似文献   

17.
This study was performed to determine the effect of intracerebroventricular (icv) injection of interleukin (IL)-1β on the gene expression, translation and release of gonadotropin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) gene expression in the hypothalamus of anestrous ewes. In the anterior pituitary gland (AP), the expression of genes encoding: GnRHR, β subunits of luteinizing hormone (LH) and folliculotropic hormone (FSH) was determined as well as the effect of IL-1β on pituitary gonadotropins release. The relative mRNA level was determined by real-time PCR, GnRH concentration in the cerebrospinal fluid (CSF) was assayed by ELISA and the plasma concentration of LH and FSH were determined by radioimmunoassay. Our results showed that icv injection of IL-1β (10 or 50 μg/animal) decreased the GnRH mRNA level in the pre-optic area (POA) (35% and 40% respectively; p ≤ 0.01) and median eminence (ME) (75% and 70% respectively; p ≤ 0.01) and GnRHR gene expression in ME (55% and 50% respectively; p ≤ 0.01). A significant decrease in GnRHR mRNA level in the AP in the group treated with the 50 μg (60%; p ≤ 0.01) but not with the 10 μg dose was observed. The centrally administrated IL-1β lowered also GnRH concentration in the CSF (60%; p ≤ 0.01) and reduced the intensity of GnRH translation in the POA (p ≤ 0.01). It was not found any effect of icv IL-1β injection upon the release of LH and FSH. However, the central injection of IL-1β strongly decreased the LHβ mRNA level (41% and 50%; p ≤ 0.01; respectively) and FSHβ mRNA in the case of the 50 μg dose (49%; p ≤ 0.01) in the pituitary of anestrous ewes. These results demonstrate that the central IL-1β is an important modulator of the GnRH biosynthesis and release during immune/inflammatory challenge.  相似文献   

18.
STX is an agonist for a recently characterized membrane estrogen receptor whose structure has not been identified. We evaluated whether STX suppresses gonadotropin-releasing hormone (GnRH)–induced luteinizing hormone (LH) release from bovine anterior pituitary (AP) cells. We cultured AP cells (n=12) for 3 days in steroid-free conditions, followed by increasing concentrations (0.001, 0.01, 0.1, 1 and 10 nM) of 17β-estradiol or STX for 5 min before GnRH stimulation until the end of the experiment. Estradiol (0.001 to 0.1 nM) significantly suppressed GnRH-stimulated LH secretion, whereas STX did not affect GnRH-stimulated LH secretion at any of the tested concentrations. In conclusion, STX, unlike estradiol, possesses no suppressive effect on GnRH-induced LH release from bovine AP cells.  相似文献   

19.
Changes in metabolism of serotonin (5-HT) might mediate the reduced tonic luteinizing hormone (LH) and increased pituitary responsiveness to luteinizing hormone releasing hormone (LHRH) caused by estradiol-17β (estradiol). Two experiments were conducted to determine effects of estradiol, para-chlorophenylalanine (PCPA), an inhibitor of synthesis of 5-HT, and quipazine, an agonist of 5-HT, on tonic and LHRH-induced secretion of LH in ovariectomized ewes during the summer. Tonic levels of LH were reduced, the interval from LHRH to peak of the induced surge was longer and the magnitude of release of LH was greater in ovariectomized ewes treated with estradiol than in controls. Neither PCPA nor quipazine affected tonic secretion of LH. In ovariectomized ewes not receiving estradiol, PCPA and quipazine increased the magnitude of the LHRH-induced release of LH. However, PCPA reduced pituitary sensitivity to LHRH when administered concomitantly with estradiol; treatment with quipazine attenuated this effect of PCPA. The interval to the peak of the induced surge of LH was not affected by PCPA or quipazine in estradiol-treated or control ovariectomized ewes. Based on these results it appears that 5-HT mediates or is required for estradiol to increase pituitary responsiveness to LHRH.  相似文献   

20.
The aim of the present study was to examine the messenger RNA expressions of the endothelin and angiotensin systems during the periovulatory phase in gonadotrophin releasing hormone (GnRH)-treated cows. Ovaries were collected by transvaginal ovariectomy (n=5 cows/group), and the follicles (n=5, one follicle/cow) were classified into the following groups: before GnRH administration (control, before LH surge), 3-5 h after GnRH (during LH surge), 10 h after GnRH; 20 h after GnRH, 25 h after GnRH (peri-ovulation), and early corpus luteum (CL) (Days 2-3). Expression of mRNA was investigated using quantitative real-time PCR. The expression of angiotensin converting enzyme (ACE) mRNA significantly decreased immediately after onset of the LH surge and remained at low levels. The levels of angiotensin II receptor type 1 (AT1R) and type 2 (AT2R) expression during the periovulatory period significantly decreased compared with other periods. The concentration of angiotensin II in follicular fluid began to increase 10 h after GnRH treatment and further increased as ovulation approached. The level of ET-1 mRNA significantly decreased 10 h after GnRH treatment compared with the levels before GnRH treatment and those of the early CL period. The expression of ETR-A and ETR-B mRNA during the periovulatory period were lower than in other periods. The expression of ECE-1 mRNA began to decrease in the LH surge period and significantly decrease in the periovulatory period compared with other periods. These results suggest that the vasoactive peptides angiotensin and endothelin may be associated with final maturation of follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号