首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gestating sows (n = 44; parity = 2.0; BW = 208 kg) were used to determine the effects of dietary L-carnitine and Cr picolinate (CrP) on daily blood hormone and metabolite profiles. Diets were formulated as a 2 x 2 factorial with L-carnitine (0 or 50 ppm) and CrP (0 or 200 ppb) and were fed from breeding through gestation, lactation, and 28 d into the subsequent gestation, at which time blood collection occurred. Sows were fed 1 meal per day during gestation (2.04 kg from breeding until d 100 and 2.95 kg from d 100 until farrowing) and ad libitum during lactation. Sows were fitted with indwelling venous catheters, and blood (plasma) was collected at feeding, then once every 15 min for the first 3 h after feeding, and at 6, 9, 15, 20, and 24 h after feeding. Postfeeding and overall insulin and connecting peptide of insulin (c-peptide) was decreased for sows fed diets with CrP or L-carnitine and was greatest for sows fed the control diet; however, sows fed both L-carnitine and CrP had an intermediate response (L-carnitine x CrP, P < 0.01). Postfeeding glucose peak was decreased (P < 0.05) in sows fed diets with L-carnitine, CrP, or both, vs. the control, and mean glucose concentration was decreased (P < 0.01) for sows fed diets with CrP. L-Carnitine decreased (P < 0.04) the NEFA concentration. Sows fed diets with CrP exhibited increased (P < 0.03) postfeeding and overall NEFA and greater (P < 0.02) fasting and overall glycerol. Overall plasma urea N was lowest for sows fed the diet with L-carnitine; however, diets containing CrP had intermediate responses compared with the control (L-carnitine x CrP, P < 0.005). Sows fed diets with L-carnitine had greater (P < 0.008) IGF-I from 3 to 24 h after feeding and tended to exhibit greater (P < 0.06) overall IGFBP-3. Sows fed the diets with CrP had greater (P < 0.05) IGFBP-3 from 2 to 20 h after feeding. No differences were observed for glucagon or triacylglycerol (P > 0.10). The changes in metabolites and metabolic hormones indicate that both L-carnitine and CrP influence energy metabolism of gestating sows; however, their effects on blood hormones and metabolites differ. Thus, the improvement in energy status from adding both L-carnitine and CrP may have an additive effect on reproductive performance of sows.  相似文献   

2.
Rapid uterine involution in the postpartum period of dairy cows is important to achieve a short interval to conception. Expression patterns for members of the insulin-like growth factor (IGF) family were determined by in situ hybridisation at day 14 ± 0.4 postpartum (n = 12 cows) to investigate a potential role for IGFs in modulating uterine involution. Expression in each uterine tissue region was measured as optical density units and data were analysed according to region and horn. IGF-I mRNA was localized to the sub-epithelial stroma (SES) of inter-caruncular and caruncular endometrium. Both IGF-II and IGF-1R expression was detected in the deep endometrial stroma (DES), the caruncular stroma and myometrium. IGFBP-2, IGFBP-4 and IGFBP-6 mRNAs were all localised to the SES of inter-caruncular and caruncular uterine tissue, and in the DES and caruncular stroma, with IGFBP-4 mRNA additionally expressed in myometrium. IGFBP-3 mRNA was only detectable in luminal epithelium. IGFBP-5 mRNA was found in myometrium, inter-caruncular and caruncular SES and caruncular stroma. These data support a role for IGF-I and IGF-II in the extensive tissue remodelling and repair which the postpartum uterus undergoes to return to its non-pregnant state. The differential expression of binding proteins between tissues (IGFBP-3 in epithelium, IGFBP-2, -4, -5 and -6 in stroma and IGFBP-4 and -5 in myometrium) suggest tight control of IGF activity within each compartment. Differential expression of many members of the IGF family between the significantly larger previously gravid horn and the previously non-gravid horn may relate to differences in their rate of tissue remodelling.  相似文献   

3.
The objectives of this study were to use transgenic sows that overexpress IGF-I in milk to investigate the effect of a short-term fast on piglet intestinal morphology and disaccharidase activity and to determine how milk-borne IGF-I influences the response to fasting. After farrowing, litters were normalized to 10 piglets. On d 6, piglets (n = 30) suckling IGF-I transgenic (TG) sows and piglets (n = 30) suckling nontransgenic sows (control) were assigned randomly to three treatments: fed piglets (0 h), which remained with the sow until euthanized on d 7, or fasted piglets, which were removed from the sow at either 6 or 12 h before euthanasia on d 7. Serum IGF-I and IGFBP, intestinal weight and length, jejunal protein and DNA content, disaccharidase activity, and villus morphology were measured. Fasting for 12 h resulted in a negative weight change between d 6 and 7 (quadratic response to fasting; P < 0.001). Piglets suckling TG sows tended to have greater intestinal length (P = 0.068), but no effect of IGF-I overexpression was noted for intestinal weight. Fasting, however, resulted in linear (P < 0.001) and quadratic (P = 0.002) decreases in intestinal weight. Serum IGF-I did not differ between control and TG sows, but decreased linearly (P = 0.003) with fasting. Serum IGFBP-4 decreased (linear and quadratic; P < or = 0.02) with fasting, whereas IGFBP-1 increased quadratically (P < 0.001) with fasting. Jejunal villus height, width, and crypt depth were all increased with fasting (linear and quadratic; P < 0.04). Disaccharidase activity was not affected by fed state; however, piglets suckling TG sows had greater jejunal lactase-phlorhizin hydrolase (P < 0.01) and sucrase-isomaltase (P = 0.02) activities than control piglets. In summary, intestinal weight, villus morphology, serum IGF-I, serum IGFBP-1 and -4, and piglet BW change were altered (P < or = 0.02) in response to fasting. Thus, the duration of food deprivation before euthanization should be considered when designing experiments to assess intestinal development or the IGF axis, as the magnitude of differences between the fed and fasted state may exceed those expected as a result of experimental treatment.  相似文献   

4.
The effects of fasting on insulin-like growth factor (IGF)-I, IGF-II, and IGF-binding protein (IGFBPs) mRNA in channel catfish were examined. Fed control fish (Fed) were compared to fish that had been fasted for 30 d followed by 15 d of additional feeding (Restricted). Sequence alignment and similarity to orthologous proteins in other vertebrates provided structural evidence that the 3 catfish sequences identified in the present research were IGFBP-1, -2, and -3. Prolonged fasting (30 d) reduced body weight approximately 60% (P < 0.001) and decreased IGF-I mRNA in the liver and muscle (P < 0.01). Fifteen days of re-feeding restored concentrations of hepatic and muscle IGF-I mRNA. Liver IGF-II mRNA was not affected by fasting but was increased 2.2-fold after 15 d of re-feeding (P < 0.05). Abundance of muscle IGF-II mRNA was similar between the fed control group and the restricted group throughout the experimental period. Fasting also increased liver IGFBP-1 mRNA (P < 0.05) and decreased IGFBP-3 mRNA (P < 0.01), whereas abundance of IGFBP-2 mRNA was not significantly affected. Interestingly, re-feeding for 15 d did not restore concentrations of IGFBP-1 and IGFBP-3 mRNA relative to fed control concentrations. The IGF results suggest that IGF-I and IGF-II are differently regulated by nutritional status and probably have a differential effect in promoting muscle growth during recovery from fasting. Similar to mammals, IGFBP-1 mRNA in catfish is increased during catabolism, whereas IGFBP-3 mRNA is decreased during inhibited somatic growth. The IGFBP results provide additional evidence of the conserved nature of the IGF-IGFBP-growth axis in catfish.  相似文献   

5.
Exogenous somatotropin alters IGF axis in porcine endometrium and placenta   总被引:1,自引:0,他引:1  
The aim of this study was to examine whether exogenous somatotropin (ST) can alter the insulin-like growth factor (IGF) axis in the porcine epitheliochorial placenta. Crossbred gilts were injected either 6 mg of recombinant porcine ST or vehicle from days 10 to 27 after artificial insemination (term day 116). Control and ST-treated gilts were euthanized on day 28 (8 control/5 treated), day 37 (4 control/6 treated), and day 62 (4 control/6 treated) of gestation. Endometrium and placental tissue samples were collected and subjected to mRNA analyses. In control gilts, somatotropin receptor (STR) and IGF-I mRNA abundance in the endometrium decreased with gestation. Conversely, the amounts of IGF-II mRNA and of IGF binding protein (BP)-2 and -3 mRNA, which were analyzed in endometrium and placental chorion, increased with gestation. The endometrium contained less IGF-II mRNA but more IGFBP-2 and-3 mRNA than the placental chorion. In response to pST treatment, the amounts of endometrial STR and IGF-I mRNA were lower at days 28 and 37, but higher at day 62 of gestation. The content of IGF-II mRNA was higher in the endometrium of pST-treated than control gilts on day 37. The amount of IGFBP-2 mRNA was increased on day 37 in endometrium and placenta of pST-treated gilts, whereas no changes in IGFBP-3 mRNA were observed. The IGF-II/IGFBP-2 ratio was higher in the placenta in response to pST on day 28 of gestation. Results show that pST treatment of pregnant gilts during early gestation alters IGF axis in maternal and fetal placental tissues and suggest pST may exert an effect on fetal growth by altering the relative amount of IGFBPs and IGFs at the fetal-maternal interface.  相似文献   

6.
The somatotropic axis regulates growth of the gastrointestinal tract (GIT). In addition, colostrum feeding and glucocorticoids affect maturation of the GIT around birth in mammals. We have measured mRNA levels of members of the somatotropic axis to test the hypothesis that colostrum intake and dexamethasone treatment affect respective gene expression in the GIT. Calves were fed either colostrum or an isoenergetic milk-based formula, and in each feeding group, half of the calves were treated with dexamethasone (DEXA; 30 microg/kg body weight per day). Individual parameters of the somatotropic axis differed (P < 0.05) among different GIT sections and formula feeding increased (P < 0.05) mRNA levels of individual parameters at various sites of the GIT. Effects of DEXA on the somatotropic axis in the GIT partly depended on different feeding. In colostrum-fed calves, DEXA decreased (P < 0.05) mRNA levels of IGF-I (esophagus, fundus, duodenum, and ileum), IGF-II (fundus), IGFBP-2 (fundus), IGFBP-3 (fundus), IGF1R (esophagus, ileum, and colon), IGF2R (fundus), GHR (fundus), and InsR (esophagus, fundus), but in formula-fed calves DEXA increased mRNA levels of IGF-I (esophagus, rumen, jejunum, and colon). Furthermore, DEXA increased (P < 0.05) mRNA levels of IGF-II (pylorus), IGFBP-3 (duodenum), IGF2R (pylorus), and GHR (ileum), but decreased mRNA levels of IGFBP-2 (ileum), and IGF1R (fundus). Whereas formula feeding had stimulating effects, effects of DEXA treatment on the gene expression of parameters of the somatotropic axis varied among GIT sites and partly depended on feeding.  相似文献   

7.
The somatotropic axis and insulin are involved in pre- and postnatal development. In pre- and full-term calves (GrP0 and GrN0; born after 277 and 290 d of pregnancy, respectively) and in preterm calves on d 8 of life after being fed for 7 d (GrP8), we studied whether there are differences in the abundance of messenger RNA (mRNA) of IGF-I and IGF-II and of receptors for GH, IGF-I, IGF-II, and insulin among different intestinal sites (duodenum, jejunum, ileum, and colon) and whether there are ontogenetic differences during the perinatal period in intestine and liver. Intestinal site differences (P < 0.05) existed in mRNA levels of IGF-I and IGF-II and receptors for GH, IGF-I, IGF-II, and insulin. Abundance of mRNA of IGF-I and -II and of receptors for IGF-I and GH was highest (P < 0.05) in the colon, abundance of the receptor for IGF-II was comparably high in the colon and ileum, and that of the receptor for insulin was similarly high in colon, ileum, and jejunum. Among GrP0, GrN0, and GrP8 groups, there were differences (P < 0.05) in mRNA levels of IGF-I and IGF-II and of receptors for GH, IGF-I, IGF-II and insulin. Abundance of mRNA of IGF-I and IGF-II and of receptors for GH, IGF-I, IGF-II and insulin was highest (P < 0.05) in GrP0 calves immediately after birth and was primarily seen in the ileum. In liver, the mRNA levels differed (P < 0.05) among groups for IGF-II and receptors for IGF-I, IGF-II, and insulin, and were highest (P < 0.05) for IGF-II in GrP0, for receptors of IGF-I in GrN0, and were higher (P < 0.05) in GrP0 than GrP8 for receptors of IGF-II. In conclusion, mRNA levels of IGF-I and IGF-II and of receptors for GH, IGF-I, IGF-II, and insulin were different at different intestinal sites and in intestine and liver and changed during the perinatal period.  相似文献   

8.
The growth rate of the young pig is generally much less than its potential and may be constrained by endocrine status as well as by nutrient intake. The aim of this study was to determine whether porcine somatotropin (pST) could increase growth in the nursing pig. Fourteen sows nursing litters of 6 (n = 7) or 12 (n = 7) piglets were utilized to establish a high and low plane of nutrition for sucking pigs. On Day 4 of lactation, the median two male pigs from each litter were randomly allocated to one of two doses of pST (0 or 60 micrograms/kg/d) until weaning on Day 31. Pigs were bled on Days 4, 13, 22, and 31 of lactation and the plasma was analyzed for insulin-like growth factor (IGF)-I, IGF-II, and IGF binding protein-3 (IGFBP-3). Pigs were weaned into conventional accommodation and further weighed on Days 63, 91, and 119. Pigs from litters of 6 grew more quickly and weighed 2.2 kg (P = 0.01) and 3.5 kg (P = 0.04) more than pigs from litters of 12 at 31 and 63 d of age, respectively. There was no effect of pST on preweaning growth of sucking pigs (261 vs. 258 g/d, P = 0.68), although growth rate increased in the final 3 d before weaning at 31 d (241 vs. 294 g/d, P = 0.01). IGFBP-3 was greater (1.09 vs. 0.78 micrograms/ml, P < 0.001), whereas IGF-I tended to be greater (206 vs. 176 ng/ml, P = 0.14), in pigs from the small litters. There was no effect of pST on plasma IGF-I (182 vs. 195 ng/ml, P = 0.454) or IGFBP-3 (0.93 vs. 0.94 microgram/ml, P = 0.85) concentrations. Plasma IGF-I and IGFBP-3 were highly correlated with the growth rate of nursing pigs (R = 0.638 and 0.756, respectively). There were no effects of pST (340 vs. 328 ng/ml, P = 0.48) or litter size (336 vs. 333 ng/ml, P = 0.88) on IGF-II. In conclusion, pST had no little or no effect on growth performance or plasma IGF-I, IGF-II, or IGFBP-3 in sucking pigs on either a high or low plane of nutrition.  相似文献   

9.
A decrease in insulin-like growth factor (IGF) binding protein (BP) amount occurs within the follicular fluid of dominant ovarian follicles. At the same time, concentrations of follicular fluid IGF-I do not change. The mRNA for IGF-I, IGF-II, IGFBP-2, and IGFBP-3 in dominant and subordinate follicles were measured to determine if changes in IGF or IGFBP gene expression are associated with follicular dominance. Heifers were ovariectomized during a follicular wave, either during early-dominance (emerging dominant follicle, 9 mm diameter) or mid-dominance (established dominant follicle, 14–16 mm diameter). Follicles were classified as either dominant (DF), subordinate (SF), or not-recruited (NRF; small antral follicles). mRNA was localized by in situ hybridization and measured by image analyses. The IGF-I mRNA (granulosa cells) was greatest in DF and increased in DF, SF, and NRF from early- to mid-dominance. Likewise, IGF-II mRNA (theca cells) was greatest in DF compared with SF or NRF. The IGFBP-2 mRNA (granulosa cells), however, was nearly undetectable in DF, whereas adjacent SF expressed abundant IGFBP-2 mRNA. The NRF were not uniform in their IGFBP-2 expression because only 5 of 13 NRF had IGFBP-2 mRNA. The IGFBP-3 mRNA (granulosa cells) was found only in two NRF, suggesting that local synthesis is not a predominant source of follicular fluid IGFBP-3. These data show that changes in gene expression for IGFBP-2 are opposite to those for IGF-I or IGF-II. Increased IGF-I and IGF-II mRNA and decreased IGFBP-2 mRNA within the DF may be one mechanism leading to follicular dominance. The opposite pattern of IGFBP-2 gene expression in SF and some NRF may lead to follicular atresia.  相似文献   

10.
11.
Maternal diet influences fetal growth and postnatal development. We hypothesized that conceptuses gestated in sows provided ad libitum vs. restricted feed intake would differ in the milieu of hormones, growth factors, nutrients, and metabolites associated with growth and metabolism. This hypothesis was tested in two experiments by providing fourth-parity sows (Pig Improvement Co. C15 bred to Line 326 boars) with either 1.81 kg/d (as-fed basis; control) or ad libitum access to gestation diet. In Exp. 1, control (n = 6) or ad libitum (6.4 +/- 0.11 kg/d; n = 9) treatments were provided from d 29 to 45 (onset of estrus is d 0), and sows were slaughtered on d 46. Ad libitum sows gained more weight from d 29 to 45 than controls (34.0 vs. 4.32 kg, respectively; P < 0.01). No differences were observed on d 46 for the number of fetuses, conceptus attachment length, allantoic + amniotic fluid volume, placental weight, fetal weight, and fetal crown-to-rump length. Variation in fetal crown-to-rump length was less (P < 0.03) in sows fed ad libitum. Sows fed ad libitum had greater (P < 0.01) IGF-I and insulin concentrations in plasma than controls on d 43. In Exp. 2, sows were fed 1.81 kg/d (n = 6) or ad libitum (7.0 +/- 0.11 kg/d; n = 4) from d 30 to 56 of gestation, when sows were anesthetized and samples were collected surgically from their gravid uteri. Sows fed ad libitum gained more weight (P < 0.01) than did controls and had more (P < 0.06) IGF-I in their plasma and the plasma collected from umbilical veins of their fetuses. No differences were found for concentrations of insulin or glucose in plasma of sows or fetuses, but urea N concentrations were greater (P < 0.05) in maternal plasma and in the plasma, and allantoic and amniotic fluids of conceptuses from sows fed ad libitum. Combined data from Exp. 1 and 2 revealed a treatment x fetal number interaction (P < 0.05) for average fetal weight. The expected negative relationship between within-litter average fetal weight and the number of fetuses per uterus was observed for control sows (y = 115.4 -1.75 x fetal number; P < 0.05), but litters of ad libitum sows did not show this effect. The hypothesis that providing feed in excess of established requirements in early gestation affects the in utero milieu is supported by these results. Data further reveal that, at least at mid-gestation, the restraint to fetal growth that is exhibited when fetal number increases in control sows is not exhibited when sows are fed ad libitum.  相似文献   

12.
Reproductive components were compared between a line of sows selected (S) for improved sow productivity index (SPI = 6.5 x number born alive + adjusted 21-d litter weight) and sows from an unselected control (C) line. Generation 9 and 10, second-parity, Landrace sows were chosen from both the S (n = 35) and C (n = 33) line. Sows were slaughtered at a commercial slaughter plant at approximately 75 d of gestation and their reproductive tracts were recovered. Reproductive tracts were evaluated for uterine weight (UTWT), uterine horn length (UTLN), ovulation rate (OR), number of fully formed fetuses (NF), number of mummified fetuses (NM), percentage of fetal survival (FS = NF/OR), fetal space (FSPACE = UTLN/[NF + NM]), and fetal position, sex, and weight. Select-line sows had greater NF (P less than .10) and higher FS (P less than .10) than C-line sows. Select-line sows had longer (P less than .05), and heavier (P less than .01) uteri than C-line sows. However, uterine length adjusted for NF was not different between the two lines. Uterine weight adjusted for NF was greater in S-line sows (P less than .05). Select-line sows had greater total fetal weight (TFWT) (P less than .05) than did C-line sows. Female fetuses positioned between two male fetuses were lighter in weight than all other female fetuses (P less than .01). Male fetuses positioned between two female fetuses did not differ in weight from all other male fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Multiparous sows (n = 307) were used to evaluate the effects of added dietary L-carnitine, 100 mg/d during gestation and 50 ppm during lactation, on sow and litter performance. Treatments were arranged as a 2 (gestation or lactation) x2 (with or without L-carnitine) factorial. Control sows were fed 1.81 kg/d of a gestation diet containing .65% total lysine. Treated sows were fed 1.59 kg/d of the control diet with a .23 kg/d topdressing of the control diet that provided 100 mg/d of added L-carnitine. Lactation diets were formulated to contain 1.0% total lysine with or without 50 ppm of added L-carnitine. Sows fed 100 mg/d of added L-carnitine had increased IGF-I concentration on d 60 (71.3 vs. 38.0 ng/mL, P<.01) and 90 of gestation (33.0 vs. 25.0 ng/mL, P = .04). Sows fed added L-carnitine had increased BW gain (55.3 vs 46.3 kg; P<.01) and last rib fat depth gain (2.6 vs. 1.6 mm; P = .04) during gestation. Feeding 100 mg/d of added L-carnitine in gestation increased both total litter (15.5 vs. 14.6 kg; P = .04) and pig (1.53 vs 1.49 kg; P<.01) birth weight. No differences were observed in pig birth weight variation. Added L-carnitine fed during gestation increased litter weaning weight (45.0 vs. 41.3 kg, P = .02); however, no effect of feeding L-carnitine during lactation was observed. No differences were observed in subsequent days to estrus or farrowing rate. Compared to the control diet, feeding added L-carnitine in either gestation, lactation, or both, increased (P<.05) the subsequent number of pigs born alive, but not total born. In conclusion, feeding L-carnitine throughout gestation increased sow body weight and last rib fat depth gain and increased litter weights at birth and weaning.  相似文献   

14.
To determine if (1) levels of pregnancy-associated plasma protein-A (PAPP-A) mRNA and insulin-like growth factor binding protein (IGFBP) (-2, -3, -4 and -5) mRNAs differ between the dominant and subordinate follicles during the follicular phase of an estrous cycle, and (2) these differences are associated with differences in follicular fluid (FFL) concentrations of steroids (estradiol, androstenedione, and progesterone), total and free IGF-I, or IGFBPs, estrous cycles of non-lactating Holstein dairy cows (n = 16) were synchronized with two injections of prostaglandin (PGF2 alpha) 11 days apart. Granulosa cells and FFL were collected either 24 h or 48 h after the second injection of PGF2 alpha. FFL from dominant follicles had lower concentrations of progesterone (P < 0.08) and higher concentrations of estradiol (P < 0.05), androstenedione (P < 0.0001), estradiol:progesterone ratio (P < 0.0001), free IGF-I (P < 0.0001), and calculated percentage free IGF-I (P < 0.01) than large subordinate follicles. Levels of IGFBP-2, -4, and -5 in FFL were 3.0- (P < 0.05), 2.4- (P < 0.06), and 3.4-fold (P < 0.05) greater, respectively, in subordinate than in dominant follicles. IGFBP-3, IGFBP-4 and PAPP-A mRNA expression and IGF-II concentration did not differ (P > 0.10) between dominant or subordinate follicles. Levels of IGFBP-2 and -5 mRNA were severalfold greater (P < 0.05) in subordinate than dominant follicles. IGFBP-5 mRNA in granulosa cells decreased (P < 0.05) 62% to 92%, between 24h and 48 h post-PGF2 alpha. We conclude that decreased levels of IGFBP-2 and -5 mRNA in granulosa cells may contribute to the decrease in FFL IGFBP-2 and -5 protein levels of preovulatory dominant follicles, and that changes in granulosa cell IGFBP-3 and -4 mRNA and PAPP-A mRNA levels do not occur during final preovulatory follicular development in cattle.  相似文献   

15.
16.
Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less 125I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.  相似文献   

17.
Ribonuclease protection assays were used to measure steady-state semimembranosus muscle and/or hepatic levels of IGF-I, IGFBP-3, IGFBP-5, hepatocyte growth factor (HGF), and myostatin messenger RNA (mRNA) in steers implanted from 32 to 38 d with Revalor-S, a combined trenbolone acetate and estradiol implant. Insulin-like growth factor-ImRNA levels were 69% higher (P < 0.01, n = 7) in the livers of implanted steers than in the livers of nonimplanted steers. Similarly, IGF-I mRNA levels were 50% higher (P < 0.05, n = 7) in the semimembranosus muscles of implanted steers than in the same muscles from nonimplanted steers. Hepatic IGFBP-3 mRNA levels were 24% higher (P < 0.07, n = 7) in implanted steers than in nonimplanted steers. Hepatic HGF and IGFBP-5 mRNA levels did not differ between implanted and nonimplanted steers. Similarly, muscle IGFBP-3, IGFBP-5, HGF, and myostatin mRNA levels were not affected by treatment. Previous data from these same steers have shown that circulating IGF-I and IGFBP-3 concentrations were 30 to 40% higher (P < 0.01, n = 7) in implanted steers than in nonimplanted, control steers. Additionally, the number of actively proliferating satellite cells that could be isolated from the semimembranosus muscle was 45% higher (P < 0.01, n = 7) for implanted steers than for nonimplanted steers. Viewed together, these data suggest that increased muscle IGF-I levels stimulate increased satellite cell proliferation, resulting in the increased muscle growth observed in Revalor-S implanted steers.  相似文献   

18.
19.
Components of the insulin-like growth factor (IGF) system were investigated in chondrocytes isolated from the avian growth plate. The genes for IGF-I, IGF-II, type 1 IGF receptor (IGF-R), IGF binding protein-2 (IGFBP-2), IGFBP-3, IGFBP-5 and IGFBP-7 were found to be expressed in both proliferative and hypertrophic chondrocytes. The expression of IGF-II in proliferative chondrocytes was extremely high relative to IGF-I. Although IGF-I expression was significantly increased in hypertrophic chondrocytes, the level was still low relative to IGF-II. In cell culture, IGF-I stimulated proteoglycan synthesis and increased the expression of Indian hedgehog (Ihh) and type X collagen, markers of chondrocyte differentiation. IGF-II was found to be equally efficacious in stimulating proteoglycan biosynthesis. These observations suggest that IGF-II may play a significant role in avian growth plate physiology, which is consistent with several reports on mammalian endochondral bone growth.  相似文献   

20.
Research was conducted to examine growth rates, circulating concentrations of IGF-I, and mRNA abundance levels of IGF-I and IGF-II in channel catfish (Ictalurus punctatus) given recombinant bovine ST (rbST; Posilac, Monsanto Co., St. Louis MO). In the first study, juvenile catfish (5.5 +/- 0.5 g) were randomly assigned to one of three treatments: 1) sham-injected control (one needle puncture per week); 2) rbST (30 microg x g BW(-1) x wk(-1); Posilac); and 3) nonhandled control (control). At the end of the 6-wk study, the fish were weighed, measured for length, and G:F was determined. Compared with sham and control treatments, rbST-treated fish had 48% greater final BW, 14% greater total length, and 52% greater G:F (P < 0.001). In the second study, juvenile catfish (41.1 +/- 1.5 g) were assigned randomly to one of two treatments: 1) sham or 2) rbST. Eight fish per treatment were sampled on d 0, 1, 2, 7, 14, and 21 for blood, muscle, and liver. Relative expression of IGF-I and IGF-II mRNA was determined by real-time PCR and plasma concentrations of IGF-I were measured using a validated fluoroimmunoassay. Circulating concentrations of IGF-I were increased (37.9 +/- 5.5 vs. 22.0 +/- 6.6 ng/mL; P < 0.05) in rbST-injected fish compared with sham-injected controls by d 14. Liver IGF-I and IGF-II mRNA was increased 4.3-and 14.4-fold, respectively, by d 1 in rbST-injected fish compared with controls (P < 0.05); however, abundance of liver IGF-I and IGF-II mRNA did not differ from controls on d 0, 2, 7, 14, and 21. Abundance of muscle IGF-I and IGF-II mRNA did not differ in rbST-injected fish compared with controls throughout the study. Results of the first study demonstrated that rbST improves growth performance of channel catfish. Results of the second study showed that the growth-promoting effects of rbST were not mediated by the expression of IGF-I or IGF-II mRNA in the muscle. Instead, the results suggest that rbST promotes growth by stimulating plasma IGF-I release, possibly through its direct effect on the liver or on local tissues to synthesize IGF-I. The changes in mRNA abundance and plasma concentrations of IGF-I support the role of IGF-I in growth regulation of channel catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号