首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Watanabe T  Osaki M 《Tree physiology》2002,22(11):785-792
Melastoma malabathricum L. (melastoma) is an Al-accumulating woody plant that grows in tropical Southeast Asia in acid soils with high aluminum (Al) concentrations and low nutrient concentrations. Because oxalate serves as a ligand for Al accumulation in melastoma leaves and citrate is the ligand associated with Al translocation from roots to shoots, we investigated the role of organic acids in the adaptation of melastoma to growth on these soils. Phosphorus starvation increased oxalate concentration in the rhizosphere, enabling melastoma to solubilize insoluble aluminum phosphate in the rhizosphere. Increased availability of P and Al in the rhizosphere enhanced growth. In the xylem sap, the concentration of citrate increased with increasing Al concentration. In contrast, the concentrations of malate, succinate and alpha-ketoglutarate in the xylem sap decreased with increasing Al concentration, suggesting that tricarboxylic acid cycle enzymes were affected by Al treatment.  相似文献   

2.
Qin R  Hirano Y  Brunner I 《Tree physiology》2007,27(2):313-320
We studied the effects of a 2-day exposure to aluminum (Al), copper (Cu) and zinc (Zn) stress on root exudates and root apices of aseptically grown poplar (Populus tremula L.) cuttings. Aluminum induced root exudation of oxalate and citrate, Cu induced root exudation of oxalate, malate and formate, and Zn induced root exudation of formate. The threshold treatment concentrations were 100 microM for Cu and 500 microM for Al and Zn, corresponding to about 30 microM Cu2+, 140 microM Al3+ and 290 microM Zn2+. Simultaneous with the increase in organic acid anion exudation, sulfate and the nutrient cations K+, Ca2+ and Mg2+ were released into the solutions. Significant positive correlations between the organic acid anions and the cations indicate possible co-release. Toxicity symptoms of the poplar roots included browning of the root apices, which occurred at Cu concentrations of 50 microM and above, at Zn concentrations of 500 microM and above, and at an Al concentration of 1000 microM, and callose formation, which was observed solely in response to Al concentrations of 500 microM or higher. The results indicate that the composition of the exuded organic acid anions from poplar roots and the toxicity symptoms are specific to each of the applied heavy metals.  相似文献   

3.
Klugh KR  Cumming JR 《Tree physiology》2007,27(8):1103-1112
Aluminum (Al) in acidic soils is toxic to plants, affecting growth, water uptake and nutrient assimilation. Aluminum resistance in some plant species and genotypes has been ascribed to organic acid exudation from roots and arbuscular mycorrhizal (AM) fungal symbiosis. We investigated variation among several AM species in altering Al resistance of Liriodendron tulipifera L. and evaluated AM influence on organic acid production as a potential Al resistance mechanism. Growth, nutritional responses and rhizosphere organic acid profiles were assessed for seedlings in association with Acaulospora morrowiae Spain & Schenck, Glomus claroideum Schenck & Smith, G. clarum Nicol. & Schenck or Paraglomus brasilianum (Spain & Miranda) Morton & Redecker and non-mycorrhizal seedlings exposed to 0, 50 or 200 microM Al. Plants colonized by G. clarum had the greatest biomass, least Al and most phosphorus (P) in leaf tissues and exuded malate and citrate into the rhizosphere at rates that complexed 99% of delivered Al in all treatments. Other AM fungi did not confer significant Al resistance on L. tulipifera and did not maintain citrate and malate exudation in response to Al exposure. This study illustrates functional diversity among AM fungal species in conferred Al resistance to plants and highlights the potential importance of fungal diversity in ecosystem responses to environmental stresses.  相似文献   

4.
Responses of Melaleuca leucadendra (L.) L., Melaleuca cajuputi Powell, Acacia auriculiformis A. Cunn. ex Benth. and Eucalyptus camaldulensis Dehnh. to aluminum (Al) toxicity at low pH are poorly understood. We investigated effects of low pH and exudation of ligands by roots on Al tolerance of these species. Seedlings were grown hydroponically in nutrient solutions at pH 4.2 or 3.5 containing AlCl3 at concentrations ranging from 0 to 4 mM Al. The presence of 4 mM Al at pH 3.5 depressed growth in all species. Growth depression was greatest in E. camaldulensis, least in A. auriculiformis. In the low Al treatment (0.5 mM Al), roots of M. cajuputi tended to have the highest Al concentration among species, whereas in the 4 mM Al treatment, the highest Al concentration was found in roots of E. camaldulensis. Aluminum application enhanced root exudation of citrate in all species, with the enhancement in M. cajuputi, M. leucadendra and A. auriculiformis being similar and much greater than in E. camaldulensis. Exudation of oxalate and phenolic compounds was greater in E. camaldulensis than in the other species. The presence of Al enhanced phosphate exudation in all species, particularly in A. auriculiformis. Acacia auriculiformis was tolerant to low pH, probably because the presence of an unknown substance increased the pH. Application of 0.38 mM Al alleviated the toxicity of the pH 3.5 treatment in E. camaldulensis and M. cajuputi, whereas low pH alleviated Al toxicity in A. auriculiformis. We conclude that exudation of ligands such as citrate and phosphate only partly accounts for interspecific differences in Al tolerance among the tropical woody plants studied, whereas the reciprocal alleviation of Al toxicity and low pH differed considerably among the species.  相似文献   

5.
Aluminum (Al) tolerance mechanisms in crop plants have been extensively researched, but our understanding of the physiological mechanisms underlying Al tolerance in trees is still limited. To investigate Al tolerance in eucalypts, seedlings of six species (Eucalyptus globulus Labill., Eucalyptus urophylla S.T. Blake, Eucalyptus dunnii Maiden, Eucalyptus saligna Sm., Eucalyptus cloeziana F. J. Muell. and Eucalyptus grandis w. Hill ex Maiden) and seedlings of six clones of Eucalyptus species were grown for 10 days in nutrient solutions containing Al concentrations varying from 0 to 2.5 microM (0 to 648 microM Al3+ activities). Root elongation of most species was inhibited only by high Al3+ activities. Low to intermediate Al3+ activities were beneficial to root elongation of all species and clones. Among the species tested, E. globulus and E. urophylla were more tolerant to Al toxicity, whereas E. grandis and E. cloeziana were more susceptible to Al-induced damage. Although E. globulus seedlings were tolerant to Al toxicity, they were highly sensitive to lanthanum (La), indicating that the tolerance mechanism is specific for Al. Fine roots accumulated more Al and their elongation was inhibited more than that of thick roots. In E. globulus, accumulation of Al in root tips increased linearly with increasing Al concentration in the nutrient solution. The majority of Al taken up was retained in the root system, and the small amounts of Al translocated to the shoot system were found mainly in older leaves. No more than 60% of the Al in the thick root tip was in an exchangeable form in the apoplast that could be removed by sequential citrate rinses. Gas chromatography/mass spectrometry and ion chromatography analyses indicated that root exposure to Al led to a greater than 200% increase in malic acid concentration in the root tips of all eucalypt species. The increase in malate concentration in response to Al treatment correlated with the degree of Al tolerance of the species. A small increase in citric acid concentration was also observed in all species, but there were no consistent changes in the concentrations of other organic acids in response to Al treatment. In all eucalypt species, Al treatment induced the secretion of citric and malic acid in root exudates, but no trend with respect to Al tolerance was observed. Thus, although malate and citrate exudation by roots may partially account for the overall high Al tolerance of these eucalypt species, it appears that tolerance is mainly derived from the internal detoxification of Al by complexation with malic acid.  相似文献   

6.
We studied the effects of excess nitrogen added as nitrate (NO(3) (-)) or ammonium (NH(4) (+)), or both, on mineral nutrition and growth of beech (Fagus sylvatica L.) plants grown at pH 4.2 in Al-free nutrient solution or in solutions containing 0.1 or 1.0 mM AlCl(3). A high external concentration of NH(4) (+) increased the concentration of nitrogen in roots, stems and leaves. The root/shoot dry weight ratio was less in plants grown in the presence of NH(4) (+) than in plants grown in the presence of NO(3) (-). The concentration of phosphorus in the roots was increased and the concentration of potassium in all parts of the plant was decreased by NH(4) (+). A high external concentration of NO(3) (-) caused a decrease in phosphorus concentrations of the root, stem and leaf. Uptake of (45)Ca(2+) by roots was reduced in the presence of high concentrations of NH(4) (+) or NO(3) (-), and a combination of high concentrations of nitrogen and aluminum further reduced the uptake of (45)Ca(2+). Uptake of phosphate ((32)P) and concentrations of phosphorus in root and shoot were increased when plants were grown in the presence of 0.1 mM Al. Exposure to 1.0 mM Al, however, reduced the concentration of phosphorus in roots and shoots and the reduction was greater when plants were grown in the presence of a high external NO(3) (-) concentration. Aluminum binds to roots, and plants grown in the presence of 1.0 mM Al had a slightly higher concentration of aluminum in roots than plants grown in the presence of 0.1 mM Al, whereas the concentration of Al in the shoot was increased 2 to 3 times in plants exposed to 1.0 mm Al. Furthermore, the effects of 1.0 mM Al on uptake of other macronutrients were quite different from the effects of 0.1 mM Al. We conclude that 0.1 mM Al facilitates uptake and transport of phosphorus in beech and that between 0.1 and 1.0 mM Al there is a dramatic change in the effects of Al on uptake and transport of divalent cations and phosphorus.  相似文献   

7.
Models of the effects of elevated concentrations of aluminum (Al) on growth and nutrient uptake of forest trees frequently ignore the effects of mycorrhizal fungi. In this study, we present novel data indicating that ectomycorrhizal mycelia may prevent leaching of base cations and Al. Mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were grown in sand obtained from the B-horizon of a local forest. In Experiment 1, non-mycorrhizal seedlings and seedlings inoculated with Hebeloma cf. longicaudum (Pers.: Fr.) Kumm. ss. Lange or Laccaria bicolor (Maire) Orton were provided with nutrient solution containing 2.5 mM Al. Aluminum did not affect growth of non-mycorrhizal seedlings or seedlings inoculated with L. bicolor. Seedlings colonized by H. cf. longicaudum had the highest biomass production of all seedlings grown without added Al, but the fungus did not tolerate Al. Shoots of seedlings colonized by L. bicolor had the lowest nitrogen (N) concentrations but the highest phosphorus (P) concentrations of all seedlings. The treatments had small but significant effects on shoot and root Al concentrations. In Experiment 2, inoculation with L. bicolor was factorially combined with the addition of a complete nutrient solution, or a solution lacking the base cations K, Ca and Mg, and solutions containing 0 or 0.74 mM Al. Seedling growth decreased in response to 0.74 mM Al, but the effect was significant only for non-mycorrhizal seedlings. Mycorrhizal seedlings generally had higher P concentrations than non-mycorrhizal seedlings. Aluminum reduced P uptake in non-mycorrhizal plants but had no effect on P uptake in mycorrhizal plants. Mycorrhizal colonization increased the pH of the soil solution by about 0.5 units and addition of Al decreased the pH by the same amount. We conclude that the presence of ectomycorrhizal mycelia decreased leaching of base cations and Al from the soil.  相似文献   

8.
铝对外生菌根真菌草酸分泌及氮磷钾吸收的影响(英文)   总被引:2,自引:0,他引:2  
选用来自我国西南酸性土壤上的松乳菇、褐环乳牛肝菌和来自西北石灰性土壤的厚环乳牛肝菌、土生空团菌作为供试菌株,采用液体培养的方法,研究不同浓度铝对4种外生菌根真菌的生长、草酸分泌及氮磷钾吸收的影响。结果表明:铝胁迫下,4种外生菌根真菌生物量均出现不同程度的下降,且松乳菇与褐环乳牛肝菌生物量下降幅度较厚环乳牛肝菌、土生空团菌少;同时,松乳菇与褐环乳牛肝菌无论在是否含铝的培养基中均有较高的草酸分泌量。这可能是由于草酸能够与培养基中的铝螯合,从而降低铝离子的活性、减轻对菌株的伤害。在大多数铝处理的菌丝中,松乳菇与褐环乳牛肝菌的氮磷钾吸收量高于厚环乳牛肝菌与土生空团菌。根据菌株在铝胁迫下的生物量与养分吸收状况可知,选自酸性土壤上的菌种具有较强的抗铝性,这可能是酸性土壤上自然选择的结果。另外,培养基中适当的铝浓度能够增加4种菌株的磷含量,这可能是有益于沉淀细胞内的铝以减轻铝毒。  相似文献   

9.
10.
铜唑类防腐剂在竹材中的固着性   总被引:6,自引:2,他引:6  
本文以毛竹(Phyllostachys pubescens)为试材,根据美国木材防腐协会E11-97标准,研究了4种配方的铜唑(cuAz)防腐剂的室内抗流失性,并与CCA、ACQ和有机酸铜类防腐剂的固着性作了对比。结果表明:铜唑防腐剂的固着率高于有机酸(柠檬酸、草酸和苹果酸)铜的固着率;对于所有含铜的制剂,高吸药量水平下的固着率一般高于低吸药量水平下的固着率;当吸药量6.56~7.31kg/m^3时,以氨基醇作溶剂的铜唑固着率低于用氨作溶剂的铜唑固着率。  相似文献   

11.
We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased rates of respiration early in the growing season (July). Soil Al treatment had a broad impact, reducing foliar concentrations of Ca, Mg, Mn, P and Zn, and resulting in smaller stem diameters, sapling heights and shoot lengths compared with soil treatments with no added Al. Aluminum treatment also reduced respiration when shoots were elongating in July and decreased net photosynthesis at the end of the growing season (September). Three lines of evidence suggest that Al-induced alterations in growth and physiology were independent of foliar Ca status: (1) Ca concentrations in foliage of Al-treated saplings were within the range of sufficiency established for red spruce; (2) mCa concentrations were unaffected by Al treatment; and (3) no Al x Ca interactions were detected. Acid mist treatment increased foliar Fe and K concentrations and increased leaching of Ca, Mg, Mn, Zn, Fe, and Al from foliage. Leaching losses of Ca were more than twice those of the element with the next highest amount of leaching (Zn), and probably led to the reductions in mCa concentration and membrane stability of acid-treated saplings. Acidic mist resulted in enhanced shoot growth, and consistent reductions in foliar cold tolerance in the fall and winter. Of the few significant interactions among treatments, most involved the influence of mist pH and Al treatment on foliar nutrition. In general, reductions in cation concentration associated with Al addition were greater for pH 5.0-treated saplings than for pH 3.0-treated saplings. We propose that H(+)-induced leaching of mCa from mesophyll cells is the mechanism underlying acid-induced reductions in foliar cold tolerance of red spruce.  相似文献   

12.
Nowak J  Friend AL 《Tree physiology》2005,25(2):245-250
Aluminum (Al) distribution among several cellular fractions was investigated in root tips of seedlings of one Al-resistant and one Al-sensitive family of slash pine (Pinus elliottii Engelm.) and loblolly pine (Pinus taeda L.) grown in nutrient solution containing 100 microM AlCl3 (pH 4) for 167 h. Aluminum present in 5-mm-long root tips was fractionated into cell-wall-labile (desorbed in 0.5 mM citric acid), cell-wall-bound (retained after filtering disrupted cells through 20-microm mesh) and symplasmic (filtrate following cell disruption) fractions. When averaged across both species, 12% of Al absorbed by root tips appeared in the symplasmic fraction and 88% in the apoplasmic fraction (55% as cell-wall-labile, and 33% as cell-wall-bound). On a fresh mass basis, total Al in root tips was lower in loblolly pine than in slash pine, lower in the Al-resistant slash pine family than in the Al-sensitive slash pine family, and lower in the Al-resistant families than in the Al-sensitive families across species. Although the data support the hypothesis that Al-resistant plants limit Al uptake to root apices, they do not exclude other mechanisms of Al resistance. Differential Al resistance between the species and between slash pine families may also be associated with the size of the total non-labile and cell-wall-labile Al fractions, respectively. We were unable to identify the basis for differential Al resistance in loblolly pine.  相似文献   

13.
Colt cherry (Prunus avium x pseudocerasus) callus cultures were derived from leaf protoplasts, protoplasts of root cell suspension cultures, or by direct culture of leaf and root tissues. Survival of calli cultured on basal proliferation medium containing 25, 50, 100 or 200 mN (millinormal) NaCl, Na(2)SO(4) or KCl, or iso-osmotic (with NaCl) concentrations of mannitol ranged from 1 to 15%. After six transfers on the same medium, surviving cell lines were subjected to three cycles of direct recurrent selection; i.e., in each cycle, they were cultured alternately on basal proliferation medium, and on basal proliferation medium supplemented with NaCl, KCl, Na(2)SO(4) or mannitol. Salt- or mannitol-tolerant cell lines selected in this way had smaller cells than unselected cell lines, and they grew more rapidly and had higher callus and cell survival rates than unselected cell lines when cultured in the presence of salt or mannitol. Cells lines selected for tolerance to one agent (sodium salt, potassium salt or mannitol) showed minimal tolerance to another agent. However, when plants were regenerated from salt- or mannitol-tolerant callus and new cultures derived from them, the new cultures showed tolerance to all of the salts and mannitol. Plant regeneration from the new cultures was not achieved under the conditions that led to the regeneration of the parent plants from callus.  相似文献   

14.
Treatment of birch (Betula papyrifera Marsh) and alder (Alnus incana (L.) Moench) cell suspension cultures with ABA increased the freezing resistance of the cells. After 7 days of treatment with 10(-5) M ABA, birch cells grown at 23 and 4 degrees C attained an LT(50) of -16.9 and -14.1 degrees C, respectively, whereas control cells had an LT(50) of -9.1 degrees C. In alder cell suspensions, treatment with 10(-5) M ABA at 23 degrees C induced a small increase in freezing resistance from -7.3 to -10.8 degrees C. Exposure to 4 degrees C alone did not induce a significant increase in hardiness in birch cell suspensions. Addition of 10(-5) M ABA to the medium inhibited fresh weight increase over 10 days of 3-g inocula of birch and alder by 70 and 52%, respectively. With the same concentration of ABA in the medium we found different intracellular ABA concentrations in 3- and 6-g inocula. We conclude that the concentration of ABA in the medium does not reflect the intracellular concentration of tissue cultures, and that cultural conditions may influence ABA accumulation by cell cultures.  相似文献   

15.
Chen LS  Qi YP  Smith BR  Liu XH 《Tree physiology》2005,25(3):317-324
'Cleopatra' tangerine (Citrus reshni Hort. ex Tanaka) seedlings were irrigated daily for 8 weeks with 1/4 strength Hoagland's nutrient solution containing 0 (control) or 2 mM aluminum (Al). Leaves from Al-treated plants had decreased CO2 assimilation and stomatal conductance, but increased intercellular CO2 concentrations compared with control leaves. On a leaf area basis, 2 mM Al increased activities of key enzymes in the Calvin cycle, including ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoribulokinase (PRK), stromal fructose-1,6-bisphosphatase (FBPase), and a key enzyme in starch synthesis, ADP-glucose pyrophosphorylase (AGPase), compared with control leaves. Aluminum had no effect on cytosolic FBPase activity, but it decreased sucrose phosphate synthase (SPS) activity. Aluminum had no effect on area-based concentrations of carbohydrates, glucose-6-phosphate (G6P) and fructose 6-phosphate (F6P) or the G6P:F6P ratio, but it decreased the area-based concentration of 3-phosphoglycerate (PGA). Photochemical quenching coefficient (qP) and electron transport rate through PSII were greatly reduced by Al. Non-photochemical quenching coefficient (NPQ) was less affected by Al than qP and electron transport rate through PSII. We conclude that the reduced rate of CO2 assimilation in Al-treated leaves was probably caused by a combination of factors such as reduced electron transport rate through PSII, increased closure of PSII reaction centers and increased photorespiration.  相似文献   

16.
Effects of Al on growth, nutrient uptake and proton efflux were studied in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings grown for about nine months in culture solutions with a pH between 3.4 and 3.6 and with both calcium and magnesium (Ca + Mg) at a concentration of 0.1, 0.5 or 2.5 mM. In the absence of Al, plant dry matter production and root development increased with increasing concentrations of (Ca + Mg) in the culture solution. At the low and intermediate (Ca + Mg) concentrations, optimal root and shoot development were observed at an Al concentration of 4 mg l(-1). At the highest (Ca + Mg) concentration, Al up to 4 mg l(-1) did not affect growth, but at higher concentrations, it significantly reduced both shoot and root growth. As the concentration of (Ca + Mg) in the nutrient solution increased, the concentrations of Ca and Mg increased in shoots and roots also. The concentrations of Ca and Mg in the roots were unaffected by the presence of Al, whereas in the shoots they were either unaffected, or increased, by Al. Concentrations of Al in, or on, roots, or in shoots, did not change in response to changing concentrations of Ca + Mg in the nutrient medium. In general, concentrations of P and K in shoots and roots were higher in seedlings grown in nutrient solutions containing Al. Stimulation of growth by moderate concentrations of Al, which was observed at suboptimal (Ca + Mg) concentrations, was associated with a low NH(4) preference and a low root proton efflux. The Al-induced increase in internal K concentration and reduction in NH(4) preference may be explained by a lower efflux of K and NO(3), respectively.  相似文献   

17.
核桃离体培养中外植体褐化的研究   总被引:10,自引:0,他引:10  
对核桃离体培养中外植体的褐变进行了初步研究,结果表明:4月份取嫩枝茎段进行培养,效果最差,褐变死亡率高,取6月份半木质化茎段进行培养,效果较好,休眠芽次之。液体状态的培养基可以减轻外植体褐变。培养基中附加激素6-BA和IAA、GA时,外植体的褐变程度较低,外植体腋芽萌发与生长分化较好。培养基中加入硫代硫酸钠对防止外植体褐变。提高外植体萌芽率和有效新梢率有促进作用。  相似文献   

18.
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) cell cultures sampled 3, 6, or 9 days after subculture in nutrient medium were able to survive subsequent subculture in a medium containing 15% polyethylene glycol (PEG) (M(r) 6000-8000) (-1.21 MPa), whereas cell sampled 12 or 16 days after subculture in nutrient medium became senescent when transferred to a medium containing 15% PEG. Cells sampled after subculture for 3, 6, or 9 days in nutrient medium had lower fresh weight/dry weight ratios, lower osmotic potentials, smaller cell diameters, and higher turgor pressures than cells sampled after 12 or 16 days subculture in nutrient medium. Cells surviving subculture to a medium containing 15% PEG did not increase in dry weight for 5 weeks even though the medium was exchanged every 7 days. After 5 weeks, however, dry weight growth resumed and reached 75% of the level attained by control cells grown on PEG-free medium. Long-term growth on a medium containing 15% PEG (PEG-selected cells) could only be sustained if the medium was supplemented with 30 mM glutamine. The PEG-selected cells grew in small clusters, were isodiametric, and had chlorophyll contents 50% higher than unselected cells. The PEG-selected cells also showed lowered cellular osmotic potentials, presumably due to osmoregulation. Turgor pressures of PEG-selected cells were greater than or equal to those of unselected cells.  相似文献   

19.
为探索千年桐体内微量元素对不同梯度铝胁迫的响应机制,分析铝胁迫下微量元素在根系和叶片间吸收和运输的规律,以土培和水培的1年生千年桐苗木为研究对象,在不同供铝水平下,测定千年桐苗木根系和叶片中微量元素(Fe、Mn、Cu、Zn)的含量。结果表明,铝处理显著促进盆栽苗根系微量元素的吸收,而对水培苗根系微量元素的吸收则表现为无显著作用或抑制作用,表明同一植物在不同生境下会形成不同的耐铝机制;微量元素在苗木不同器官的分配方式不同,千年桐盆栽苗吸收的微量元素除Mn外多集中在根系,而水培苗则除Fe外多集中在叶片;铝胁迫也会影响微量元素在苗木不同器官间的运输,如在铝浓度低于0.290 mmol·L-1时,会促进水培苗Zn元素从根向叶的运输,而当铝浓度高于0.290 mmol·L-1时,则会抑制Zn元素的向上运输。铝处理对千年桐盆栽苗和水培苗微量元素的影响有较大差异,与水培苗相比,盆栽苗在土壤原生环境下具有较好的抗性。因此,在今后的胁迫试验中,除了考虑植物自身的抗逆性,还要考虑原生环境的作用。  相似文献   

20.
Embryogenic cultures of red spruce (Picea rubens Sarg.) and Norway spruce (Picea abies (L.) Karst.) were initiated from dissected mature zygotic embryos. The tissues were grown on either proliferation medium or maturation medium. On proliferation medium, the embryogenic tissue continued to produce early stage somatic embryos (organized meristems attached to elongated, suspensor-like cells), whereas on maturation medium fully mature embryos developed from the embryonic tissue. Analysis of polyamines in tissues grown on these two media showed that: (1) both putrescine and spermidine concentrations were always higher in cultures grown on proliferation medium than in cultures grown on maturation medium; (2) in both species, spermidine concentrations declined with time in the tissues grown on maturation medium; and (3) spermine was present in only minute quantities and showed only a small change with time. The presence of difluoromethylornithine in the culture medium had little effect on polyamine concentration, whereas the presence of difluoromethylarginine caused a decrease in putrescine concentrations in both red spruce and Norway spruce tissues grown on proliferation medium or maturation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号