首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscapes are the resultant of ecological processes and events operating on many different space-time scales. Large scale disturbance is recognized as a major influence on landscape patterns, but the impact of small scale events is often overlooked. We develop an hierarchical framework to relate lightning and bark beetle population dynamics to the southern pine forest landscape using the concepts of disturbance propagation and amplification. The low level lightning disturbance can be propagated to the landscape level when weather and forest stand structure facilitate bark beetle epidemics. We identify epidemics as biotically-driven episodes that alter landscape structure. The concept of the landscape as the spatial dimension of these episodes is represented in a conceptual model linking insect-host and landscape mosaic interactions.  相似文献   

2.
To determine how vegetation pattern in early successional forests may be related to plant traits and types of disturbance, we measured percent cover of individual taxa annually in a South Carolina Pinus elliottii forest, starting one year before, and ending four years after harvest and tree girdling disturbances were applied. The 17 most important taxa surveyed were grouped into four regeneration strategies chosen a priori, and the spatial patterns of these groups and of the soil were investigated using global variability, semivariograms and kriged maps. We also examined spatial correlations across years, across taxa, and between species and soil disturbance. Seed bank taxa represented by Dichanthelium spp. increased rapidly and formed large patches, and then quickly declined. Taxa that regenerate by newly dispersed seeds, represented by Rhus copallina and Rubus spp. occurred at first in a few patches, and became widespread later. Stump sprouters, represented by Quercus spp. and Myrica cerifera, had rapid increases in cover, but their spatial patterns were largely determined by their pre-disturbance patterns. Prunus serotina, which relies on both sprouting and dispersed seed, had moderate cover and a random distribution. Within-species temporal correlation of spatial pattern was lower in girdled than in harvested plots, and was not clearly related to regeneration strategy. Forest floor disturbance was patchy and affected the pattern of Dichanthelium spp. in the harvested plots. Negative correlations between herbs and woody plants in harvested plots reflected the role of biotic (i.e., successional) filters on vegetation pattern. Surprisingly, no spatial correlations were detected between the nitrogen fixer, Myrica cerifera and other taxa in this N-limited system. In comparing the spatial and temporal patterns, we found kriged maps more informative than analysis of semivariograms alone. The maps and correlation statistics demonstrated that regeneration traits, spatial patterns of soil disturbances, and interactions among taxa influence dynamics of the spatial patterns of the plants. We also demonstrated that disturbance types affected the importance and interactions among these three factors, and caused different spatial patterns of the plant taxa.  相似文献   

3.
Large disturbances such as fires and floods are landscape processes that may alter the structure of landscapes in nature reserves. Landscape structure may in turn influence the viability of species and the functioning of ecosystems. Past reserve design and management strategies have been focussed on species and ecosystems rather than on landscape-scale processes, such as disturbance.An essential feature of a natural disturbance regime is the variation in disturbance attributes (e.g., size, timing, intensity, spatial location). Although some past reserve management policies have included natural disturbances, perpetuating disturbance variation has not been the explicit goal of either reserve design or management.To design a reserve to perpetuate the natural disturbance process requires consideration of: (1) the size of the reserve in relation to maximum expected disturbance size, (2) the location of the reserve in relation to favored disturbance initiation and export zones and in relation to spatial variation in the disturbance regime, and (3) the feasibility of disturbance control at reserve boundaries, or in reserve buffers.Disturbance management possibilities are constrained by the design of the reserve and the reserve goals. Where a natural disturbance regime is not feasible, then it is important that the managed disturbance regime mimic historical variation in disturbance sizes and other attributes as well as possible. Manipulating structure on the landscape scale to restore landscapes thought to have been altered by historical disturbance control is premature given our understanding of spatial disturbance processes in landscapes.  相似文献   

4.
B&#;rgi  Matthias  Gimmi  Urs 《Landscape Ecology》2007,22(1):77-94
Short- and long-term patterns of net ecosystem carbon balance (NECB) for small, relatively uniform forest stands have been examined in detail, but the same is not true for landscapes, especially those with heterogeneous disturbance histories. In this paper, we explore the effect of two contrasting types of disturbances (i.e., fire and tree harvest) on landscape level NECB by using an ecosystem process model that explicitly accounts for changes in carbon (C) stores as a function of disturbance regimes. The latter were defined by the average disturbance interval, the regularity of the disturbance interval (i.e., random, based on a Poisson frequency distribution, or regular), the amount of C removed by the disturbance (i.e., severity), and the relative abundance of stands in the landscape with unique disturbance histories. We used the model to create over 300 hypothetical landscapes, each with a different disturbance regime, by simulating up to 200 unique stand histories and averaging their total C stores. Mean NECB and its year-to-year variability was computed by calculating the difference in mean total C stores from one year to the next. Results indicated that landscape C stores were higher for random than for regular disturbance intervals, and increased as the mean disturbance interval increased and as the disturbance severity decreased. For example, C storage was reduced by 58% when the fire interval was shortened from 250 years to 100 years. Average landscape NECB was not significantly different than zero for any of the simulated landscapes. Year-to-year variability in landscape NECB, however, was related to the landscape disturbance regime; increasing with disturbance severity and frequency, and higher for random versus regular disturbance intervals. We conclude that landscape C stores of forest systems can be predicted using the concept of disturbance regimes, a result that may be a useful for adjusting estimates of C storage to broad scales that are solely based on physiological processes.  相似文献   

5.

Context

Testing the influence of edges on animal distributions depends on our capacity to quantify ‘edge’, particularly in heterogeneous landscapes. Habitat quality is likely to differ in instances where edges are abrupt and anthropogenic in origin, versus diffuse, disturbance-created edges.

Objectives

We tested whether or not structurally distinct edge types influence northern spotted owl habitat selection and whether the relationship between edge type and use varied across spatial scales relevant to owl foraging (<3 ha) and home range selection (50–800 ha).

Methods

We used remotely sensed disturbance severity data to define two distinct edge types, ‘hard’ and ‘diffuse’, following a 11,000 ha fire and subsequent salvage logging in southern Oregon. The approach quantifies the steepness of gradients directly by measuring the ‘slope’ of change in disturbance severity. We tested the degree to which 23 radio-collared spotted owls responded to edge characteristics caused by fire and logging.

Results

Spotted owls showed a strong negative association with hard edge, even after accounting for habitat suitability and other confounding variables. However, this negative relationship was highly scale-dependent; spotted owls were resilient to hard edges at broad scales, but avoided the same feature at fine scales. On the other hand, spotted owls showed a positive association with diffuse edge, especially at broader scales.

Conclusions

Differential use of edge types indicates that owls favor disturbances that create diffuse edge habitat (e.g. low and mixed-severity fire) and rather than abrupt boundaries created by high severity disturbance.
  相似文献   

6.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

7.
The structure of landscapes subject to patch-forming catastrophic disturbances, or disturbance landscapes, is controlled by the characteristics of the disturbance regime, including the distribution of disturbance sizes and intervals, and the rotation time. The primary landscape structure in disturbance landscapes is the structure of the mosaic of disturbance patches, which can be described by indices such as patch size and shape.The purpose of this research was to use a geographical information system-based spatial model (DISPATCH) to simulate the effects of the initial density of patches on the rate of response to alteration of a disturbance regime, the effects of global warming and cooling, and the effects of fragmentation and restoration, on the structure of a generalized temperate-zone forested disturbance landscape over a period of 400 yr.The simulations suggest that landscapes require 1/2 to 2 rotations of a new disturbance regime to adjust to that regime regardless of the size and interval distributions. Thus alterations that shorten rotations, as would be the case if global warming increases fire sizes and decreases fire intervals, produce a more rapid response than do alterations that lengthen rotations, such as cooling and fire suppression. Landscape with long rotations may be in perpetual disequilibrium with their disturbance regimes due to a mismatch between their adjustment rate and the rate of climatic change. Landscapes with similar rotation times may have different structures, because size and interval distributions independently affect landscape structure. The response of disturbance landscapes to changing disturbance regimes is governed by both the number and size of patch births.  相似文献   

8.
Abtract Epidemiology models, modified to include landscape pattern, are used to examine the relative importance of landscape geometry and disturbance dynamics in determining the spatial extent of a disturbance, such as a fire. The models indicate that, except for very small values for the probability of spread, a disturbance tends to propagate to all susceptible sites that can be reached. Therefore, spatial pattern, rather than disturbance dynamic, will ordinarily determine the total extent of a single disturbance event. The models also indicate that a single disturbance will seldom become endemic,i.e., always present on the landscape. However, increasing disturbance frequency can lead to a landscape in which the proportion of susceptible, disturbed, and recovering sites are relatively constant. Research supported by Ecological Research Division, Office of Health and Environmental Research, U.S. Department of Energy under contract No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. Contribution No. 10 to the Sevilleta LTER program. Environmental Sciences Division Publication No. 3812, ORNL.  相似文献   

9.
Huston’s Dynamic Equilibrium Hypothesis predicts that the response of biodiversity to disturbance varies with productivity. Because disturbance is thought to break competitive advantage of dominant species in productive ecosystems, species richness is predicted to increase with disturbance frequency in productive systems. Recovery of plant biomass following disturbance is also predicted to be faster in productive systems. Here we provide the first test of Huston’s hypothesis in the context of setting harvest rates in managed forests for achieving biodiversity objectives. We examined predictions relating to vegetation and bird response to disturbance and succession in productive and less productive forests in western Oregon and Washington, USA. We found that measurements of understory cover and shrub diversity were higher in young, productive stands than less productive stands of similar age. Later-seral forests in productive environments (mean age = 67 years) had less variable and more complete canopy closure than similar-age forests in less favorable settings. At the stand scale, bird abundance and richness decreased with canopy closure in highly productive forests whereas bird abundance and richness increased with canopy closure in less productive forests. At the landscape scale, bird abundance and richness within stands increased with increasing levels of disturbance in the surrounding landscape within highly productive forests, whereas bird abundance and richness decreased with increasing disturbance in the surrounding landscape within less productive forests. Our results indicate that bird response to disturbance varies across levels of productivity and suggest that bird species abundance and associated species richness will be maximized through relatively more frequent disturbance in highly productive systems.  相似文献   

10.
11.
Liu  Amy J.  Cameron  Guy N. 《Landscape Ecology》2001,16(7):581-595
High productivity and accessibility have made coastal wetlands attractive sites for human settlements. This study analyzed the patterns of wetland landscapes in Galveston Bay, Texas, USA. The first objective of the study was to describe the relationships between the fractal dimension of wetland boundaries and those factors which affect the wetland landscapes (e.g., land use, type of vegetation, size, location, and level of human disturbance). The second objective was to construct a historical database to contrast wetland areas which had experienced different levels of disturbance between 1956 and 1989. The fractal dimension, a measure of how much of the geographical space is filled by boundaries, was measured by the perimeter-area method. The fractal dimension of wetlands was significantly affected by land use, type of vegetation, size, and level of anthropogenic disturbance. In addition, increasing the size of buffers around roads did not significantly affect the fractal dimension of wetlands. Landscape indices, such as fractal dimension, dominance, and diversity, were used to characterize spatial heterogeneity in the historical database. Lake Stephenson, an area of low anthropogenic disturbance, experienced no changes in wetland composition and abundance over time. Anahuac, an area of medium disturbance, experienced changes in both wetland composition and abundance. Texas City, an area of high disturbance, experienced a change in wetland composition. These differences can be associated with the type and level of disturbance present; however, more evidence is needed to determine whether certain landscape patterns have stable, intrinsic properties which allow persistence in the face of disturbance. These results will be informative to resource managers determining how wetlands can be managed as natural resources and nature reserves.  相似文献   

12.
We used Landsat imagery and GIS to quantify the rates and patterns of landscape change between 1972 and 1992 for a 734,126 ha forested study area in the central Sikhote-alin Mountains of the Russian Far East. The study area includes a portion of the Sikhote-alinskiy Biosphere Reserve which is a part of the United Nations international Man and the Biosphere (MAB) reserve network. Wildfire is a major disturbance agent throughout the area and timber harvesting outside the reserve is also important. Maximum likelihood classification of the satellite imagery identified four broad cover types (hardwood, conifer, mixed and non-forest) in 1992 and changes among them between 1972 and 1992. We used multi-temporal principal components analysis to describe the magnitude and direction of landscape change for six watersheds that represent a range of ecological histories and disturbance regimes. Overall, forest cover declined from 90.4% in 1972 to 77.2% in 1992. The disturbance rate was more than twice as high in conifer than in hardwood forests. The rate of disturbance outside the reserve was three times that inside. While the rates of disturbance are not markedly higher than those recorded from other temperate forests, there has recently been a large alteration in the disturbance regime which will lead to a general transformation of forest composition and structure in the study area if the trend continues.  相似文献   

13.

Context

Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown.

Objectives

Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances.

Methods

We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination.

Results

iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime.

Conclusions

Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.
  相似文献   

14.
Human-induced land cover changes are causing important effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. In this paper, we present a conceptual model that allows evaluating overall changes in erosion regulation after human disturbances. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency–magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance. The erosion regulation model is here applied in two mountainous regions with different vegetation dynamics, climatic and geological settings: the Austro Ecuatoriano, and the Spanish Betic Cordillera. Natural erosion benchmarks are necessary to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant difference between modern catchment-wide erosion and long-term denudation rates. The opposite is true for the Austro Ecuatoriano where the share of natural erosion in the total modern erosion rate is minimal for most disturbed sites. When pooling pre- and post-disturbance erosion data from both regions, the data suggest that the human acceleration of erosion is related to vegetation disturbances. The empirical regression model predicts human acceleration of erosion, here defined as the ratio of post-disturbance to pre-disturbance (or natural benchmark) erosion rate, as an exponential function of vegetation disturbance. This suggests that the sensitivity to human-accelerated erosion would be ecosystem dependent, and related to the potential vegetation cover disturbances as a result of human impact. It may therefore be expected that the potential for erosion regulation is larger in well-vegetated ecosystem where strong differences may exist in vegetation cover between human disturbed and undisturbed or restored sites.  相似文献   

15.
Wu  Mia M.  Zou  Xianghua  Liang  Yu  Stambaugh  Michael  Fraser  Jacob S.  Xu  Wenru  He  Hong S. 《Landscape Ecology》2022,37(5):1401-1416
Landscape Ecology - Study of interplay of disturbance and forest succession is key to understand forest landscape dynamics, especially under changing climate and disturbance regimes. However, most...  相似文献   

16.
The process of recolonization after disturbance is crucial for the persistence and dynamics of patch-tracking metapopulations. We developed a model to compare the spatial distribution and spatial genetic structure of the epiphytic lichen Lobaria pulmonaria within the perimeter of two reconstructed 19th century disturbances with a nearby reference area without stand-level disturbance. Population genetic data suggested that after stand-replacing disturbance, each plot was colonized by one or a few genotypes only, which subsequently spread clonally within a local neighborhood. The model (cellular automaton) aimed at testing the validity of this interpretation and at assessing the relative importance of local dispersal of clonal propagules vs. long-distance dispersal of clonal and/or sexual diaspores. A reasonable model fit was reached for the empirical data on host tree distribution, lichen distribution, and tree- and plot-level genotype diversity of the lichen in the reference area. Although model calibration suggested a predominance of local dispersal of clonal propagules, a substantial contribution of immigration of non-local genotypes by long-distance dispersal was needed to reach the observed levels of genotype diversity. The model could not fully explain the high degree of clonality after stand-replacing disturbance, suggesting that the dispersal process itself may not be stationary but depend on the ecological conditions related to disturbance.  相似文献   

17.
The hypothesis that the percentage of nonnative plant species inhabiting a landscape might be used as an integrated measure of anthropogenic disturbance was explored in 26 diverse landscape parcels in Rhode Island. Nine correlates of anthropogenic disturbance within, and immediately adjacent to the refuges were compared to two refuge-specific indices of relative nonnative vascular plant species abundance. The percentage of the total vascular flora of each refuge that was nonnative was the Nonnative Index for each refuge. The percentage of all nonnative species in the 26 refuges combined that occurred in a given refuge was the Regional Nonnative Index for each refuge (nonnative species in each refuge divided by the nonnative species in all 26 refuges, times 100). The latter index measured how successful species from the finite pool of nonnative species present in the region were at invading and colonizing a refuge. Of the 869 vascular plant species in all 26 refuges, 28% were nonnative. The percentage of the vascular flora that was nonnative in each refuge varied from 2 to 50%. Few comparisons between correlates of anthropogenic disturbance and Nonnative Indices were statistically significant, yet two of the nine correlates of anthropogenic disturbance were highly related to Regional Nonnative Indices. Collectively, the correlates of anthropogenic disturbance accounted for 39% of the variance in the Regional Nonnative Index for all species combined, and 56% of the variance in the Regional Nonnative Index for tree species alone. The Regional Nonnative Index was also highly related to the richness of native plant species. The hypothesis that the nonnative vascular plant diversity of a landscape can be used as a surrogate for the integrated effects of anthropogenic disturbance was generally rejected by the analysis of our Nonnative Index, and supported by the analysis of our Regional Nonnative Index.  相似文献   

18.
19.
Carefully designed green roofs have the potential to be used as mitigation for habitats lost at ground level. The development of plant assemblages on two green roofs designed to emulate diverse brownfield habitats (brown roofs), by using recycled demolition aggregate as part of a low-fertility growth substrate, were studied over the first four years of their development. The cover-abundance of flowering plants and habitat structural components (e.g. bare ground, moss) were measured on the Domin-Krajina scale within all identified microhabitats. Drought disturbance was one of the main controlling factors on assemblage development. Annual plants were abundant and successful in the first growth season, and thereafter only re-appeared in any numbers following drought disturbances in subsequent years. Moss and Sedum acre L. increased through the study period until these plants dominated coverage. The cover-abundance of perennial wildflower species was strongly influenced by drought disturbance. The influence of drought disturbance varied between different brown roof microhabitats, with plant assemblages in coarser and less fertile microhabitats more resistant to these disturbances. Observed responses to drought were consistent with the following two hypotheses: (i) Areas of coarse substrate can act as disturbance refugia for plants during drought by helping preserve pockets of water under large clasts and within absorbent materials such as brick. (ii) The plant assemblages living in areas of more fertile substrates, which grow more luxuriantly when water availability is high, are more vulnerable to drought disturbance. Green roofs should be designed to include a range of substrate types to create several microhabitats that will collectively support more species than any single microhabitat.  相似文献   

20.
Buma  B.  Harvey  B. J.  Gavin  D. G.  Kelly  R.  Loboda  T.  McNeil  B. E.  Marlon  J. R.  Meddens  A. J. H.  Morris  J. L.  Raffa  K. F.  Shuman  B.  Smithwick  E. A. H.  McLauchlan  K. K. 《Landscape Ecology》2019,34(1):17-33
Context

Predicting ecosystem resilience is a challenge, especially as climate change alters disturbance regimes and conditions for recovery. Recent research has highlighted the importance of spatially-explicit disturbance and resilience processes to long-term ecosystem dynamics. “Neoecological” approaches characterize resilience mechanisms at relatively fine spatio-temporal resolutions, but results are difficult to extrapolate across broad temporal scales or climatic ranges. Paleoecological methodologies can consider the effects of climates that differ from today. However, they are often limited to coarse-grained spatio-temporal resolutions.

Methods

In this synthesis, we describe implicit and explicit examples of studies that incorporate both neo- and paleoecological approaches. We propose ways to build on the strengths of both approaches in an explicit and proactive fashion.

Results

Linking the two approaches is a powerful way to surpass their respective limitations. Aligning spatial scales is critical: Paleoecological sampling design should incorporate knowledge of the spatial characteristics of the disturbance process, and neoecological studies benefit from a longer-term context to their conclusions. In some cases, modeling can incorporate non-spatial data from paleoecological records or emerging spatial paleo-data networks with mechanistic disturbance/recovery processes that operate at fine spatiotemporal scales.

Conclusions

Linking these two complementary approaches is a powerful way to build a complete understanding of ecosystem disturbance and resilience.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号