首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Despite the spatial significance of Canada's boreal forest, there is very little known about CH4 and N2O emissions from non-peatlands within it. The primary objective of this project was to study the atmosphere–soil exchange of CH4 and N2O at three sites in the boreal forest of central Saskatchewan. In the summers of 2006 and 2007, CH4 and N2O emissions were measured along transects in three different mature forest stands (aspen, black spruce and jack pine) using a sealed chamber method. At the aspen site, the gross rates of mineralization and nitrification, and the relative contribution of nitrification and denitrification to N2O emissions, were also measured using the 15N isotope dilution technique. Results indicated that the jack pine and black spruce sites were slight sinks of CH4 (−0.123 g CH4–C m−2 yr−1and −0.017 g CH4–C m−2 yr−1 respectively in 2006 and −0.095 g CH4–C m−2 yr−1and 0.045 g CH4–C m−2 yr−1 respectively in 2007), whereas the aspen site was a net source (4.40 g CH4–C m−2 yr−1 in 2006 and 19.60 g CH4–C m−2 yr−1 in 2007). The high CH4 emissions at the aspen site occurred at depressions that were water-filled due to above-average precipitation levels in 2005–2007. All three sites had very low cumulative N2O emissions, ranging from −0.002 to 0.014 g N2O–N m−2 yr−1 in both years. The 15N results indicated that N cycling at the aspen site was very conservative, allowing little N to escape the system as N2O; the emissions that did occur were due primarily to a nitrification-related process.  相似文献   

2.
The IPCC-GPG on Greenhouse Gas Monitoring offers countries several options for reporting. The current study selected management effects and decay of dead woody material to demonstrate the dependence of different approaches and assumptions for carbon stock and carbon stock change estimates. For a given set of inventory data the reported change of carbon stock varied between 3.1 tonnes C ha−1 yr−1and 34.4 tonnes C ha−1 yr−1 for a 10-year period.Based on the available data set from a test area in the federal state of Salzburg (Austria) the effect of different scenarios for harvesting operations and mortality on reported carbon release was studied. The scenarios covered timber utilization at different points in time and two mortality rates (constant and exponential). A proportion of harvesting was assumed to remain inside the forest as logging residues and entered together with mortality a decay process. Two different lifetimes for decay (10 and 50 years) and constant and negative exponential decay rates were simulated. Those decisions affect the amount of carbon released considerably. For a 10-year period between 5% and 80% of the carbon content of dead woody material that accumulated within the period is released to the atmosphere.  相似文献   

3.
Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

4.
We present a new approach to maximize carbon (C) storage in both forest and wood products using optimization within a forest management model (Remsoft Spatial Planning System). This method was used to evaluate four alternative objective functions, to maximize: (a) volume harvested, (b) wood product C storage, (c) forest C storage, and (d) C storage in the forest and products, over 300 years for a 30,000 ha hypothetical forest in New Brunswick, Canada. Effects of three initial forest age-structures and a range of product substitution rates were tested. Results showed that in many cases, C storage in product pools (especially in landfills) plus on-site forest C was equivalent to forest C storage resulting from reduced harvest. In other words, accounting for only forest, and not products and landfill C, underestimates true forest contributions to C sequestration, and may result in spurious C maximization strategies. The scenario to maximize harvest resulted in mean harvest for years 1–200 of 3.16 m3 ha−1 yr−1 and total C sequestration of 0.126 t ha−1 yr−1, versus 0.98 m3 ha−1 yr−1 and 0.228 t ha−1 yr−1 for a scenario to maximize forest C. When maximizing total (forest + products) C, mean harvest and total C storage for years 1–200 was 173% and 5% higher, respectively, than when maximizing forest C; and 218% and 6% higher, respectively, when maximizing substitution benefits (0.25 t of avoided C emissions per m3 of lumber used) in addition to total C. Initial forest age-structure affected harvest in years 1–50 < 34% among the four alternative management objective scenarios, and resulted in mean C sequestration rates of 0.31, 0.10, and −0.14 t ha−1 yr−1 when maximizing total C storage for young, even-aged, and old forests, respectively. Our results reinforce the importance of including products in forest-sector C budgets, and demonstrate how including product C in management can maximize forest contributions toward reduced atmospheric CO2 at operational scales.  相似文献   

5.
Forest soil organic carbon (SOC) and forest floor carbon (FFC) stocks are highly variable. The sampling effort required to assess SOC and FFC stocks is therefore large, resulting in limited sampling and poor estimates of the size, spatial distribution, and changes in SOC and FFC stocks in many countries. Forest SOC and FFC stocks are influenced by tree species. Therefore, quantification of the effect of tree species on carbon stocks combined with spatial information on tree species distribution could improve insight into the spatial distribution of forest carbon stocks.We present a study on the effect of tree species on FFC and SOC stock for a forest in the Netherlands and evaluate how this information could be used for inventory improvement. We assessed FFC and SOC stocks in stands of beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus sylvestris), oak (Quercus robur) and larch (Larix kaempferi).FFC and SOC stocks differed between a number of species. FFC stocks varied between 11.1 Mg C ha−1 (beech) and 29.6 Mg C ha−1 (larch). SOC stocks varied between 53.3 Mg C ha−1 (beech) and 97.1 Mg C ha−1 (larch). At managed locations, carbon stocks were lower than at unmanaged locations. The Dutch carbon inventory currently overestimates FFC stocks. Differences in carbon stocks between conifer and broadleaf forests were significant enough to consider them relevant for the Dutch system for carbon inventory.  相似文献   

6.
Studies on the combined effects of beech–spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via throughfall and soil solution were measured in adjacent stands of pure spruce, mixed spruce–beech and pure beech on three nutrient rich sites (Flysch) and three nutrient poor sites (Molasse) over a 2-year period. At low deposition rates (highest throughfall fluxes: 17 kg N ha−1 year−1 and 5 kg S ha−1 year−1) there was hardly any linkage between nutrient inputs and outputs. Element outputs were rather driven by internal N (mineralization, nitrification) and S (net mineralization of organic S compounds, desorption of historically deposited S) sources. Nitrate and sulfate seepage losses of spruce–beech mixtures were higher than expected from the corresponding single-species stands due to an unfavorable combination of spruce-similar soil solution concentrations coupled with beech-similar water fluxes on Flysch, while most processes on Molasse showed linear responses. Our data show that nutrient leaching through the soil is not simply a “wash through” but is mediated by a complex set of reactions within the plant–soil system.  相似文献   

7.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

8.
Microbial communities play a pivotal role in soil nutrient cycling, which is affected by nitrogen loading on soil fungi and particularly mycorrhizal fungi. In this experiment, we evaluated the effects of allochthonous nitrogen addition on soil bacteria and fungi in two geographically distinct but structurally similar scrub oak forests, one in Florida (FL) and one in New Jersey (NJ). We applied allochthonous nitrogen as aqueous NH4NO3 in three concentrations (0 kg ha−1 yr−1 (deionized water control), 35 kg ha−1 yr−1 and 70 kg ha−1 yr−1) via monthly treatments over the course of 1 yr. We applied treatments to replicated 1 m2 plots, each at the base of a reference scrub oak tree (Quercus myrtifolia in FL and Q. ilicifolia in NJ). We measured microbial community response by monitoring: bacterial and fungal biomass using substrate induced respiration, and several indicators of community composition, including colony and ectomycorrhizal morphotyping and molecular profiling using terminal restriction fragment length polymorphism (TRFLP). Bacterial colony type richness responded differently to nitrogen treatment in the different sites, but ectomycorrhizal morphotype richness was not affected by nitrogen or location. Both experimental sites were dominated by fungi, and FL consistently supported more bacterial and fungal biomass than NJ. Bacterial biomass responded to nitrogen addition, but only in FL. Fungal biomass did not respond significantly to nitrogen addition at either experimental site. The composition of the bacterial community differed between nitrogen treatments and experimental sites, while the composition of the fungal community did not. Our results imply that bacterial communities may be more sensitive than fungi to intense pulses of nitrogen in sandy soils.  相似文献   

9.
We selected a warm/dry mixed conifer forest (ponderosa pine, white fir, Douglas-fir, and aspen) in southwestern Colorado to reconstruct historical conditions of fire regime and forest structure in preparation for an experiment in ecological restoration. Although mixed conifer forests are of high ecological and social value in the Southwest, they have been less studied than ponderosa pine forests. Fire-scar analysis on a 150-ha area showed recurring fires at mean intervals of 24 years (all fires with minimum of 2 sample trees scarred) to 32 years (fire scarring 25% or more of sample trees) from the 16th century until the abrupt cessation of fire after 1868, concurrent with European settlement. There was no evidence in age or species-specific data of severe burning at the scale of the study blocks (approximately 200 ha). The forest remained unharvested throughout most of the 20th century, until a cut in the early 1990s removed approximately equal basal areas of ponderosa pine and white fir. Forest structure had already changed substantially, however. Total basal area increased from an average of 11 m2 ha−1 in 1870 to 27 m2 ha−1 in 2003, despite harvesting of at least 8.4 m2 ha−1. Ponderosa pine declined from representing nearly two-thirds of basal area in 1870 to one-third in 2003. The other species increased dramatically, especially white fir, which went from 12% to 35% of basal area and dominated stand density with an average of 392 trees ha−1. Total tree density increased from 142 trees ha−1 in 1870 to 677 trees ha−1 in 2003. The ecological changes that occurred here since the 19th century have been in exactly the opposite direction considering the warm, fire-favoring climate expected in the 21st century. If warm/dry mixed conifer forests of southern Colorado are to have a reasonable chance for persistence under the future climate regime, restoring conditions more similar to the frequently burned, open forests of the past is likely to be a useful starting point.  相似文献   

10.
The long-term fate of fertilizer N in forest ecosystems is poorly understood even though such information is critical for designing better forest fertilization practices. We studied the distribution and recovery of 15N (4.934 atom% excess)-labelled fertilizer (applied as urea at 200 kg N ha−1) 10 years after application to a 38–39-year-old Douglas-fir (Pseudotsuga menzeisii (Mirb.) Franco) stand in coastal British Columbia. The urea was applied in the spring (May 1982) or fall (November 1982). Sampling was conducted in October 1992, and we found that after 10 years, there were few differences between the fall and spring fertilizer applications in total N and 15N distribution within the tree and forest ecosystem. On average total fertilizer-N recovery was 59.4%; about 14.5% of the applied-N was recovered in the trees including coarse roots, with foliage containing 41% of the labelled-N recovered in the aboveground tree biomass. Tissue 15N remained mobile and could be transferred to new growth. Soil recovery was 39.8%, which had decreased from 57.0% at a previous 1-year sampling, with an average loss of 3.0% per year from the mineral soil and 3.7% from the litter layers. However, it appears that there was little continuing tree uptake. While short-term effects of fall vs. spring urea application were previously reported, there were no long-term effects on either stand productivity or fertilizer use efficiency, suggesting that if fertilization is properly done, timing of fertilization is not a critical issue in terms of maximizing fertilizer use efficiency for the coastal Douglas-fir forest we studied. Our results also highlight the high capacity of this ecosystem to retain externally applied inorganic N over the long-term, the importance of maximizing nitrogen uptake in the first year, and also of the continuing need to develop new approaches to overcome the generally low efficiency of forest N fertilization.  相似文献   

11.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

12.
The ecological consequences of climate change for large tropical forests such as the Amazon are likely to be profound. Amazonian forests strongly influence regional and global climates and therefore any changes in forest structure, such as deforestation or die-back, may create positive feedback on externally forced climate change. Monitoring, modelling and managing the impacts of anthropogenic climate change on forest dynamics is therefore an important objective of forest researchers, and one that requires long-term data on changes at the level of community, populations and phenotypes. In this paper we provide the most comprehensive study yet on the seasonal dynamics of various leaf traits: leaf area index (LAI), leaf mortality (LM), leaf biomass (LB), leaf growth rate (LG), and leaf residence time (TR) from 50 experimental plots in a forest site at Belterra, Pará State, Brazil. From this study we estimate annual mean leaf area index (LAI) to be 5.07 m2 m−2 and annual mean leaf dry biomass to be 0.621 kg m−2. The typical leaf grew at 0.049 kg m−2 month−1 and remained on the tree for 12.7 months. We compare these results to other similar studies and critically discuss the factors driving leaf demographics in Amazonia.  相似文献   

13.
A century of fire suppression culminated in wildfire on 28 October 2003 that stand-replaced nearly an entire 4000 ha “sky island” of mixed conifer forest (MCF) on Cuyamaca Mountain in the Peninsular Range of southern California. We studied the fire affected Cuyamaca Rancho State Park (CRSP), which represents a microcosm of the MCF covering approximately 5.5 × 106 ha (14%) of California, to evaluate how fire suppression unintentionally destabilizes this ecosystem. We document significant changes in forest composition, tree density, and stem diameter class distribution over a 75-year period at CRSP by replicating ground-based measurements sampled in 1932 for the Weislander Vegetation Type Map (VTM) survey. Average conifer density more than doubled, from 271 ± 82 trees ha−1 (standard error) to 716 ± 79 ha−1. Repeat aerial photographs for 1928 and 1995 also show significant increase in canopy cover from 47 ± 2% to 89 ± 1%. Changes comprise mostly ingrowth of shade-tolerant Calocedrus decurrens [Torr.] Floren. in the smallest stem diameter class (10–29.9 cm dbh). The 1932 density of overstory conifer trees (>60 cm dbh) and 1928 canopy cover at CRSP were similar to modern MCF in the Sierra San Pedro Mártir (SSPM), 200 km S in Baja California, Mexico, where fire suppression had not been practiced, verifying that the historical data from the early twentieth century represent a valid “baseline” for evaluating changes in forest structure. Forest successions after modern crown fires in southern California demonstrate that MCF is replaced by oak woodlands and shrubs. Post-fire regeneration in severely burned stands at CRSP includes abundant basal sprouting of Quercus chrysolepis Liebm. and Quercus kelloggii Newb., but only few seedlings of Abies concolor [Gord. and Glend.] Lindl (average 16 ± 14 ha−1), while whole stands of C. decurrens, Pinus lambertiana Dougl., and Pinus ponderosa Laws. were extirpated. Prescribed burning failed to mitigate the crown fire hazard in MCF at CRSP because the low-intensity surface fires were small relative to the overall forest area, and did not thin the dense understory of sapling and pole-size trees. We propose that larger, more intense prescribed understory burns are needed to conserve California's MCF.  相似文献   

14.
We quantified the effect of water and nutrient availability on aboveground biomass and nitrogen accumulation and partitioning in four species from the southeastern United States, loblolly pine (Pinus taeda), slash pine (Pinus elliottii), sweetgum (Liquidambar styraciflua), and sycamore (Platanus occidentalis). The 6-year-old stands received five levels of resource input (control, irrigation with 3.05 cm water week−1, irrigation + 57 kg N ha−1 year−1, irrigation + 85 kg N ha−1 year−1, and irrigation + 114 kg N ha−1 year−1). Irrigation significantly increased foliage, stem, and branch biomass for sweetgum and sycamore, culminating in 103% and 238% increases in total aboveground biomass. Fertilization significantly increased aboveground components for all species resulting in 49, 58, 281, and 132% increases in total aboveground biomass for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Standing total aboveground biomass of the fertilized treatments reached 79, 59, 48, and 54 Mg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased foliar nitrogen concentration for loblolly pine, sweetgum, and sycamore foliage. Irrigation increased total stand nitrogen content by 6, 14, 93, and 161% for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Fertilization increased total nitrogen content by 62, 53, 172, and 69% with maximum nitrogen contents of 267, 212, 237, and 203 kg ha−1 for loblolly pine, slash pine, sweetgum, and sycamore, respectively. Growth efficiency (stem growth per unit of leaf biomass) and nitrogen use efficiency (stem growth per unit of foliar nitrogen content) increased for the sycamore and sweetgum, but not the loblolly or slash pine.  相似文献   

15.
Nitrogen fertilization increased largely over the last decade in tropical eucalypt plantations but the behaviour of belowground tree components has received little attention. Sequential soil coring and ingrowth core methods were used in a randomized block experiment, from 18 to 32 months after planting Eucalyptus grandis, in Brazil, in order to estimate annual fine root production and turnover under contrasting N fertilization regimes (120 kg N ha−1 vs. 0 kg N ha−1). The response of growth in tree height and basal area to N fertilizer application decreased with stand age and was no longer significant at 36 months of age. The ingrowth core method provided only qualitative information about the seasonal course of fine root production and turnover. Mean fine root biomasses (diameter <2 mm) in the 0–30 cm layer measured by monthly coring amounted to 0.91 and 0.84 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root production was significantly higher in the 0 N treatment (1.66 t ha−1 year−1) than in the 120 N treatment (1.12 t ha−1 year−1), probably as a result of the greater tree growth in the control treatment throughout the sampling period. Fine root turnover was 1.8 and 1.3 year−1 in the 0 N and the 120 N treatments, respectively. However, large fine root biomass (diameter <1 mm) was found down to a depth of 3 m one year after planting: 1.67 and 1.61 t ha−1 in the 0 N and the 120 N treatments, respectively. Fine root turnover might not be insubstantial in deep soil layers where large changes in soil water content were observed.  相似文献   

16.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

17.
Versatile process-oriented ecosystem models are discussed as promising tools for the analyses of ecosystem services beyond wood yield, such as catchment water yield, sequestration of carbon and greenhouse gas balances. However, long-term yield simulation is often regarded as a weakness of such versatile models. In this context, we present a multiple response evaluation of the modular, process-based forest growth model MoBiLE-PDT based on mensurational data from 38 permanent sample plots in commercial Eucalyptus globulus plantations in Australia followed from establishment to 8 years of stand age. MoBiLE-PDT is based on the PnET-N-DNDC model and considers nitrogen availability and drought stress dynamically in dependence on tree and stand properties as well as on climate and deposition. New tree dimensions are calculated directly from carbon allocated to sapwood and mortality is derived from stand density. Towards the end of the rotation, model efficiency E was 0.58 for stand volume (m3 ha−1) and 0.54 for aboveground biomass (t C ha−1). In a comparison with similar forest growth models evaluated against the same data only one had a better model efficiency, whereas MoBiLE-PDT was the most versatile model for the analyses of ecosystem services. Due to its modular structure, further model extensions for more ecological applications are easily possible.  相似文献   

18.
Changes in temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration that are expected in the coming decades will have profound impacts on terrestrial ecosystem net primary production (NPP). Nearly all models linking forest NPP with soil carbon (C) predict that increased NPP will result in either unchanged or increased soil C storage, and that decreased NPP will result in decreased soil C storage. However, linkages between forest productivity and soil C storage may not be so simple and direct. In an old-growth coniferous forest located in the H.J. Andrews Experimental Forest, OR, USA, we experimentally doubled needle litter inputs, and found that actual soil respiration rates exceeded those expected due to the C added by the extra needles. Here, we estimated that this ‘priming effect’ accounted for 11.5–21.6% of annual CO2 efflux from litter-amended plots, or an additional 137–256 g C m−2 yr−1 loss of stored C to the atmosphere. Soil priming was seasonal, with greatest amounts occurring in June–August coincident with peaks in temperature and dry summer conditions. As a result of priming, mineral soil was more resistant to further mineralization during laboratory incubations. Soil lignin-derived phenols in the Double Litter plots were more oxidized than in the control, suggesting that the soil residue was more degraded. Our hypothesis that excess dissolved organic C produced from the added litter provided the link between the forest floor and mineral soil and a substrate for soil priming was not supported. Instead, the rhizosphere, and associated mycorrhizal fungi, likely responded directly to the added aboveground litter inputs. Our results revealed that enhanced NPP may lead to accelerated processing of some stored soil C, but that the effects of increased NPP on ecosystem C storage will be based on a net balance among all ecosystem C pools and are likely to be ecosystem-dependant. Forest C models need to include these complex linkages between forest productivity and soil C storage.  相似文献   

19.
Seasonal changes in biomass, net primary productivity and turnover of dry matter of para grass (Brachiaria mutica) under a mixed tree stand and in an adjacent open stand in northern India are presented. Both stands attained peak values of live shoot biomass in September with a higher value under mixed tree stand (665 g m–2) than in the open stand (522 g m–2). The net aboveground production was 590 and 527 g m–2 yr–1 under mixed tree stand and in the open, respectively. The belowground net primary production was also greater under mixed tree stand (100 g m–2 yr–1) than in the open (76 g m–2 yr–1). Maximum aboveground and belowground net primary productions in both stands were obtained during the rainy season. The total net primary production for para grass was about 15% higher under mixed tree stand than in the open. The turnover rates of total plant biomass were greatest in the rainy season and the least during the summer season. The system transfer functions showed that the production of para grass on both stands was aboveground-oriented, accounting for 85–87% of annual total net primary production.  相似文献   

20.
Zhao  Min; Zhou  Guang-Sheng 《Forestry》2006,79(2):231-239
Forest inventory data (FID) include forest resources informationat large spatial scale and long temporal scale. They are importantdata sources for estimating forest net primary productivity(NPP) and carbon budget at landscape and regional scales. Inthis study, more than 100 datasets of biomass, volume, NPP andstand age for Chinese pine forests (Pinus tabulaeformis) fromthe literature were synthesized to develop regression equationsbetween biomass and volume, and between NPP and biomass as wellas stand age. Using these regression equations and the fourthFID surveyed by the Forestry Ministry China from 1989 to 1993,NPP values of Chinese pine forests were estimated. The meanNPP of Chinese pine forests was 4.35 Mg ha–1 yr–1.NPP varied widely among provinces, ranging from 1.5 (Neimenggu)to 13.73 Mg ha–1 yr–1 (Guizhou). Total NPP of Chinesepine was 10.87 Tg yr–1 (1 Tg = 1012 g). NPP values ofChinese pine forests were not distributed evenly across differentprovinces in China. This study may be useful not only for estimatingforest carbon of other forest types but also for evaluatingterrestrial carbon balance at regional and global levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号