首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Functional Characterization of Citrus Polygalacturonase-inhibiting Protein   总被引:3,自引:0,他引:3  
A cDNA encoding a polygalacturonase-inhibiting protein gene (SaiPGIPA) was identified from the citrus cultivar Sainumphung (Citrus sp.), one of the most popular cultivars in northern Thailand. SaiPGIPA was expressed in Escherichia coli cells, and the functional properties of citrus PGIP were analyzed. The PGIP fusion protein inhibited by a maximum of about 60% of the endopolygalacturonase activity, and a mixture of the PGIP and fungal endopoly-galacturonase released oligogalacturonides from polygalacturonic acid. The mixture containing the oligogalactur-onides, endopolygalacturonase and PGIP induced expression of the PGIP gene and a chalcone synthase gene in citrus leaves. The mixture also induced resistance in cucumber leaves against Colletotrichum lagenarium. Received 5 September 2001/ Accepted in revised form 20 November 2001  相似文献   

2.
3.
Leaf blotch and fruit spot of apple caused by Alternaria species occur in apple orchards in Australia. However, there is no information on the identity of the pathogens and whether one or more Alternaria species cause both diseases in Australia. Using DNA sequencing and morphological and cultural characteristics of 51 isolates obtained from apple leaves and fruit with symptoms in Australia, Alternaria species groups associated with leaf blotch and fruit spot of apples were identified. Sequences of Alternaria allergen a1 and endopolygalacturonase gene regions revealed that multiple Alternaria species groups are associated with both diseases. Phylogenetic analysis of concatenated sequences of the two genes resulted in four clades representing A. arborescens and A. arborescens‐like isolates in clade 1, A. tenuissima/A. mali isolates in clade 2, A. alternata/A. tenuissima intermediate isolates in clade 3 and A. longipes and A. longipes‐like isolates in clade 4. The clades formed using sequence information were supported by colony characteristics and sporulation patterns. The source of the isolates in each clade included both the leaf blotch variant and the fruit spot variant of the disease. Alternaria arborescens‐like isolates were the most prevalent (47%) and occurred in all six states of Australia, while A. alternata/A. tenuissima intermediate isolates (14%) and A. tenuissima/A. mali isolates (6%) occurred mostly in Queensland and New South Wales, respectively. Implications of multiple Alternaria species groups on apples in Australia are discussed.  相似文献   

4.
5.
Venturia nashicola is the causal agent of scab, a fungal disease affecting Asian pears. The Japanese pear cv. ‘Kousui’ is highly susceptible to the race 1 of this fungus whereas the cv. ‘Kinchaku’ and the non-host European pear cv. ‘Flemish Beauty’ are resistant. The aim of this work is to investigate the role of polygalacturonase-inhibiting proteins (PGIPs) of pear during the interactions with V. nashicola leading to susceptibility or resistance. PGIP protein was detected from immature fruit of Kousui and Kinchaku. It showed a molecular mass of 42 kDa that shifted to 35 kDa after chemical deglycosylation. The gene pgip was amplified by PCR using genomic DNA and/or cDNA from young leaves of Kousui, Kinchaku, and European pear cvs. Flemish Beauty, ‘Bartlett’, and an Asian wild pear strain ‘Mamenashi 12’, then sequenced after sub-cloning. Some conserved variations were identified in the sequence indicating that gene family also exists in pgip of Japanese pear and confirmed by Southern blot analysis. The expression of PGIP was studied in scab-inoculated leaves of the susceptible Kousui and the resistant Kinchaku and Flemish Beauty. pgip Gene and its encoding protein were highly and rapidly activated in these resistant plants. In addition, PGIP extracts derived from Kinchaku and Flemish Beauty partially inhibited the activity of polygalacturonase (PG) from V. nashicola suggesting a possible role of PGIP in limiting fungal growth frequently observed in these resistant cultivars.  相似文献   

6.
7.
Defense responses of grapevine towards Botrytis cinerea were investigated. The expression of genes coding for proteins involved in defense were studied: (a) phenylalanine ammonia-lyase (PAL) and stilbene synthase (StSy), (b) an acidic chitinase (VCH3) and a basic chitinase (VCHIT1b), and (c) a polygalacturonase inhibitor protein (PGIP). Since no PGIP was known in grapevine, a complete cDNA sequence was first characterized by PCR and RACE-PCR amplifications. RNAs isolated from infected leaves and infected berries were analysed by semi-quantitative and real-time RT-PCRs. In infected leaves, the expression of PAL, StSy, PGIP and VCH3 genes occurred 6hours post inoculation (hpi). Increase of VCHIT1b gene expression was delayed (24hpi). Maximum levels of induction of these genes were observed at 48hpi, except for the VCH3 gene (24hpi). Activation of these defense responses was not sufficient to stop B. cinerea spread. In berries, no VCH3 gene expression was detected. Maximum levels of induction were observed in stage 3 (loss of berry colour and abundant production of conidia) for the PAL and PGIP genes, and in stage 4 (shrivelled berry) for the StSy and VCHIT1b genes.  相似文献   

8.
9.
10.
Xanthomonas fragariae is the causative agent of angular leaf spot disease of strawberry. Greenhouse experiments were conducted using a X. fragariae isolate tagged with a green fluorescent protein (GFP) for detailed population dynamic studies in and on leaves after spray‐inoculation. The GFP‐tagged bacteria were monitored with dilution plating of leaf washings and leaf extracts, and analysis of intact leaves using a non‐invasive monitoring system called PathoScreen, based on laser radiation of fluorescent cells in plant tissues and signal recording with a sensitive camera. PathoScreen was also used to monitor bacteria grown on an agar medium after leaf printing. During the first 3 days after inoculation, bacterial populations washed off leaves rapidly decreased by at least a factor of 1000, after which populations remained stable until 14 days post‐inoculation (dpi), when symptoms first started to appear. Thereafter, populations increased to a level of 1012 colony‐forming units (CFU) g?1 of leaf material or higher. Similarly, densities in leaf extracts were low during the first 3 days after inoculation, at a level of 100–1000 CFU g?1 of leaf tissue. Gradually populations increased to a level of 109–1012 CFU g?1 at 28 dpi. Higher densities of epiphytic populations were found on the abaxial side than on the adaxial leaf side during the first 2 weeks after inoculation. After spray‐inoculation of leaves, bacterial populations released from infected plants remained low until symptoms appeared, after which plants became highly infectious, in particular under high humidity.  相似文献   

11.
Two new pathogens of pyrethrum, described as Paraphoma chlamydocopiosa and Paraphoma pye, isolated from necrotic leaf lesions on pyrethrum plants in northern Tasmania, Australia, were identified using morphological characters, phylogenetic analysis of the internal transcribed spacer (ITS), elongation factor 1‐α (EF1‐α) and β‐tubulin (TUB) genes, and pathogenicity bioassays. Bootstrap support in the combined and individual gene region phylogenetic trees supported the two species that were significantly different from the closely related P. chrysanthemicola and P. vinacea. Morphological characteristics also supported the two new species, with conidia of P. chlamydocopiosa being considerably longer and wider than either P. chrysanthemicola or P. vinacea, and P. pye being distinct in forming bilocular pycnidia. Glasshouse pathogenicity tests based on root dip inoculation resulted in P. chlamydocopiosa and P. pye infecting the crown and upper root tissues of pyrethrum plants, and significant reduction in biomass 2 months after inoculation. Both of these Paraphoma species caused leaf lesions during in vitro and in vivo bioassays 2 weeks after foliar spray inoculation. Although P. chlamydocopiosa and P. pye were shown to be crown rot pathogens, they were also commonly isolated from leaves of diseased plants in pyrethrum fields of northern Tasmania.  相似文献   

12.
The differential expression of 13 defence‐related genes during Phoma koolunga infection of stems and leaves of susceptible versus resistant field pea (Pisum sativum) was determined using qRT‐PCR. Expression, in terms of relative mRNA level ratios, of genes encoding ferredoxin NADP oxidoreductase, 6a‐hydroxymaackiain methyltransferase (hmm6), chalcone synthase (PSCHS3) and ascorbate peroxidase in leaves and stems differed during 6–72 hours post‐inoculation (hpi) and reflected known host resistance levels in leaves versus stems. In comparison to the susceptible genotype, at 24, 48 and 72 hpi, two genes, hmm6 (122.43‐, 206.99‐ and 32.25‐fold, respectively) and PSCHS3 (175.00‐, 250.13‐ and 216.24‐fold, respectively), were strongly up‐regulated in leaves of the resistant genotype, highlighting that resistance against P. koolunga in field pea is governed by the early synthesis of pisatin. At 24 hpi, leaves infected by P. koolunga showed clear differences in expression of target genes. For example, the gene encoding a precursor of the defensin ‘disease resistance response protein 39’ was substantially down‐regulated in leaves of both the susceptible and the resistant genotypes inoculated with P. koolunga. This contrasts with other studies on another pea black spot pathogen, Didymella pinodes, where this same gene is strongly up‐regulated in leaves of resistant and susceptible genotypes. The current study provides the first understanding of defence‐related genes involved in the resistance against P. koolunga, opening novel avenues to engineer new field pea cultivars with improved leaf and stem black spot disease resistance as the basis for developing more effective and sustainable management strategies.  相似文献   

13.
14.
This study evaluated the impact of time between the application of cell suspensions or cell-free filtrates of Bacillus subtilis strains SB01 or SB24 on soybean plants under field conditions and inoculation with Sclerotinia sclerotiorum on their effectiveness for suppression of S. sclerotiorum. The results showed that the cell suspensions of two strains provided greater effectiveness than the cell-free filtrates, but the suppression effectiveness decreased as the time between application in the field and S. sclerotiorum inoculation increased. The B. subtilis cell suspensions applied on soybean leaves for up to 10 days under field conditions were able to provide a significant (P < 0.01) reduction in disease severity by approximately 20–90% at 5 days after the S. sclerotiorum inoculation. When rated 15 days after S. sclerotiorum inoculation, plants treated with bacterial cells for ≤6 days reduced Sclerotinia stem rot severity by 15–70%. Most effectiveness was provided by the cell suspensions present on soybean leaves for <3 days under field conditions, which significantly (P < 0.01) reduced disease severity by 40–70% over 15 days. In comparison, the cell-free filtrates remaining on leaves for <6 days significantly (P < 0.01) reduced disease severity during the first 5 days after the inoculation, while the best cell-free filtrate treatments were those with ≤1-day intervals, which significantly (P < 0.01) reduced disease severity by 10–40% during 15 days after the inoculation. The effectiveness of B. subtilis was reduced when it rained after application.  相似文献   

15.
16.
Phosphatidic acid, which can be generated by the action of phospholipase D (PLD) and by the combined action of phospholipase C (PLC) and diacylglycerol kinase (DGK), is a plant defense signal. To identify the role of the PLD, PLC, and DGK genes encoding these enzymes in pear resistance to the scab fungus Venturia nashicola, we report the cloning of these genes and analysis of their expression in inoculated pear leaves. The results showed that PLD mRNA increased in the leaves of the susceptible pear cv. Kousui 1 day after inoculation (dai), then decreased to the basal level. In resistant pear cv. Kinchaku, PLD mRNA did not change significantly except for a small increase at 2 and 3 dai. However, the level of PLD mRNA in Kinchaku was higher than in Kousui 2 dai. The level of PLC mRNA significantly increased in cvs. Kousui and Kinchaku by 1 dai, peaked at day 2, then decreased to the basal level. Thus, the gene expression pattern did not differ between the two cultivars. PLC gene expression was also induced by environmental stress. The DGK gene seemed to be constitutively expressed and was not induced by inoculation in either the susceptible or resistant cultivars. Together, this data showed that both PLD and PLC are possibly involved in a defense response to V. nashicola in Japanese pear leaves, and the PLD gene seems to play a more important role than does the PLC gene.  相似文献   

17.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

18.
The Japanese pear pathotype of Alternaria alternata, a toxin-dependent necrotrophic pathogen, causes black spot of Japanese pear by producing the host-specific AK-toxin. Pre-inoculation with nonpathogenic A. alternata or pretreatment with an elicitor prepared from A. alternata reduced disease symptoms caused by the pathogen. Salicylic acid- and jasmonic acid-dependent signaling pathways are not involved in the induced resistance to infection by the pathogen. The expression of multiple defense-related genes in Japanese pear leaves inoculated with nonpathogenic A. alternata was examined using suppression subtractive hybridization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank database as accessions DC993229–DC993535.  相似文献   

19.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

20.
Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of bacterial canker and wilt, causes severe economic losses in tomato net‐houses and greenhouses worldwide. In this study, seedlings which were transplanted and inoculated monthly over 2 years wilted and died earlier in the spring (21–24°C) and autumn (18–23°C) than in the winter (15–18°C) and summer (28–31°C): T50 (the time taken for 50% of the plants to wilt or die) was 2 and 3–4 months after inoculation, respectively. A highly significant correlation was found between the average temperatures during the first month after inoculation and T50; the shortest T50 mortality (70 days) was observed for an average temperature of 26°C. Expression of virulence genes (pat‐1, celA, chpC and ppaA) by Cmm was higher in plants inoculated in the spring than in those inoculated in the summer. In another set of experiments, seedlings were inoculated and maintained in controlled‐environment growth chambers for 2 weeks. Subsequently, they were transplanted and maintained in commercial‐type greenhouses for 4–5 months. The temperatures prevailing in the first 48 h after inoculation were found to affect Cmm population size and virulence gene expression and to have season‐long effects on bacterial canker development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号