首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial heterogeneity can constrain the movement of individuals and consequently genes across a landscape, influencing demographic and genetic processes. In this study, we linked information on landscape composition, movement behavior, and genetic differentiation to gain a mechanistic understanding of how spatial heterogeneity may influence movement and gene flow of bobcats in the agricultural landscape of Iowa (USA). We analyzed movement paths of 23 animals to parameterize landscape resistance surfaces, applied least cost path analysis to generate measures of effective geographic distance between DNA collection locations of 625 bobcats, and tested the correlation between genetic distance and the different models of geographic distance. We found that bobcats showed a strong preference for forest over any other habitat type, and that incorporating information on habitat composition both along the path and in the surrounding landscape provided the best model of movement. Measures of effective geographic distance were significantly correlated with genetic distance, but not once the effects of Euclidean distance were accounted for. Thus, despite the impact of habitat composition on movement behavior, we did not detect a signature of a landscape effect in genetic structure. Our results are consistent with the issue of limiting factors: the high uniformity of forest fragmentation across southern Iowa, the primary study area, results in a landscape resistance pattern virtually indistinguishable from the isolation-by-distance pattern. The northern portion of the state, however, is predicted to pose a high level of resistance to bobcat movement, which may impede the regional genetic connectivity of populations across the Midwest.  相似文献   

2.
Individual-based landscape genetic analyses provide empirically based models of gene flow. It would be valuable to verify the predictions of these models using independent data of a different type. Analyses using different data sources that produce consistent results provide strong support for the generality of the findings. Mating and dispersal movements are the mechanisms through which gene flow operates in animal populations. The best means to verify landscape genetic predictions would be to use movement data to independently predict landscape resistance. We used path-level, conditional logistic regression to predict landscape resistance for American black bear (Ursus americanus) in a landscape in which previous work predicted population connectivity using individual-based landscape genetics. We found consistent landscape factors influence genetic differentiation and movement path selection, with strong similarities between the predicted landscape resistance surfaces. Genetic differentiation in American black bear is driven by spring movement (mating and dispersal) in relation to residential development, roads, elevation and forest cover. Given the limited periods of the year when gene flow events primarily occur, models of landscape connectivity should carefully consider temporal changes in functional landscape resistance.  相似文献   

3.
Resource utilization scales and landscape pattern   总被引:4,自引:0,他引:4  
The spatial patterning of resources constrains the movement of consumers on the landscape. Percolation theory predicts that an organism can move freely if its critical resource or habitat occupies 59.28% of the landscape. Sparse resources require an organism to operate on larger resource utilization scales. Multiple critical resources necessitate larger scales, while substitutable resources ease the scale requirements. Contagious spatial patterns require larger scales to permit movement between resource clusters. The study indicates a strong link between spatial pattern and ecological processes on a landscape.  相似文献   

4.
Landscape Ecology - Landscape connectivity, the extent to which a landscape facilitates the flow of ecological processes such as organism movement, has emerged as a central focus of landscape...  相似文献   

5.
We identified primary habitat and functional corridors across a landscape using Global Positioning System (GPS) collar locations of brown bears (Ursus arctos). After deriving density, speed, and angular deviation of movement, we classified landscape function for a group of animals with a cluster analysis. We described areas with high amounts of sinuous movement as primary habitat patches and areas with high amounts of very directional, fast movement as highly functional bear corridors. The time between bear locations and scale of analysis influenced the number and size of corridors identified. Bear locations should be collected at intervals ≤6 h to correctly identify travel corridors. Our corridor identification technique will help managers move beyond the theoretical discussion of corridors and linkage zones to active management of landscape features that will preserve connectivity.  相似文献   

6.
Metapopulation models are frequently used for analysing species–landscape interactions and their effect on structure and dynamic of populations in fragmented landscapes. They especially support a better understanding of the viability of metapopulations. In such models, the processes determining metapopulation viability are often modelled in a simple way. Animals’ dispersal between habitat fragments is mostly taken into account by using a simple dispersal function that assumes the underlying process of dispersal to be random movement. Species-specific dispersal behaviour such as a systematic search for habitat patches is likely to influence the viability of a metapopulation. Using a model for metapopulation viability analysis, we investigate whether such specific dispersal behaviour affects the predictions of ranking orders among alternative landscape configurations rated regarding their ability to carry viable metapopulations. To incorporate dispersal behaviour in the model, we use a submodel for the colonisation rates which allows different movement patterns to be considered (uncorrelated random walk, correlated random walk with various degrees of correlation, and loops). For each movement pattern, the landscape order is determined by comparing the resulting mean metapopulation lifetime Tm of different landscape configurations. Results show that landscape orders can change considerably between different movement patterns. We analyse whether and under what circumstances dispersal behaviour influences the ranking orders of landscapes. We find that the ‘competition between patches for migrants’ – i.e. the fact that dispersers immigrating into one patch are not longer available as colonisers for other patches – is an important factor driving the change in landscape ranks. The implications of our results for metapopulation modelling, planning and conservation are discussed.  相似文献   

7.
Few relevant data are available to analyze how landscape features affect the abundance and movement patterns of tropical insects. We used mark-release-recapture techniques to study the effects of landscape structure and composition on habitat preferences and movements of Canthon cyanellus cyanellus individuals, within a complex tropical deciduous forest landscape in South Mexico during 2004 and 2005. In total, 2,460 individuals of C. c. cyanellus were captured, including 1,225 females and 1,235 males, out of which 124 individuals (65 females and 59 males) were recaptured once, and 9 individuals (seven females and two males) were recaptured twice. The abundance of individuals was equally high in large forest fragments, small forest fragments and hedgerows, but the abundance in pastures was less than half of the abundance in the other habitat types. To disentangle the movement behaviour of the species from the spatially and temporally varying sampling effort, we applied a Bayesian state-space modelling framework with a diffusion based movement model. Males showed generally faster movement rate than females, and they moved faster within forests and hedgerows than within pastures. Contrary to the assumption of the diffusion model, individuals did not move in a continuous fashion, indicated by the large fraction of individuals that were recaptured in the site of release. However, the posterior predictive data did not deviate substantially from the real data in terms of the mean and maximum movement distances recorded, and in terms of the dependence of movement distance on time between captures. Our results suggest that an important component of the biota in Mexican agro-pasture landscapes can utilize contemporary landscape elements such as hedgerows or small forest fragments in addition to large fragments of remnant habitat. These habitats are still locally common in semi-natural ecosystems and require less intensive conservation management.  相似文献   

8.
Landscape composition and configuration, often termed as habitat loss and fragmentation, are predicted to reduce species population viability, partly due to the restriction of movement in the landscape. Unfortunately, measuring the effects of habitat loss and fragmentation on functional connectivity is challenging because these variables are confounded, and often the motivation for movement by target species is unknown. Our objective was to determine the independent effects of landscape connectivity from the perspective of a mature forest specialist—the northern flying squirrel (Glaucomys sabrinus). To standardize movement motivation, we translocated 119 squirrels, at varying distances (0.18–3.8 km) from their home range across landscapes representing gradients in both habitat loss and fragmentation. We measured the physical connectedness of mature forest using an index of connectivity (landscape coincidence probability). Patches were considered connected if they were within the mean gliding distance of a flying squirrel. Homing success increased in landscapes with a higher connectivity index. However, homing time was not strongly predicted by habitat amount, connectivity index, or mean nearest neighbour and was best explained as a simple function of sex and distance translocated. Our study shows support for the independent effects of landscape configuration on animal movement at a spatial scale that encompasses several home ranges. We conclude that connectivity of mature forest should be considered for the conservation of some mature forest specialists, even in forest mosaics where the distinction between habitat and movement corridors are less distinct.  相似文献   

9.
Understanding how organisms respond to landscape heterogeneity is foundational to landscape ecology. We characterized seasonal scales of movement of white-tailed deer (Odocoileus viginianus) in an agricultural–forest matrix using first-passage time analysis (FPT) for 62 GPS-collared individuals. We investigated whether those scales were driven by demographic or landscape features. We found FPT for each individual across all seasons was typically dominated by a peak in variance of FPT/area at scales (radii) from 425 to 1,675 m. These peaks occurred at scales consistent with seasonal space use. We observed additional lower magnitude peaks at larger scales (3,000–6,000 m) and small scales (25–150 m). Peaks at larger scales were associated with seasonal migrations and dispersal events. Small scale peaks may represent resting or foraging behavior. Female movements were organized at smaller scales than males in the spring/summer season. Models relating landscape features to movement scales suggest that deer perceive and move within the landscape differently as the roles of dominant land-cover types shift seasonally. During winter, configuration (interspersion/juxtaposition) of land-cover types is more important to deer than during spring/summer and fall. During spring/summer and fall, movement behavior may be dictated by reproductive and harvest activities.  相似文献   

10.
In mobile animals, movement behavior can maximize fitness by optimizing access to critical resources and minimizing risk of predation. We sought to evaluate several hypotheses regarding the effects of landscape structure on American marten foraging path selection in a landscape experiencing forest perforation by patchcut logging. We hypothesized that in the uncut pre-treatment landscape marten would choose foraging paths to maximize access to cover types that support the highest density of prey. In contrast, in the post-treatment landscapes we hypothesized marten would choose paths primarily to avoid crossing openings, and that this would limit their ability to optimally select paths to maximize foraging success. Our limiting factor analysis shows that different resistant models may be supported under changing landscape conditions due to threshold effects, even when a species’ response to landscape variables is constant. Our results support previous work showing forest harvest strongly affects marten movement behavior. The most important result of our study, however, is that the influence of these features changes dramatically depending on the degree to which timber harvest limits available movement paths. Marten choose foraging paths in uncut landscapes to maximize time spent in cover types providing the highest density of prey species. In contrast, following landscape perforation by patchcuts, marten strongly select paths to avoid crossing unforested areas. This strong response to patch cutting reduces their ability to optimize foraging paths to vegetation type. Marten likely avoid non-forested areas in fragmented landscapes to reduce risk of predation and to benefit thermoregulation in winter, but in doing so they may suffer a secondary cost of decreased foraging efficiency.  相似文献   

11.
The spatial extent at which landscape structure best predicts population response, called the scale of effect, varies across species. An ability to predict the scale of effect of a landscape using species traits would make landscape study design more efficient and would enable landscape managers to plan at the appropriate scale. We used an individual based simulation model to predict how species traits influence the scale of effect. Specifically, we tested the effects of dispersal distance, reproductive rate, and informed movement behavior on the radius at which percent habitat cover best predicts population abundance in a focal area. Scale of effect for species with random movement behavior was compared to scale of effect for species with three (cumulative) levels of information use during dispersal: habitat based settlement, conspecific density based settlement, and gap-avoidance during movement. Consistent with a common belief among researchers, dispersal distance had a strong, positive influence on scale of effect. A general guideline for empiricists is to expect the radius of a landscape to be 4?C9 times the median dispersal distance or 0.3?C0.5 times the maximum dispersal distance of a species. Informed dispersal led to greater increases in population size than did increased reproductive rate. Similarly, informed dispersal led to more strongly decreased scales of effect than did reproductive rate. Most notably, gap-avoidance resulted in scales that were 0.2?C0.5 times those of non-avoidant species. This is the first study to generate testable hypotheses concerning the mechanisms underlying the scale at which populations respond to the landscape.  相似文献   

12.
Is landscape connectivity a dependent or independent variable?   总被引:1,自引:0,他引:1  
With growing interest in landscape connectivity, it is timely to ask what research has been done and what re mains to be done. I surveyed papers investigating landscape connectivity from 1985 to 2000. From these papers, I determined if connectivity had been treated as an independent or dependent variable, what connectivity metrics were used, and if the study took an empirical or modeling approach to studying connectivity. Most studies treated connectivity as an independent variable, despite how little we know about how landscape structure and organism movement behaviour interact to determine landscape connectivity. Structural measures of connectivity were more common than functional measures, particularly if connectivity was treated as an independent variable. Though there was a good balance between modeling and empirical approaches overall – studies dealing with connectivity as a dependent, functional variable were mainly modeling studies. Based on the research achieved thus far, fu ture landscape connectivity research should focus on: (1) elucidating the relationship between landscape struc ture, organism movement behaviour, and landscape connectivity (e.g., treating connectivity as a dependent variable), (2) determining the relationships between different measures of connectivity, particularly structural and functional measures, and (3) empirically testing model predictions regarding landscape connectivity.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

13.
How should we measure landscape connectivity?   总被引:9,自引:0,他引:9  
The methods for measuring landscape connectivity have never been compared or tested for their responses to habitat fragmentation. We simulated movement, mortality and boundary reactions across a wide range of landscape structures to analyze the response of landscape connectivity measures to habitat fragmentation. Landscape connectivity was measured as either dispersal success or search time, based on immigration into all habitat patches in the landscape. Both measures indicated higher connectivity in more fragmented landscapes, a potential for problematic conclusions for conservation plans. We introduce cell immigration as a new measure for landscape connectivity. Cell immigration is the rate of immigration into equal-sized habitat cells in the landscape. It includes both within- and between-patch movement, and shows a negative response to habitat fragmentation. This complies with intuition and existing theoretical work. This method for measuring connectivity is highly robust to reductions in sample size (i.e., number of habitat cells included in the estimate), and we hypothesize that it therefore should be amenable to use in empirical studies. The connectivity measures were weakly correlated to each other and are therefore generally not comparable. We also tested immigration into a single patch as an index of connectivity by comparing it to cell immigration over the landscape. This is essentially a comparison between patch-scale and landscape-scale measurement, and revealed some potential for patch immigration to predict connectivity at the landscape scale. However, this relationship depends on the size of the single patch, the dispersal characteristics of the species, and the amount of habitat in the landscape. We conclude that the response of connectivity measures to habitat fragmentation should be understood before deriving conclusions for conservation management.  相似文献   

14.
Corridor function for wildlife movement constitutes an important and desirable ecological characteristic of linear landscape structures. Changes in the matrix conditions, however, may result in substantial changes in the mechanisms responsible for the use of corridors by animals. I developed a model that describes the influence of matrix quality on the effectiveness of corridors for wildlife movement and the abundance of animals in the corridors. The model predicts that corridor effectiveness is maximized at intermediate matrix quality levels, while the abundance in the corridor increases asymptotically with matrix quality. I tested predictions of this model by comparing the expected and observed relative abundance of forest bird species in two landscape types of southern Chile. In nine out of 12 cases the model correctly predicted the relative abundance of forest birds. Riparian forest strips were expected to be effective functioning as corridors for five out of six studied species, although corridor effectiveness for each species varied between landscape types. A reasonable strategy to improve connectivity is to maintain (or to increase, if necessary) the matrix quality at a level such that corridors can function efficiently as both drift fences and movement conduits.  相似文献   

15.
Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect’ approaches involving genetic analyses provide a complementary tool to ‘direct’ methods such as capture–recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structure.  相似文献   

16.
Distances and directions of Apodemus agrarius and Clethrionomus glareolus movements were studied using snap traps and colored bait. The longest distances traversed exceeded 1500 m. Some directions of movement were significantly more common. High variability in the number of captures along traplines suggests distinct movement routes. Small mammals appear to base their movement on the landscape and not on individual biotopes.  相似文献   

17.
Landscape structure can influence the fine-scale movement behavior of dispersing animals, which ultimately may influence ecological patterns and processes at broader scales. Functional grain refers to the finest scale at which an organism responds to spatial heterogeneity among patches and extends to the limits of its perceptual range. To determine the functional grain of a model insect, red flour beetle (Tribolium castaneum), we examined its movement behavior in response to experimental flour landscapes. Landscape structure was varied by manipulating habitat abundance (0%, 10%, 30%, and 100%) and grain size of patches (fine-2 × 2 cm, intermediate-5 × 5 cm, and coarse-10 × 10 cm) in 50 × 50 cm landscapes. Pathway metrics indicated that beetles used a similar proportion of all landscape types. Several pathway metrics indicated a graded response from the fine to the coarse grain landscape. Lacunarity analysis of beetle pathways indicated a non-linear change in space use between the fine and intermediate landscapes and the coarse-grained landscape. Beetles moved more slowly and tortuously (with many turns), and remained longer in both the overall landscape and individual patches, in fine-grained compared to coarse-grained landscapes. Our research demonstrates how detailed examination of movement pathways and measures of lacunarity can be useful in determining functional grain. Spatially explicit, organism-centered studies focusing on behavioral responses to different habitat configurations can serve as an important first step to identify behavioral rules of movement that may ultimately lead to more accurate predictions of space use in landscapes.  相似文献   

18.
Individual movement is a key process affecting the distribution of animals in heterogeneous landscapes. For specialist species in patchy habitat, a central issue is how dispersal distances are related to landscape structure. We compared dispersal distances for cactus bugs (Chelinidea vittiger) on two naturally fragmented landscapes (≤ 4% suitable habitat) with different matrix structures (i.e., vegetation height of nonsuitable habitat between suitable patches). Using mark-release-recapture studies, we determined that most transfers between cactus patches occurred during the mating season. Dispersal distances were reduced by > 50% on the landscape that had reduced structural connectivity due to relatively high matrix structure and low patch density. An experiment with detailed movement pathways demonstrated that greater matrix structure decreased mean step lengths, reduced directionality, and thus decreased net displacement by > 60%. However, habitat edges between two matrix elements that differed substantially in resistance to movement were completely permeable. Therefore, the difference in distributions of dispersal distances between the two landscapes mainly reflected the average resistance of matrix habitat and not the level of matrix heterogeneity per se. Our study highlights the merits of combining estimates of dispersal distances with insights on mechanisms from detailed movement pathways, and emphasizes the difficulty of treating dispersal distances of species as fixed traits independent of landscape structure.  相似文献   

19.
Landscape features that promote animal movement contribute to functional habitat connectivity. Factors that affect the use of landscape features, such as predation risk, may alter functional connectivity. We identify factors important to functional habitat connectivity by quantifying movement patterns of the Santa Rosa beach mouse (Peromyscus polionotus leucocephalus) in relation to landscape features and by examining how ambient perceived predation risk, which is altered by moon phase, interacts with landscape features. We use track paths across the sand to relate the probability that beach mice cross gaps between vegetation patches to gap width, patch quality, landscape context and moon phase. Overall activity levels were lower during full versus new moon nights, demonstrating that beach mice respond negatively to moonlight. Gap crossing was more likely during new moon nights (25 % of gaps crossed vs. 7 % during full moon nights), and across narrower gaps (<8.38 m) that led to larger vegetation patches (>11.75 m2). This study suggests that vegetation recovery is necessary for functional connectivity in post-hurricane landscapes commonly inhabited by beach mice and provides initial guidelines for restoring landscape connectivity. More broadly, this study highlights the importance of considering predation risk when quantifying landscape connectivity, as landscape features that facilitate connectivity when predation risk is low may be ineffective if predation risk increases over time or across space.  相似文献   

20.
Agriculture intensification has deeply modified agroecosystems from field to landscape scales. To achieve successful pest control using natural enemies, understanding species interactions over all scales remains a challenge. Using the cabbage root fly as a model, we studied whether field and landscape characteristics influenced colonization and infestation of broccoli fields by the pest and its control by natural enemies. We also determined whether species of different trophic level or host specialization would respond to environmental characteristics at the same spatial extent. During a multiple-species and multiple-spatial extent study in northwestern France, we recorded pest colonization and infestation in 68 fields, collected associated natural enemies and assessed crop damages. In each field, we considered management practices and characterized the surrounding landscape in 50–500 m-wide buffers. Our main findings are that Delia radicum and its main natural enemies respond to both field and landscape characteristics. Semi-natural areas supported both crop colonization by pests and natural enemy action. The pest and its enemies differed in their responses to field or landscape variables. Landscape elements such as field banks favored the movement of the pest while impeding the movement of some natural enemies. Pest pressure did not increase with the neighboring density of Brassica crops. The presence of natural enemies did not reduce crop damage but reduced pest emerging rates. Finally, specialist parasitoids responded to the landscape at larger spatial extents than generalists. These results outline the complexity of improving pest control through landscape management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号