首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary An especially designed open microwave applicator was analysed using wood as the material to be heated and dried. The idea was to develop an on line microwave construction consisting of several small open applicators, each fed by a small standard magnetron (for example 1.4 kW main power). The process was analysed by measuring the wood temperature during heating using an IR-camera and detecting the moisture distribution during drying by CT-scanning. Pine and birch wood samples were used in the experiments, mainly 40 mm in thickness. The experiments show that the power distribution differs between dry wood and moist wood. The analysis of the temperature fields captured by the IR-camera during the first minutes allows a rather accurate determination of the MW power. Consequently, the drying proceeds unevenly in the wood specimens, especially in the longitudinal direction. The dimensions of the applicator and its relation to the wood dimension are very important. However, the wood was not destroyed, the temperature and moisture gradients did not affect the wood in terms of checks or deformations. The drying rate in different positions of the specimen varied between 0.30 and 0.80 percentage moisture content/min. The uneven energy, meaning temperature and field distribution, is to be compensated in the future by a moving wood load and by alternating the position of each applicator in a larger scale microwave pilot plant. Received 25 February 1997  相似文献   

2.
In conventional drying, sawn birch (Betula sp.) timber darkens and reddens from the inside while the layer a few millimetres under the yellowish surface remains light in color. Lack of information concerning the chemical basis of the discoloration hinders the development of a reliable solution for this problem. In this study, the role of soluble proanthocyanidins in discoloration of birch wood was investigated because the polymerization and oxidation of these compounds are known to yield insoluble reddish compounds. Different periods of log storage affected the synthesis of soluble proanthocyanidins during conventional drying. Concentration of proanthocyanidins also correlated with changes in the color of birch wood. Discoloration appeared differently in conventionally dried and vacuum-dried wood, which indicates that the discoloration mechanism in these drying methods may differ chemically, and/or the compounds that take part in discoloration may be different at different drying temperatures.  相似文献   

3.
Change in the colour of silver birch wood is a serious problem in the mechanical wood industry. Here, colour was correlated with microscopic characteristics of wood, such as cell types and dimensions, by drying processes. In conventional drying, with lower temperature than in vacuum drying used here, the most important factor causing darkened wood was wide latewood. In vacuum drying, thickness of the vessel walls affected wood darkening, as did broad rays and large amount of axial parenchyma. Axial and terminal parenchyma cells contained very small amounts of phenolics, but after drying at elevated temperature, a thin dark layer could be observed on the innerside of their walls. Phenolics were abundant in ray parenchyma; these compounds darkened at elevated temperatures, less in conventional drying than in vacuum drying. Phenolics were observed only inside cells, mainly in the parenchyma, but in vacuum-dried wood also in fibres and vessels. Anatomical characteristics are known to be affected by both environmental and genetic factors. Thus it might be possible to influence the colour reaction of birch wood during the drying process by choosing wood according to growing-site conditions, or by choosing the seed source for birch plantations according to given anatomical characteristics.  相似文献   

4.
Abstract

Change in the colour of silver birch wood is a serious problem in the mechanical wood industry. Here, colour was correlated with microscopic characteristics of wood, such as cell types and dimensions, by drying processes. In conventional drying, with lower temperature than in vacuum drying used here, the most important factor causing darkened wood was wide latewood. In vacuum drying, thickness of the vessel walls affected wood darkening, as did broad rays and large amount of axial parenchyma. Axial and terminal parenchyma cells contained very small amounts of phenolics, but after drying at elevated temperature, a thin dark layer could be observed on the innerside of their walls. Phenolics were abundant in ray parenchyma; these compounds darkened at elevated temperatures, less in conventional drying than in vacuum drying. Phenolics were observed only inside cells, mainly in the parenchyma, but in vacuum-dried wood also in fibres and vessels. Anatomical characteristics are known to be affected by both environmental and genetic factors. Thus it might be possible to influence the colour reaction of birch wood during the drying process by choosing wood according to growing-site conditions, or by choosing the seed source for birch plantations according to given anatomical characteristics.  相似文献   

5.
Lack of straightness in timber is the most frequent complaint regarding solid (and laminated) timber products worldwide. Nowadays, customers demand higher quality in the shape stability of wood products than they did earlier. The final distortion of timber boards is mostly caused by moisture-related stresses in wood (drying distortions) and growth-related stresses (distortions appearing when logs are split up to timber boards by sawing). To get more knowledge on how these distortions can be reduced in wooden products, there is a need for improved understanding of this material behaviour through good numerical tools developed from empirical data. A three-dimensional finite element board distortion model developed by Ormarsson (Doctoral thesis, Publ. 99:7, 1999) has been extended to include the influence of growth stresses by incorporating a one-dimensional finite element growth stress model developed here. The growth stress model is formulated as an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The simulation results presented include how stresses are progressively generated during the tree growth, distortions related to the redistribution of growth stresses during log sawing, and distortions and stresses in drying reflecting the effects of growth stresses. The results show that growth stresses clearly vary during tree growth and also form a large stress gradient from pith to bark. This in itself can result in significant bow and crook deformations when logs are sawn into timber boards. The distortion results from the simulations match well with the results observed in reality. The parametric study also showed that the radial growth stress distribution is highly influenced by parameters such as modulus of elasticity, micro fibril angle and maturation strain.  相似文献   

6.
The high accuracy of log positioning and the stability of saw blades in breakdown machinery in modern sawmills have reduced the need to add margins for sawing variations. Oversize green sawing dimensions are still needed, but mainly to allow for drying shrinkage. This has put a new focus on better adapting green sawing dimensions to the shrinkage behavior of wood. In this study, a method for optimization of green sawing dimensions using stochastic simulation is presented. Normal distributions were generated for planed dry dimensions, kerf width, and target moisture content. The minimum share of boards exceeding the specified dry dimensions was decided, and deformations in boards from all positions in the cross section in a number of logs were simulated. The simulated shrinkage allowance from stochastic simulations was compared to experimental results from an industry test and to finite element results based on material data for Norway spruce. The results showed that the green width of the sawn boards should increase when the number of boards in the center yield increases. The green thickness of boards should be thinner for center boards and outer boards than for inner boards.  相似文献   

7.
白桦木材在自然和人工干燥过程中易受真菌类微生物的侵染产生色变,在一定程度上降低了白桦木材的加工利用价值。本文针对白桦木材侵染菌侵染试材的化学成分变化进行分析,以期为白桦木材生物变色防治提供参考。首先对白桦木材侵染菌进行分离、纯化与鉴定,确定侵染白桦试材的侵染菌的基本类型,然后进行白桦试材接菌,最后对白桦侵染菌侵染木材的化学成分进行测定。结果表明,与未侵染素材相比,侵染菌侵染试材中苯醇抽提物含量、1%NaOH抽出物含量、热水抽出物含量和多戊糖含量均较高,而纤维素及木素含量较低。这表明侵染菌在适宜的条件下会侵蚀白桦木材细胞壁组织,造成纤维素和木素等主要成分含量的降低,导致木材组分的破坏。同时,侵染菌的存在会造成白桦木材抽提物组分中的显色及助色物质的含量变化,以致木材产生不同程度的变色。  相似文献   

8.
This study deals with the development of a two-dimensional model to simulate the deformations in wood samples during the wood drying process for the evaluation of the drying quality. The samples cut from sapwood of beech were used to analyse the moisture content distribution of the samples at two different drying conditions. A new concept based on a linear difference method was developed to use the moisture content distribution of the samples for the simulation process to predict deformation due to casehardening. The real deformations of the prongs were compared with the simulated ones for further improvements. The results show that the model can be used to simulate the deformations independently from different drying times and drying conditions. A good comparison between real and simulated changes in deformation was found for the drying process at constant climate conditions. The results provide a useful basis for further investigations on the modelling and simulation of the deformation of the samples due to different drying processes.  相似文献   

9.
对非洲花梨木的干燥基准及特性进行了初步研究。结果表明所采用的干燥基准可以对非洲花梨木的薄板进行干燥处理,不仅干燥速度快,而且板面基本没有干燥缺陷。非洲花梨木的边材和心材可采用同一种干燥基准,干燥质量均能达到国家锯材质量标准。  相似文献   

10.
 Steam conditioning of softwood boards after kiln drying is of critical importance for relief of residual drying stresses and to improve distribution of final moisture content. The conditioning practice in New Zealand includes two steps: immediately after high temperature (HT) drying the load is cooled until the core wood temperature is 75 to 90°C, and then the stack is steam conditioned for a period of 1 to 4 hours depending on the lumber thickness and moisture content after drying. In this work, experimental and theoretical studies were performed to better understand the conditioning process and to investigate factors which influence its effectiveness. In the experiment, 50 mm thick Pinus radiata sapwood boards were first dried at 120/70°C for 11, 12, 13, 16 and 18 hours, respectively, to varying moisture contents, and then cooled and steam conditioned for 1 hour. To assess the effectiveness of conditioning, moisture pick-up, moisture gradient, and transverse residual drying stress (indicated by cup and strain) were measured. It was found that drying wood to a low moisture content (below 6%) increased the conditioning effectiveness. A separate matched stack was conditioned for 4 hours after 13 hours drying which showed better results than 1 hour conditioning. A mathematical model for wood drying was extended to include both the cooling and conditioning phases. The model was numerically solved to examine the wood temperature and moisture content changes during the whole process of drying, cooling and final steam conditioning. Increase in wood temperature, moisture pickup and moisture gradient during steam conditioning were predicted and validated by the experimental data. This information is currently being used at the New Zealand Forest Research Institute in simulation of stress development and relief for drying of Pinus radiata lumber. Received 6 July 1998  相似文献   

11.
Physical interpretation of the three characteristic groups of acoustic signals emitted during convective drying of wood is the main subject of this paper. The acoustic emission (AE) was to evidence the fracture intensity during drying of a birch wood sample of cylindrical shape. To explain the three characteristic groups of acoustic signals, and particularly the last one, a mechanistic model of drying was applied to analyse the drying induced stresses in the tested sample. One can conclude from this analysis that the third group of acoustic signals arises when the surface stop to shrink and the wet core (initially in compression) begins to dry. The shrinkage of the core causes compression of the boundary layer and tension of the core. Thus, the reverse of the stress signs in the cylinder cross-section takes place and this possibly involves the destruction of wood structure in the tensed core.  相似文献   

12.
In the process of wood drying inevitable stresses are induced. This often leads to checking and undesired deformations that may greatly affect the quality of the dried product. The purpose of this study was to propose a new rheological model representation capable to predict the evolution of stresses and deformations in wood cantilever as applied to wood drying. The rheological model considers wood shrinkage, instantaneous stress–strain relationships, time induced creep, and mechano-sorptive creep. The constitutive law is based on an elasto–viscoplastic model that takes into account the moisture content gradient in wood, the effect of external load, and a threshold viscoplastic (permanent) strain which is dependent on stress level and time. The model was implemented into a numerical program that computes stresses and strains of wood cantilever under constant load for various moisture content conditions. The results indicate that linear and nonlinear creep behavior of wood cantilever under various load levels can be simulated using only one Kelvin element model in combination with a threshold-type viscoplastic element. The proposed rheological model was first developed for the identification of model parameters from cantilever creep tests, but it can be easily used to simulate drying stresses of a piece of wood subjected to no external load. It can therefore predict the stress reversal phenomenon, residual stresses and maximum stress through thickness during a typical drying process.  相似文献   

13.
Abstract

Wood in general and wooden studs in particular are often distorted owing to uneven shrinkage during the drying process in the sawmill. Twist is often the most detrimental of all types of distortion, and it is caused by spiral grain in combination with variations in moisture content. For sawmills, the objective is to produce dried, straight boards, and one method of dealing with boards with excessive spiral grain is to sort them out and then dry them in a pretwisted position to obtain straight boards after drying. A model using the finite element (FE) method for the simulation of drying twist distortions was first calibrated against laboratory experiments in which boards were dried with and without restraints and pretwists. After the calibration, the FE results were compared with industrial test results for boards that were dried without restraints or with restraints with zero pretwist, i.e. straight restraints. The FE model used an elastic–ideally plastic material model to obtain permanent deformations. The calibration was to set the yield stresses so that there was a good match between FE results and results from the laboratory experiments. The comparison between the industrial test results and the FE results showed that the FE model is capable of realistic simulations of drying boards with and without restraints and presumably also pretwists.  相似文献   

14.
鉴于百度试验法时木材干燥特性研究的不全面性,首先利用百度试验法开展了滇产黄毛青冈材干燥特性的初步研究,提出了预报干燥基础,再据此以地板坯料为干燥对象开展干燥工艺的试验研究,以全面归纳分析黄毛青网材的干燥特性。百度法研究表明:黄毛青冈材的初期开裂为4级,内裂为5级,截面变形1—3级,干燥速度为1-2级。地板料干燥工艺研究表明:采用研究提出的预报基准,23mm厚黄毛青冈地板坯料从初含水率52.3%干燥到12.9%,干燥周期为492h,但干燥质量达不到国家标准中对地板料干燥质量的要求,严重变形和过高的含水率偏差是此中主要原因。综合评定后认为,黄毛青冈属难干材,文中还就其干燥工艺的优化提出了建议。  相似文献   

15.
几种树种木材制造石膏刨花板的适应性   总被引:1,自引:0,他引:1  
张奕 《木材工业》1990,4(4):3-7,18
本文论述了挪威云杉、山杨、白桦和柞木及山杨、白桦、柞木的混合刨花制造石膏刨花板的适应性。结果表明,在工艺参数相同的情况下,木材密度越大的树种制成的板材强度越低,挪威云杉板强度最大,山杨板次之,柞木板极低。挪威云杉和山杨是制造石膏刨花板的优质树种。改变木膏比、刨花体积和对刨花进行水抽提均没有使白桦和柞木制成合格的石膏刨花板。混合刨花干扰石膏刨花板的凝固时间,致使板子强度低劣,在生产中应予避免。  相似文献   

16.
Brauns’ lignins present in the methanol extracts of fresh birch (Betula pendula) xylem and of sawn birch board subjected to vacuum drying were characterized by 1H and 13C NMR spectroscopy (1D and 2D), IR spectroscopy, gel permeation chromatography (GPC) and colour measurements (CIELab) in order to find out whether Brauns’ lignin could contribute to the colour change of sawn timber that occurred during vacuum drying. The two Brauns’ lignin samples contained about equal amounts of syringylpropane and guaiacylpropane units linked with β-O-4 and β–β side-chain structures. Molecular weight of the Brauns’ lignin of vacuum-dried birch board (acetylated: 5,200 g mol−1) was higher than that of the Brauns’ lignin of fresh birch wood (acetylated: 4,400 g mol−1). The Brauns’ lignin of vacuum-dried wood was also clearly darker and more prominently yellow and red; between the Brauns’ lignin samples was 23.59. The differences in the molecular weights and colours suggest that the Brauns’ lignin underwent a chemical change during vacuum drying of the wood and that this change may have affected the colour of the wood.  相似文献   

17.
白桦材尿素改性前后干燥特性的研究   总被引:2,自引:0,他引:2  
对白桦材尿素改性前后的干缩性和干燥特性的研究结果表明,尿素改性材的干燥特性明显好于素材和水煮改性材,干燥速度快,干燥质量好。并探讨了尿素改善白桦材干燥特性的机理。  相似文献   

18.
A three-dimensional theory for the numerical simulation of deformations and stresses in wood during moisture variation is described. The constitutive model employed, assumes the total strain rate to be the sum of the elastic strain rate, the moisture-induced strain rate and the mechano-sorption strain rate. Wood is assumed to be an orthotropic material with large differences between the longitudinal, radial and tangential directions in the properties found. The influence of the growth rings, the spiral grain and the conical shape of the log on the orthotropic directions in the wood is taken account of in the model. A finite element formulation is used to describe the deformation process and the stress development during drying.The research presented in this paper is a part of the national research programme in Sweden concerning wood physics and drying. It was financially supported by the Research Foundation of Swedish Sawmills and the Swedish Council for Forestry and Agricultural Research.  相似文献   

19.
 Experimental investigation and computational analysis were performed to evaluate the influence of the ambient air parameters during the drying process on the temperature, moisture and resulting deformations and stresses in wood samples. The numerical procedure uses the Finite Volume Method to discretise the equations governing heat, mass and momentum balance and takes into account the anisotropic nature of wood. The comparison of the numerical and experimental results shows very good agreements, implying that the proposed numerical algorithm can be used as a useful tool in designing wood drying schedules. Received 31 March 1999  相似文献   

20.
The drying kinetics of reaction woods in Picea abies (compression wood) and Fagus sylvatica (tension wood) in comparison with their corresponding normal woods was investigated under constant convective drying conditions. Moisture profiles along the thickness of small flat-sawn boards taken from reaction and opposite wood zones were evaluated using a polychromatic X-ray system, a non-destructive method. The results revealed substantial differences in the drying behavior between the reaction and opposite woods. Both reaction woods represented slower drying rate than their matching normal woods mainly during the period of free water loss. However, the reaction and opposite woods reached the final moisture content (MC) of about 12% at the same time due to higher initial MC in the opposite woods. In the case of reaction wood, it took a longer time for the moisture profile to become approximately uniform. Overall, a more striking difference was observed in the drying behavior of compression and opposite wood in P. abies. Some important anatomical differences like the cell and pit dimensions and their proportion give some explanations for these drying behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号