首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat specificity indices reflect richness (α) and/or distinctiveness (β) components of diversity. The latter may be defined by α and γ (landscape) diversity in two alternative ways: multiplicatively () and additively (). We demonstrate that the original habitat specificity concept of Wagner and Edwards (Landscape Ecol 16:121–131, 2001) consists of three independent components: core habitat specificity (uniqueness of the species composition), patch area and patch species richness. We describe habitat specificity as a family of indices that may include either area or richness components, or none or both, and open for use of different types of mean in calculation of core habitat specificity. Core habitat specificity is a beta diversity measure: the effective number of completely distinct communities in the landscape. Habitat specificity weighted by species number is a gamma diversity measure: the effective number of species that a patch contributes to landscape richness. We compared 12 habitat specificity indices by theoretical reasoning and by use of field data (vascular plant species in SE Norwegian agricultural landscapes). Habitat specificity indices are strongly influenced by weights for patch area and patch species richness, and the relative contribution of rare vs. common species (type of mean). The relevance of properties emphasized by each habitat specificity index for evaluation of patches in a biodiversity context is discussed. Core habitat specificity is emphasized as an ecologically interpretable measure that specifically addresses patch uniqueness while habitat specificity weighted by species number combines species richness and species composition in ways relevant for conservation biological assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Gamboa-Badilla  Nancy  Segura  Alfonso  Bagaria  Guillem  Basnou  Corina  Pino  Joan 《Landscape Ecology》2020,35(12):2745-2757
Context

It is known that land-use and land-cover (LULC) changes affect plant community assembly for decades. However, both the short- and the long-term effects of contrasting LULC change pathways on this assembly are seldom explored.

Objectives

To assess how LULC change pathways affect woody plant community parameters (i.e. species richness, diversity and evenness) and species’ presence and abundance, compared with environmental factors and neutral processes.

Methods

The study was performed in Mediterranean limestone scrublands in NE Spain. Cover of each woody species was recorded in 150 scrubland plots belonging to five LULC change pathways along the past century, identified using land-cover maps and fieldwork. For each plot, total woody and herbaceous vegetation cover, local environmental variables and geographical position were recorded. Effects of these pathways and factors on plant community parameters and on species presence and abundance were assessed, considering spatial effects potentially associated to neutral processes.

Results

Species richness and diversity were associated with LULC change pathways and elevation, while evenness was only associated with this last. Pathways and environmental variables explained similar variance in both species’ presence and cover. In general, while community parameters were affected by recent-past (1956) use, species presence and abundance were associated with far-past (pre-1900) cropping. No relevant spatial effect was detected for any studied factor.

Conclusions

Historical LULC changes and current environmental factors drive local-scale community assembly in Mediterranean scrublands to an equal extent, while contrasting time-scale effects are found at community and species level. Neutral, dispersal-based processes are found to be non-relevant.

  相似文献   

3.
Context

Wild flowering plants and their wild insect visitors are of great importance for pollination. Montane meadows are biodiversity hotspots for flowering plants and pollinators, but they are contracting due to tree invasion.

Objectives

This study quantified flowering plants and their flower-visitor species in montane meadows in the western Cascade Range of Oregon. Species diversity in small, isolated meadows was expected to be lower and nested relative to large meadows. Alternatively, landform features may influence richness and spatial turnover.

Methods

Flowering plants and their visitors were sampled in summers of 2011–2017 in twelve montane meadows with varying soil moisture. All flowering plants and all flower-visitors were recorded during five to seven 15 min watches in ten 3?×?3 m plots in each meadow and year.

Results

A total of 178 flowering plant species, 688 flower-visitor species and 137,916 interactions were identified. Richness of flower-visitors was related to meadow patch size, but neither plant nor flower-visitor richness was related to isolation measured as meadow area within 1000 m. Species in small meadows were not nested subsets of those in large meadows. Species replacement accounted for more than 78% of dissimilarity between meadows and was positively related to differences in soil moisture.

Conclusions

Although larger meadows contained more species, landform features have influenced meadow configuration, persistence, and soil moisture, contributing to high plant and insect species diversity. Hence, conservation and restoration of a variety of meadow types may promote landscape diversity of wild plants and pollinators.

  相似文献   

4.
Knowledge on environmental variability and how it is affected by disturbances is crucial for understanding patterns of biodiversity and determining adequate conservation strategies. The aim of this study is to assess environmental variability in patches undergoing post-fire vegetation recovery, identifying trends of change and their relevant drivers. We particularly evaluate: the value of three spectral indices derived from Landsat satellite data [Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI) and Wetness Component of the Tasseled Cap Transformation (TCW)] for describing secondary succession; the effectiveness of three metrics (diversity, evenness and richness) as indicators of patch variability; and how thematic resolution can affect the perception of environmental variability patterns. While the system was previously characterised as highly resilient from estimations of vegetation cover, here we noted that more time is required to fully recover pre-fire environmental variability. Using mean diversity as indicator of patch variability, we found similar patterns of temporal change for the three spectral indices (NBR, NDVI and TCW). Analogous conclusions could be drawn for richness and evenness. Patch variability, measured as diversity, showed consistent patterns across thematic resolutions, although values increased with the number of spectral classes. However, when the variance of diversity was plotted against thematic resolution, different scale dependencies were detected for those three spectral indices, yielding a dissimilar perception of patch variability. In general terms, NDVI was the best performing spectral index to assess patterns of vegetation recovery, while TCW was the worst. Finally, burned patches were classified into three classes with similar trends of change in environmental variability, which were strongly related to fire severity, elevation and vegetation type.  相似文献   

5.

Context

Ecological processes that shape diversity and spatial pattern of ecological communities are often altered by disturbance. Spatial patterns (spatial autocorrelation) in species diversity are thus expected to change with disturbance.

Objective

When examining spatial patterns, ecologists traditionally lump positive and negative spatial autocorrelation into the overall spatial autocorrelation. By contrast, here we aim to understand disturbance effects on both positive and negative spatial autocorrelation of species richness and evenness, which may be related to environmental filtering and restricted dispersal, and to competition, respectively.

Methods

For 8 years, we monitored the spatial autocorrelation in species richness and evenness of riparian plant communities in both uncut control and experimentally clearcut sites in the boreal forest of Alberta, Canada. The overall spatial autocorrelation for each of these two indices of diversity was separately decomposed into the components of positive and negative spatial autocorrelations through eigendecomposition of the spatial weighting matrix.

Results

Negative spatial autocorrelation in richness and evenness were more pronounced in the clearcut than uncut sites, although positive spatial autocorrelations in all indices of diversity remained unchanged. Effect of disturbance was not detected on the overall spatial autocorrelation.

Conclusions

Disturbance increases negative spatial autocorrelation in species richness and evenness, with a stronger increase in evenness than richness, which underscores the importance of competition in structuring post-disturbance riparian communities. Our results also highlight the need for assessing positive and negative spatial autocorrelation and different aspects of diversity separately in understanding disturbance effects on the spatial pattern, or identifying processes from patterns.
  相似文献   

6.
Wagner  Helene H.  Wildi  Otto  Ewald  Klaus C. 《Landscape Ecology》2000,15(3):219-227
In this paper, we quantify the effects of habitat variability and habitat heterogeneity based on the partitioning of landscape species diversity into additive components and link them to patch-specific diversity. The approach is illustrated with a case study from central Switzerland, where we recorded the presence of vascular plant species in a stratified random sample of 1'280 quadrats of 1 m2 within a total area of 0.23 km2. We derived components of within- and between-community diversity at four scale levels (quadrat, patch, habitat type, and landscape) for three diversity measures (species richness, Shannon index, and Simpson diversity). The model implies that what we measure as within-community diversity at a higher scale level is the combined effect of heterogeneity at various lower levels. The results suggest that the proportions of the individual diversity components depend on the habitat type and on the chosen diversity aspect. One habitat type may be more diverse than another at patch level, but less diverse at the level of habitat type. Landscape composition apparently is a key factor for explaining landscape species richness, but affects evenness only little. Before we can test the effect of landscape structure on landscape species richness, several problems will have to be solved. These include the incorporation of neighbourhood effects, the unbiased estimation of species richness components, and the quantification of the contribution of a landscape element to landscape species richness.  相似文献   

7.
Ekroos  Johan  Tiainen  Juha  Seimola  Tuomas  Herzon  Irina 《Landscape Ecology》2019,34(2):389-402
Context

The current Common Agricultural Policy (CAP) of the European Union includes three greening measures, which are partly intended to benefit farmland biodiversity. However, the relative biodiversity effects of the greening measures, including joint effects of landscape context, are not well understood.

Objectives

We studied the effects of increasing crop diversity, proportions of production grasslands and fallows, corresponding to CAP greening measures, on open farmland bird diversity, whilst controlling for the effects of distance to forests, field edge density and proportion of built-up areas.

Methods

We surveyed open farmland birds using territory mapping in Southern Finland. We modelled effects of greening measures and landscape structure on farmland birds (7642 territories) using generalised linear mixed models.

Results

Increasing proportions of grasslands increased farmland bird species richness and diversity in open farmland, whereas increasing proportions of fallows increased bird diversity. Increasing crop diversity benefited individual species, but not species richness or diversity. Increasing field edge densities consistently increased the species richness of all farmland species, in-field nesters and non-crop nesters, as well as total farmland bird diversity. The relative effect of edge density was much stronger compared to the three greening measures.

Conclusions

Our results show that promoting fallows and grasslands, in particular grazed grasslands and various types of semi-natural grasslands, has the highest potential to benefit farmland bird diversity. Maintaining or increasing field edge densities, currently not supported, seems to be of even more benefit. In open farmland, with little or no field edges, fallows and grasslands are particularly beneficial.

  相似文献   

8.
Context

Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity.

Objectives

We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results.

Methods

We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity.

Results

A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity.

Conclusions

Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.

  相似文献   

9.
The size, shape, and isolation of habitat patches can affect organism behavior and population dynamics, but little is known about the relative role of shape and connectivity in affecting ecological communities at large spatial scales. Using six sampling sessions from July 2001 until August 2002, we collected 33,685 arthropods throughout seven 12-ha experimental landscapes consisting of clear-cut patches surrounded by a matrix of mature pine forest. Patches were explicitly designed to manipulate connectivity (via habitat corridors) independently of area and edge effects. We found that patch shape, rather than connectivity, affected ground-dwelling arthropod richness and beta diversity (i.e. turnover of genera among patches). Arthropod communities contained fewer genera and exhibited less turnover in high-edge connected and high-edge unconnected patches relative to low-edge unconnected patches of similar area. Connectivity, rather than patch shape, affected the evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased richness of Coleoptera, whereas Hymenoptera played an important role in the lower evenness in connected patches and patterns of turnover. These findings suggest that anthropogenic habitat alteration can have distinct effects on ground-dwelling arthropod communities that arise due to changes in shape and connectivity. Moreover, this work suggests that corridors, which are common conservation tools that change both patch shape and connectivity, can have multiple effects on arthropod communities via different mechanisms, and each effect may alter components of community structure.  相似文献   

10.
Effects of changing spatial scale on the analysis of landscape pattern   总被引:68,自引:6,他引:62  
The purpose of this study was to observe the effects of changing the grain (the first level of spatial resolution possible with a given data set) and extent (the total area of the study) of landscape data on observed spatial patterns and to identify some general rules for comparing measures obtained at different scales. Simple random maps, maps with contagion (i.e., clusters of the same land cover type), and actual landscape data from USGS land use (LUDA) data maps were used in the analyses. Landscape patterns were compared using indices measuring diversity (H), dominance (D) and contagion (C). Rare land cover types were lost as grain became coarser. This loss could be predicted analytically for random maps with two land cover types, and it was observed in actual landscapes as grain was increased experimentally. However, the rate of loss was influenced by the spatial pattern. Land cover types that were clumped disappeared slowly or were retained with increasing grain, whereas cover types that were dispersed were lost rapidly. The diversity index decreased linearly with increasing grain size, but dominance and contagion did not show a linear relationship. The indices D and C increased with increasing extent, but H exhibited a variable response. The indices were sensitive to the number (m) of cover types observed in the data set and the fraction of the landscape occupied by each cover type (P k); both m and P kvaried with grain and extent. Qualitative and quantitative changes in measurements across spatial scales will differ depending on how scale is defined. Characterizing the relationships between ecological measurements and the grain or extent of the data may make it possible to predict or correct for the loss of information with changes in spatial scale.  相似文献   

11.
12.
Context

Insectivorous birds are sensitive to forest disturbances that may limit the availability of food consisting mainly of invertebrates. However, birds and invertebrates may be differently affected by forest disturbances while invertebrates may interact with disturbances.

Objectives

We aim to determine: (i) the effects of forest degradation on invertebrates and insectivorous birds; (ii) the effect of the availability of invertebrates as a food source on birds; (iii) interactions between food availability and forest degradation.

Methods

We selected 34 1-km radius landscape units, where the abundance of birds and invertebrates was sampled in the canopy and understory. Bird density as well as the abundance and richness of invertebrates were considered as dependent variables and analysed using Generalized Linear Mixed Model and Structural Equation Models. Remote-sensing indices of forest degradation were included as predictors.

Results

Eight indices of forest degradation affected canopy and understory invertebrates differently. Unlike invertebrates, bird abundance was affected by a smaller number of degradation indices, forest amounts as well as the cover of understory and canopy. Only two forest degradation indices had a comparable effect on bird abundance and invertebrates. We found causal relationships between understory invertebrates and the abundance of understory birds (all species and the small-sized ones), but also invertebrate abundance × forest cover interactions affected the abundance of a bird species.

Conclusions

Our results indicate that birds and invertebrates respond differently to forest degradation, but also provide evidence for bottom-up control by forest degradation and suggest food limitation varies with forest amounts.

  相似文献   

13.
Grof-Tisza  Patrick  Pepi  Adam  Holyoak  Marcel  Karban  Richard 《Landscape Ecology》2019,34(5):1131-1143
Context

Patch-based population models predominately focus on factors that affect regional processes namely, patch size and connectivity, as the primary drivers explaining patch occupancy. This trend persists despite the recognition that patch quality can strongly influence population demography at the local scale. The quality of patches is often temporally variable and influenced by abiotic conditions. However, few studies have explicitly investigated how climatic variables influence the spatial and temporal dynamics of spatially-structured populations either directly or indirectly through changes in patch quality.

Objectives

Using a 10-year census of a spatially-structured population of an outbreaking caterpillar, we determined the relative importance of patch quality (determined demographically), connectivity, precipitation, and their interactive effects on patch abundance, occupancy, colonization, and extinction.

Methods

We generated a series of statistical models and performed comparisons using Akaike’s information criterion. We subsequently used likelihood ratio tests to determine the influence of each parameter on model fit.

Results

Patch quality and precipitation were the strongest predictors of the observed dynamics. We found that the dynamics of the spatially-structured population of Arctia virginalis were strongly influenced by precipitation: all patches had a higher probability of occupancy, contained higher abundances of caterpillars, and experienced fewer extinctions following wet winters compared to years following droughts.

Conclusion

These findings suggest that precipitation may act to influence the strength of heterogeneity of patch quality. This work demonstrates that patch-based models that do not include local and climatic factors may produce poor predictions under future climatic regimes.

  相似文献   

14.
Habitat fragmentation is considered a major cause of biodiversity loss, both on terrestrial and marine environments. Understanding the effects of habitat fragmentation on the structure and dynamics of natural communities is extremely important to support management actions for biodiversity conservation. However, the effects of habitat fragmentation on marine communities are still poorly understood. Here we evaluated whether habitat fragmentation affects the structure of epifaunal communities in the sublittoral zone, in the northern coast of São Paulo state, Brazil. Five experimental landscapes were constructed, each one forming a large continuous patch. After 4 weeks, each landscape was cut on three patches of different sizes. Epifaunal macroinvertebrate communities were sampled at the edge and interior of experimental landscapes before manipulation to evaluate edge effects. After four more weeks, communities from the three patch sizes were also sampled to evaluate patch size effects. We compared the diversity of communities at different levels of fragmentation by total abundance, rarefied taxon richness, Shannon–Wiener diversity index, Simpson’s dominance index, and abundance of dominant taxa. Higher taxon richness and gastropod abundance were recorded in the patch edges, but no significant differences were found among patch sizes. We found a significant effect of habitat fragmentation, with lower abundances of Gammaridea (the dominant taxon), Ophyuroidea, and Pycnogonida after the experimental fragmentation. Lower abundances of dominant taxa resulted in higher diversity and lower dominance in fragmented landscapes when compared to integral, pre-manipulation landscapes. Our results suggest that fragmentation of landscapes in the system studied can reduce dominance, and that even small patch sizes can be important for the conservation of macroinvertebrate diversity.  相似文献   

15.
Characterizing the complexity of landscape boundaries by remote sensing   总被引:9,自引:0,他引:9  
This paper presents a method for characterizing the complexity of landscape boundaries by remote sensing. This characterization is supported by a new boundary typology, that takes into account points where three or more landcovers converge (i.e., convergency points or coverts). Landscape boundary richness and diversity indices were proposed and calculated over 19 landscapes in South-East Brazil. Results showed that landscape boundaries, especially convergency points, provided an enrichment in landscape pattern analysis. Landcover boundary diversities were significantly related to landcover shape: elongated riparian units had the highest values for boundary diversity and coverts proportion indices. On the other hand, landscape analysis showed that indices of shape, richness, diversity and coverts proportion provided an additional evaluation of landcover spatial distribution within the landscape.  相似文献   

16.

Context

Identifying the drivers shaping biological assemblages in fragmented tropical landscapes is critical for designing effective conservation strategies. It is still unclear, however, whether tropical biodiversity is more strongly affected by forest loss, by its spatial configuration or by matrix composition across different spatial scales.

Objectives

Assessing the relative influence of forest patch and landscape attributes on dung beetle assemblages in the fragmented Lacandona rainforest, Mexico.

Methods

Using a multimodel inference approach we tested the relative impact of forest patch size and landscape forest cover (measures of forest amount at the patch and landscape scales, respectively), patch shape and isolation (forest configuration indices at the patch scale), forest fragmentation (forest configuration index at the landscape scale), and matrix composition on the diversity, abundance and biomass of dung beetles.

Results

Patch size, landscape forest cover and matrix composition were the best predictors of dung beetle assemblages. Species richness, beetle abundance, and biomass decreased in smaller patches surrounded by a lower percentage of forest cover, and in landscapes dominated by open-area matrices. Community evenness also increased under these conditions due to the loss of rare species.

Conclusions

Forest loss at the patch and landscape levels and matrix composition show a larger impact on dung beetles than forest spatial configuration. To preserve dung beetle assemblages, and their key functional roles in the ecosystem, conservation initiatives should prioritize a reduction in deforestation and an increase in the heterogeneity of the matrix surrounding forest remnants.
  相似文献   

17.
In this paper we present an introduction to the physical characteristics of sound, basic recording principles as well as several ways to analyze digital sound files using spectrogram analysis. This paper is designed to be a “primer” which we hope will encourage landscape ecologists to study soundscapes. This primer uses data from a long-term study that are analyzed using common software tools. The paper presents these analyses as exercises. Spectrogram analyses are presented here introducing indices familiar to ecologists (e.g., Shannon’s diversity, evenness, dominance) and GIS experts (patch analysis). A supplemental online tutorial provides detailed instructions with step by step directions for these exercises. We discuss specific terms when working with digital sound analysis, comment on the state of the art in acoustic analysis and present recommendations for future research.  相似文献   

18.
Variability in biodiversity is often assessed based on species richness, and this adherence to a single index has been typical in studies of ecology, biogeography, and conservation in the past two decades. More recent studies have suggested that species richness alone is insufficient as a measure of biodiversity, mainly because it is not necessarily correlated with other measures of biodiversity. We examined (1) if nine indices embracing species diversity, functional diversity, and taxonomic distinctness of stream macroinvertebrate assemblages show congruent patterns, and (2) if these indices show similar relationships to landscape characteristics. Not all indices varied similarly and were thus not significantly correlated. There were three principal components that effectively described variation in the correlation structure of the nine indices. These three components were: (1) diversity and evenness indices, (2) two indices of taxonomic distinctness, and (3) species richness and functional richness. Four of the nine biodiversity indices examined showed no significant relationships to landscape-catchment characteristics, and even the significant correlations between the remaining five indices and explanatory variables were rather weak. However, species richness showed a rather strong quadratic relationship to catchment area. Our study provided a number of suggestions for future biodiversity studies at the landscape scale. First, given that different indices describe different components of biodiversity and are not strongly correlated, multiple indices should be considered in any study describing stream biodiversity. Second, despite the study was restricted to near-pristine streams, all indices showed considerable variation. Thus, this natural variability should be accounted for prior to the examination of anthropogenic effects on stream biodiversity. Third, landscape-catchment variables may have only limited value in explaining variability in biodiversity indices, at least in regions with no strong anthropogenic gradients in land-use.  相似文献   

19.
van Schalkwyk  J.  Pryke  J. S.  Samways  M. J.  Gaigher  R. 《Landscape Ecology》2022,37(10):2535-2549
Context

Habitat edges are integral features of conservation corridors and can influence corridor function and effectiveness. Edge orientation is linked to corridor design and can shape edge responses by changing habitat conditions along edges as well as contrast between conserved habitats and transformed areas.

Objectives

We assess whether corridor orientation affects butterfly assemblages in conservation corridors. To do this, we investigate how edge orientation influences butterfly diversity and abundance along forestry plantation edges, and compare this to another important design variable, corridor width.

Methods

Butterflies were recorded along the sunny austral north- and shady austral south-orientated edges in grassland conservation corridors that dissect forestry plantations, as well as corridor interior sites. Species richness, abundance and similarity to interior sites were modelled using local habitat variables (ambient temperature, floral resources, and time of day), as well as corridor design variables (corridor width, orientation and an estimate of edge contrast influenced by orientation).

Results

Both edge orientation and corridor width were important for butterfly diversity along corridor edges. Wider corridors enhanced overall species richness and promoted similarity between edge and interior habitats. Concurrently, grassland specialist species preferred the sunnier edges (i.e., north facing in the southern hemisphere) while forest- specialists showed a preference for the shadier edges (south facing edges). Edge orientation influenced resident butterflies more strongly than transient butterflies and influenced specialists more strongly than generalists.

Conclusions

Corridor orientation and width are complementary design variables for butterfly conservation. Wide corridors at a variety of orientations benefit different subsets of the butterfly assemblage, and the whole corridor (including both edges) is important to consider in conservation planning to capture all biodiversity.

  相似文献   

20.
Habitat fragmentation strongly affects insect species diversity and community composition, but few studies have examined landscape effects on long term development of insect communities. As mobile consumers, insects should be sensitive to both local plant community and landscape context. We tested this prediction using sweep-net transects to sample insect communities for 8 years at an experimentally fragmented old-field site in northeastern Kansas, USA. The site included habitat patches undergoing secondary succession, surrounded by a low turf matrix. During the first 5 years, plant richness and cover were measured in patches. Insect species richness, total density, and trophic diversity increased over time on all transects. Cover of woody plants and perennial forbs increased each year, adding structural complexity to successional patches and potentially contributing to increased insect diversity. Within years, insect richness was significantly greater on transects through large successional patches (5000 m2) than on transects through fragmented arrays of 6 medium-sized (total area 1728 m2) or 15 small (480 m2) patches. However, plant cover did not differ among patch types and was uncorrelated with insect richness within years. Insect richness was strongly correlated with insect density, but trophic and α diversities did not differ among patch types, indicating that patch insect communities were subsets of a common species pool. We argue that differences in insect richness resulted from landscape effects on the size of these subsets, not patch succession rates. Greater insect richness on large patches can be explained as a community-level consequence of population responses to resource concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号