首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Context

Dispersal has important fitness consequences for individuals, populations, and species. Despite growing theoretical insights into the evolution of dispersal, its behavioral underpinnings remain empirically understudied, limiting our understanding of the extent and impact of responses to landscape-level heterogeneity of environments, and increasing the risk of inferring species-level responses from biased population sampling.

Objectives

We asked if predictable ecological variation among naturally fragmented arid waterbodies is correlated with disparate dispersal responses of populations of the desert goby Chlamydogobius eremius, which naturally inhabits two habitat “types” (permanent springs, ephemeral rivers), and different levels of hydrological connectivity (high and low) that potentially convey different costs and benefits of dispersal.

Methods

To test for possible behavioral divergence between such populations, we experimentally compared the movement behaviors (correlates of emigration and exploration) of wild-caught fish. We used two biologically relevant spatial scales to test movement relevant to different stages of the dispersal process.

Results

Behavior differed at both spatial scales, suggesting that alternative dispersal strategies enable desert gobies to exploit diverse habitat patches. However, while emigration was best predicted by the connectivity (flood risk) of fish habitats, exploration was linked to their habitat type (spring versus river).

Conclusions

Our findings demonstrate that despite a complex picture of ecological variation, key landscape factors have an overarching effect on among-population variation in dispersal traits. Implications include the maintenance of within-species variation, potentially divergent evolutionary trajectories of naturally or anthropogenically isolated populations, and the direction of future experimental studies on the ecology and evolution of dispersal behavior.
  相似文献   

2.
Landscape Ecology - Most future predictions of forest diversity and composition assume species will shift instantaneously. However, evidence suggests there will be considerable inertia between...  相似文献   

3.
Dyderski  Marcin  Żarnowiec  Jan  Stebel  Adam  Chmura  Damian 《Landscape Ecology》2022,37(7):1871-1884
Landscape Ecology - The spread of invasive bryophytes in Central Europe started in the 2nd half of the twentieth century. However, still it is not known which climatic and land-use factors shape...  相似文献   

4.

Context

Landscape changes can be an important modifier of disease. Habitat fragmentation commonly results in reduced connectivity in host populations and increased use of the remaining habitat. For environmentally transmitted parasites, this presents a possible trade-off between transmission potential at the local and global level.

Objectives

We quantify the effects of fragmentation on the transmission of an environmentally transmitted parasite, teasing apart the relative effects of habitat composition and configuration on both host movement behaviour and subsequent infection patterns.

Methods

We use a spatially-explicit epidemiological model to simulate the effects of habitat fragmentation, using, as an example, whipworm (Trichuris sp.) within a red colobus monkey population (Procolobus rufomitratus).

Results

We found that habitat fragmentation did not always lead to a trade-off between population connectivity and concentration of habitat use in host movement behaviour or in final population infection patterns. However, our simulation results suggest the spatial configuration of the remaining habitat became increasingly influential on behavioural and infection outcomes as habitat was removed. Additionally, we found common fragmentation metrics provided little ability to explain variation in propagation of infections.

Conclusions

Our results suggest an interaction between habitat configuration and composition should be considered when assessing disease related impacts of habitat fragmentation on environmentally transmitted parasites, especially in cases where habitat loss is high (≥?30%). We also propose that spatially-explicit simulations that capture a host’s response to fragmentation could aid in the development of novel landscape metrics targeted towards specific host-parasite-landscape systems.
  相似文献   

5.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

6.
We investigated patterns in habitat use by the noisy miner (Manorina melanocephala) along farmland-woodland edges of large patches of remnant vegetation (>300 ha) in the highly fragmented box-ironbark woodlands and forests of central Victoria, Australia. Noisy miners exclude small birds from their territories, and are considered a significant threat to woodland bird communities in the study region. Seventeen different characteristics of edge habitat were recorded, together with the detection or non-detection of noisy miners along 129 500-m segments of patch edge. Habitat characteristics ranged from patch-level factors related to patch-edge geometry to site-level floristic factors. Backward (stepwise) logistic regression analyses were used to identify habitat characteristics that were associated with the occupancy of a site by noisy miners. After accounting for the effects of spatial autocorrelation on the occurrence of noisy miners along edges, we identified projections of remnant vegetation from the patch edge into the agricultural matrix (e.g., corners of patches, peninsulas of vegetation) and clumps of trees in the agricultural matrix within 100 m of the edge as significant predictors of the occupancy of edges by noisy miners. This relationship was also confirmed in two other geographically and floristically distinct habitats within Victoria. The use of edges with projections by noisy miners may confer advantages in interspecific territorial defence. In light of these results, we advocate revegetation strategies that attempt to enclose projections within 100 m of the edge, with fencing placed out to this new boundary, to reduce the likelihood of colonisation and domination of an edge by noisy miners. Our study highlights the need for greater consideration to be given to the patterns in habitat use by aggressive edge specialists, particularly in relation to patch-edge geometry and other human-induced components of landscapes.  相似文献   

7.

Context

The relative influence of habitat loss versus configuration on avian biodiversity is poorly understood. However, this knowledge is essential for developing effective land use strategies, especially for grassland songbirds, which have experienced widespread declines due to land use changes. Habitat configuration may be particularly important to grassland songbirds as configuration of habitat affects the extent of edge effects on the landscape, which strongly influences habitat use by grassland birds.

Objectives

We examined the relative influence of grassland amount and a measure of grassland configuration per se (Landscape Shape Index; LSI) on the relative abundance and richness of grassland songbirds.

Methods

In 2013, 361 avian point counts were conducted across 47, 2.4 km radii landscapes in south-west Manitoba, Canada, selected to minimize the correlation between grassland amount and configuration. We used generalized linear mixed-effects models within a multi-model inference framework to determine the relative importance of grassland amount and configuration on songbird response variables.

Results

Effects of grassland amount and configuration were generally weak, but effects of configuration were greater than grassland amount for most species. Relative abundance and richness of obligate species, and Savannah sparrows, showed a strong negative response to LSI, while grasshopper sparrows responded positively to grassland amount.

Conclusion

Our results suggest that habitat configuration must be considered when managing landscapes for conservation of grassland songbirds. Maintaining large, intact tracts of grasslands and limiting development of roads that bisect grassland parcels may be an effective means of maintaining grassland songbird diversity and abundance in northern mixed-grass prairies.
  相似文献   

8.
Landscape Ecology - An understanding of species-habitat relationships is required to assess the impacts of habitat fragmentation and degradation. To date, habitat modeling in fragmented landscapes...  相似文献   

9.
The present paper addresses the question which visual features trigger people’s often more positive affective responses to natural compared to built scenes. Building on notions about visual complexity and fractal geometry, we propose that perceived complexity of magnified scene parts can predict the greater fascinating and restorative qualities of natural versus built scenes. This prediction was tested in an experiment in which 40 participants viewed and rated 40 images of unspectacular natural and built scenes in their original size, and at 400% and 1600% magnification levels. Results showed that the original, unmagnified natural scenes were viewed longer and rated more restorative than built scenes, and that these differences were statistically mediated by the greater perceived complexity of magnified parts of natural scenes. These findings fit with the idea that fractal-like, recursive complexity is an important visual cue underlying the restorative potential of natural and built environments.  相似文献   

10.
11.
We evaluated the influence of scale on habitat use for three wetland-obligate bird species with divergent life history characteristics and possible scale-dependent criteria for nesting and foraging in South Dakota, USA. A stratified, two-stage cluster sample was used to randomly select survey wetlands within strata defined by region, wetland density, and wetland surface area. We used 18-m (0.1 ha) fixed radius circular-plots to survey birds in 412 semipermanent wetlands during the summers of 1995 and 1996. Variation in habitat use by pied-billed grebes (Podilymbus podiceps) and yellow-headed blackbirds (Xanthocephalus xanthocephalus), two sedentary species that rarely exploit resources outside the vicinity of nest wetlands, was explained solely by within-patch variation. Yellow-headed blackbirds were a cosmopolitan species that commonly nested in small wetlands, whereas pied-billed grebes were an area-sensitive species that used larger wetlands regardless of landscape pattern. Area requirements for black terns (Chlidonias niger), a vagile species that typically forages up to 4 km away from the nest wetland, fluctuated in response to landscape structure. Black tern area requirements were small (6.5 ha) in heterogeneous landscapes compared to those in homogeneous landscapes (15.4–32.6 ha). Low wetland density landscapes composed of small wetlands, where few nesting wetlands occurred and potential food sources were spread over large distances, were not widely used by black terns. Landscape-level measurements related to black tern occurrence extended past relationships between wetlands into the surrounding matrix. Black terns were more likely to occur in landscapes where grasslands had not been tilled for agricultural production. Our findings represent empirical evidence that characteristics of entire landscapes, rather than individual patches, must be quantified to assess habitat suitability for wide-ranging species that use resources over large areas.  相似文献   

12.

Context

Native vegetation is often used as a proxy for habitat to estimate habitat availability in landscapes. This approach may lead to incorrect estimates of the impacts of habitat loss and fragmentation on species, which have not been thoroughly quantified so far.

Objectives

We quantified to what extent the loss of native vegetation reflect actual habitat loss by native species in landscapes. We tested the hypothesis that habitat availability declines at greater rates than native vegetation and thus is overestimated when it is quantified on the basis of native vegetation.

Methods

Using simulations, we quantified how the loss of native vegetation in artificial and real landscapes affects habitat availability for species with different habitat requirements. We contrasted a generalist species, which uses all native vegetation, with 10 habitat-specialist species classified into three categories (interior, patchy and riparian species).

Results

Habitat availability generally declined at greater rates than native vegetation for all specialist species. This pattern was apparent for different specialist species in a broad range of landscape types. Interior species always lost habitat availability more rapidly than the generalist species. Most riparian species lost habitat availability more rapidly than the generalist species. Responses of patchy species were more complex, depending on their dispersal abilities and landscape structure.

Conclusions

Habitat availability is likely to be overestimated when native vegetation is used as proxy for habitat, because habitat availability will generally decline at greater rates than native vegetation. Therefore, a species-centered approach should be adopted when estimating habitat availability in landscapes.
  相似文献   

13.
14.
Landscape Ecology - Predicting habitat use patterns is a key issue in the management of large herbivore populations. Particularly, indicators providing a model of the spatial distribution of a...  相似文献   

15.
Anthropogenic noise is becoming a dominant component of soundscapes across the world and these altered acoustic conditions may have severe consequences for natural communities. We modeled noise amplitudes from gas well compressors across a 16 km2 study area to estimate the influence of noise on avian habitat use and nest success. Using species with noise responses representative of other avian community members, across the study area we estimated gray flycatcher (Empidonax wrightii) and western scrub-jay (Aphelocoma californica) occupancy, and gray flycatcher nest success, which is highly dependent on predation by western scrub-jays. We also explore how alternative noise management and mitigation scenarios may reduce area impacted by noise. Compressor noise affected 84.5% of our study area and occupancy of each species was approximately 5% lower than would be expected without compressor noise. In contrast, flycatcher nest success was 7% higher, reflecting a decreased rate of predation in noisy areas. Not all alternative management and mitigation scenarios reduced the proportion of area affected by noise; however, use of sound barrier walls around compressors could reduce the area affected by noise by 70% and maintain occupancy and nest success rates at levels close to those expected in a landscape without compressor noise. These results suggest that noise from compressors could be effectively managed and, because habitat use and nest success are only two of many ecological processes that may change with noise exposure, minimizing the anthropogenic component of soundscapes should be a conservation priority.  相似文献   

16.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

18.

Context

Revealing the interaction between landscape pattern and urban land surface temperature (LST) can provide insight into mitigating thermal environmental risks. However, there is no consensus about the key landscape indicators influencing LST.

Objectives

This study sought to identify the key landscape indicators influencing LST considering a large number of landscape pattern variables and multiple scales.

Methods

This study applied ordinary least squares regression and partial least squares regression to explore a combination of landscape metrics and identify the key indicators influencing LST. A total of 49 Landsat images of the main city of Shenzhen, China were examined at 13 spatial scales.

Results

The landscape composition indicators derived from biophysical proportion, a new metric developed in this study, more effectively determined LST variation than those derived from land cover proportion. Area-related landscape configuration indicators independently characterized LST variation, but did not give much more new information beyond that given by land cover proportion. Shape-related landscape configuration indicators were effective in combination with land cover proportion, but their importance was uncertain when temporal and spatial scales varied.

Conclusions

The influence of landscape configuration on LST exists but should not be overestimated. Comparison of numerous variables at multiple spatiotemporal scales can help identify the influence of multiple landscape characteristics on LST variation.
  相似文献   

19.
为了改变生产者在保护地蔬菜种植上施用化肥的盲目性、随意性和轻视有机肥的现象,解决因保护地土壤退化、养分比例失调而造成的土壤养分供应障碍,生理性病害普遍发生的问题,采用大田试验方法,于2005-2007年在连作番茄8年以上温室内,开展了生产上普遍应用的习惯施肥与全部用化肥、化肥+有机肥平衡施肥3种施肥方法对番茄的影响对比试验研究。结果表明,2种平衡施肥处理较习惯施肥,可显著改善植株生物学性状,减轻番茄生理性病害,改进番茄品质;极显著地提高番茄产量和效益,其中667m2分别增产27.5%和34.9%,分别增收4413.7和4872.1元;平衡施肥以化肥+有机肥在培肥地力,改善番茄品质,提高产量和经济、社会、生态等综合效益上更优更符合农业发展方向,值得在生产上推广应用。  相似文献   

20.
Assessing connectivity of the marine environment is a fundamental challenge for marine conservation and planning, yet conceptual development in habitat connectivity has been based on terrestrial examples rather than marine ecosystems. Here, we explore differences in marine environments that could affect localized movement of marine organisms and demonstrate the importance of incorporating them into seascape models. We link a fish-based cost surface model to simulated seascapes to test hypotheses about the effects of fish mobility, water current strength, and their interactions on functional connectivity of a seascape. Our models predict that sedentary fish should be more sensitive to habitat change than more mobile fish. Furthermore, highly mobile fish should be more sensitive to water currents than habitat change. In our models, the cost of swimming against a current (of any strength) exceeded its benefits, resulting in overall decreases in connectivity with increasing current strengths. We further hypothesized that thresholds in functional connectivity will be affected by both fish mobility and water current strength. Connectivity thresholds in the models occurred when 10–50 % of benthic habitat was favourable; below these thresholds there was a rapid increase in path cost. Thresholds were influenced by the interaction of relative habitat costs (simulated fish mobility) and habitat fragmentation: thresholds for less mobile fish (higher relative cost) were reached at lower habitat abundance when habitat was fragmented, while thresholds for mobile fish were less affected by fragmentation. Our approach suggests mobility and water current are useful indicators of connectivity in marine environments and should be incorporated in seascape models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号