共查询到2条相似文献,搜索用时 0 毫秒
1.
Leigh Cuttell Maria Angeles Gómez-Morales Beth Cookson Peter J. Adams Simon A. Reid Paul B. Vanderlinde Louise A. Jackson C. Gray Rebecca J. Traub 《Veterinary parasitology》2014,199(3-4):179-190
Trichinella surveillance in wildlife relies on muscle digestion of large samples which are logistically difficult to store and transport in remote and tropical regions as well as labour-intensive to process. Serological methods such as enzyme-linked immunosorbent assays (ELISAs) offer rapid, cost-effective alternatives for surveillance but should be paired with additional tests because of the high false-positive rates encountered in wildlife. We investigated the utility of ELISAs coupled with Western blot (WB) in providing evidence of Trichinella exposure or infection in wild boar. Serum samples were collected from 673 wild boar from a high- and low-risk region for Trichinella introduction within mainland Australia, which is considered Trichinella-free. Sera were examined using both an ‘in-house’ and a commercially available indirect-ELISA that used excretory–secretory (E/S) antigens. Cut-off values for positive results were determined using sera from the low-risk population. All wild boar from the high-risk region (352) and 139/321 (43.3%) of the wild boar from the low-risk region were tested by artificial digestion. Testing by Western blot using E/S antigens, and a Trichinella-specific real-time PCR was also carried out on all ELISA-positive samples. The two ELISAs correctly classified all positive controls as well as one naturally infected wild boar from Gabba Island in the Torres Strait. In both the high- and low-risk populations, the ELISA results showed substantial agreement (k-value = 0.66) that increased to very good (k-value = 0.82) when WB-positive only samples were compared. The results of testing sera collected from the Australian mainland showed the Trichinella seroprevalence was 3.5% (95% C.I. 0.0–8.0) and 2.3% (95% C.I. 0.0–5.6) using the in-house and commercial ELISA coupled with WB respectively. These estimates were significantly higher (P < 0.05) than the artificial digestion estimate of 0.0% (95% C.I. 0.0–1.1). Real-time PCR testing of muscle from seropositive animals did not detect Trichinella DNA in any mainland animals, but did reveal the presence of a second larvae-positive wild boar on Gabba Island, supporting its utility as an alternative, highly sensitive method in muscle examination. The serology results suggest Australian wildlife may have been exposed to Trichinella parasites. However, because of the possibility of non-specific reactions with other parasitic infections, more work using well-defined cohorts of positive and negative samples is required. Even if the specificity of the ELISAs is proven to be low, their ability to correctly classify the small number of true positive sera in this study indicates utility in screening wild boar populations for reactive sera which can be followed up with additional testing. 相似文献
2.
Charles T. EASON Elaine C. MURPHY Steve HIX Duncan B. MACMORRAN 《Integrative zoology》2010,5(1):31-36
The endemic fauna of New Zealand evolved in the absence of mammalian predators and their introduction has been responsible for many extinctions and declines. Introduced species including possums (Trichosurus vulpecula Kerr), ship rats (Rattus rattus L.) and stoats (Mustela erminea L.) are targeted to protect native birds. Control methodologies currently rely largely on labor-intensive trapping or the use of increasingly unpopular poisons, or poisons that are linked with low welfare standards. Hence, the development of safer humane predator toxins and delivery systems is highly desirable. Para-aminopropiophenone (PAPP) is being developed as a toxin for feral cats (Felis catus L.) and stoats. Carnivores appear to be much more susceptible to PAPP than birds, so it potentially has high target specificity, at least in New Zealand. Pen trials with 20 feral cats and 15 stoats have been undertaken using meat baits containing a proprietary formulation of PAPP. A PAPP dose of 20–34 mg kg−1 was lethal for feral cats and 37–95 mg kg−1 was lethal for stoats. Our assessments suggest that PAPP, for the control of feral cats and stoats, is a humane and effective toxin. PAPP causes methaemoglobinaemia, resulting in central nervous system anoxia, lethargy and death. 相似文献