首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 1920 to 1989, approximately 847,000 ha of Alaska spruce (Picea spp.) forests were infested by spruce beetles (Dendroctonus rufipennis). From 1990 to 2000, an extensive outbreak of spruce beetles caused mortality of spruce across 1.19 million ha of forests in Alaska; approximately 40% more forest area than was infested the previous 70 years. This review presents some of the most important findings from a diversity of research and management projects from 1970 to 2004 to understand the biology, ecology, and control of this important forest insect, and the causes and effects of their outbreaks. We suggest that future research should examine the long-term effects of the spruce beetle outbreaks and climate variability on forest ecosystems in the region. Research into how different management actions facilitate or interrupt natural successional processes would be particularly useful.  相似文献   

2.
3.
In Alaska, an outbreak of spruce beetles (Dendroctonus rufipennis) recently infested over one million hectares of spruce (Picea spp.) forest. As a result, land management agencies have applied different treatments to infested forests to minimize fire hazard and economic loss and facilitate forest regeneration. In this study we investigated the effects of high-intensity burning, whole-tree harvest, whole-tree harvest with nitrogen (N) fertilization, and conventional harvest of beetle-killed stands 4 years after treatment, as well as clear-cut salvage harvest 6 years after treatment. We measured available soil ammonium and nitrate and estimated N loss from leaching using in situ cation and anion resin exchange capsules. We also assessed spruce regeneration and responses of understory plant species. Availability and losses of N did not differ among any of the management treatments. Even a substantial application of N fertilizer had no effect on N availability. Spruce regeneration significantly increased after high-intensity prescribed burning, with the number of seedlings averaging 8.9 m−2 in burn plots, as compared to 0.1 m−2 in plots that did not receive treatment. Biomass of the pervasive grass bluejoint (Calamagrostis canadensis) was significantly reduced by burning, with burn plots having 9.5% of the C. canadensis biomass of plots that did not receive treatment. N fertilization doubled C. canadensis biomass, suggesting that N fertilization without accompanying measures to control C. canadensis is the least viable method for promoting rapid spruce regeneration.  相似文献   

4.
Forests of the Kenai Peninsula, Alaska experienced widespread spruce (Picea spp.) mortality during a massive spruce beetle (Dendroctonus rufipennis) infestation over a 15-year period. In 1987, and again in 2000, the U.S. Forest Service, Pacific Northwest Research Station, Forest Inventory and Analysis Program conducted initial and remeasurement inventories of forest vegetation to assess the broad-scale impacts of this infestation. Analysis of vegetation composition was conducted with indirect gradient analysis using nonmetric multidimensional scaling to determine the overall pattern of vegetation change resulting from the infestation and to evaluate the effect of vegetation change on forest regeneration. For the latter we specifically assessed the impact of the grass bluejoint (Calamagrostis canadensis) on white spruce (Picea glauca) and paper birch (Betula papyrifera) regeneration. Changes in vegetation composition varied both in magnitude and direction among geographic regions of the Kenai Peninsula. Forests of the southern Kenai Lowland showed the most marked change in composition indicated by relatively large distances between 1987 and 2000 measurements in ordination space. Specific changes included high white spruce mortality (87% reduction in basal area of white spruce >12.7 cm diameter-at-breast height (dbh)) and increased cover of early successional species such as bluejoint and fireweed (Chamerion angustifolium). Forests of the Kenai Mountains showed a different directional change in composition characterized by moderate white spruce mortality (46% reduction) and increased cover of late-successional mountain hemlock (Tsuga mertensiana). Forests of the Gulf Coast and northern Kenai Lowland had lower levels of spruce mortality (22% reduction of Sitka spruce (Picea sitchensis) and 28% reduction of white spruce, respectively) and did not show consistent directional changes in vegetation composition. Bluejoint increased by ≥10% in cover on 12 of 33 vegetation plots on the southern Kenai Lowland but did not increase by these amounts on the 82 plots sampled elsewhere on the Kenai Peninsula. Across the Kenai Lowland, however, regeneration of white spruce and paper birch did not change in response to the outbreak or related increases in bluejoint cover from 1987 to 2000. Although some infested areas will be slow to reforest owing to few trees and no seedlings, we found no evidence of widespread reductions in regeneration following the massive spruce beetle infestation.  相似文献   

5.
The presence of over 429,000 ha of forest with spruce (Picea spp.) recently killed by spruce beetles (Dendroctonus rufipennis) on the Kenai Peninsula has raised the specter of catastrophic wildfire. Dendrochronological evidence indicated that spruce beetle outbreaks occurred on average every 50 years in these forests. We used 121 radiocarbon-dated soil charcoal samples collected from throw mounds of recently blown over trees to reconstruct the regional fire history for the last ca. 2500 years and found no relation between fire activity and past spruce beetle outbreaks. Soil charcoal data suggest that upland forests of white (Picea glauca) and Lutz (Picea x lutzii) spruce have not on average burned for 600 years (time-since-fire range 90 to ∼1500 years, at 22 sites) and that the mean fire interval was 400–600 years. It would thus appear that 10 or more spruce beetle outbreaks can occur for every cycle of fire in these forests. We caution, however, that a trend of warmer summers coupled with an increasing human population and associated sources of ignitions may create a greater fire risk in all fuel types than was present during the time period covered by our study. We suggest that forest management focus on creating fuel breaks between valued human infrastructure and all types of forest fuels, both green and dead.  相似文献   

6.
Pre-marked skid trails, directional felling and climber cutting when logging in tropical rainforests may be important ways of reducing damage to the forest, thus creating a healthier stand and improving future yields.This study, carried out in a virgin dipterocarp rainforest in the south of Sabah, Malaysia, compared two types of logging (both with and without pre-cutting climbers): conventional selective logging (CL) and supervised logging (SL). The latter is a selective logging system in which both pre-marked skid trails and directional felling were implemented. The pre-marked skid trails were aligned parallel to each other, spaced 62 m apart. A randomised complete block 2 × 2 factorial design was used in the experiment, consisting of 16 gross treatment plots, each of 5.76 ha with a 1 ha net plot in the centre.Fewer trees tended (0.050 < P  0.100) to be logged in SL plots than in CL plots (on average 9.4 and 13.0 trees ≥60 cm diameter breast height ha−1). Pre-felling of climbers resulted in four more dipterocarp trees being logged ha−1, compared with no climber cutting: a statistically significant difference (P  0.050). The basal areas lost of both large trees (≥ 60 cm dbh) and small dipterocarp trees (10–29 cm dbh) tended to differ between the logging systems, with CL leading to greater losses.There were significant differences in the residual stands left by the logging systems, with respect to the number of dipterocarps and their basal area in the diameter class 10–29 cm; ca 30% more stems being found after SL. No significant differences (or tendencies) in these variables were found in the residual stands in other diameter classes, or when trees of all species were considered.  相似文献   

7.
Gap-associated spruce (Picea abies (L.) Karst.) regeneration in Sphagnum-Myrtillus stands of south taiga forests (Central Forest Biosphere reserve, Tver region, Russia) was studied to evaluate the role of different disturbances in spruce dynamics. Sampled gaps (n=70) ranged from 40 m2 to 1.7 ha in size, and from 1 to 70 years since disturbance moment. Formation of gaps lead to increase in the number of stems per ha in all gap size classes (small: 40–200 m2, medium: 200–3000 m2, and large: >3000 m2 gaps). Spruce was the most important species in gap refilling, although its role was not the same in different gap classes. The highest values of relative abundance (compared to other species) were recorded in small gaps, and much lower values – in middle and large gaps. However, as refilling of gaps proceeded, spruce showed rather active regeneration in middle and large gaps and partly regained its abundance in middle-age disturbances. In general, all types of gaps studied supported spruce regeneration into the forest canopy. Almost perfect correlation between predicted outcome of spruce dynamics in gaps and its current role in the canopy of Sphagnum-Myrtillus stands suggests a good adaptation of this species to the current disturbance regime and a steady state of the these forests.  相似文献   

8.
The availability of coarse woody debris (CWD) and distribution of dead trees into categories of mortality (dead standing, broken and uprooted) were investigated in north-temperate forests of central Europe (Lithuania). The studied area comprised 188.7 ha and included 18 different stands 40–130 years of age with a variety of tree species (spruce (Picea abies (L.) Karst.), pine (Pinus sylvestris L.), alder (Alnus glutinosa (L.) Gaertn.), birch (Betula pendula Roth and B. pubescens Ehrh.), aspen (Populus tremula L.), oak (Quercus robur L.), forest types (caricus-sphagnum, vaccinium-myrtillus, oxalis, myrtillus-oxalis, caricus-calamagrostis) and edaphic conditions (peaty, sandy, loamy soils of different moisture). The stands were excluded from wood harvesting for at least 30 years. A total of 11 365 dead trees (over 10 cm in DBH) or 6160.7 m3 of dead wood was found (60.2 trees/ha and 32.6 m3/ha). The volume of CWD per hectare was larger in older stands (rS=0.78, P<0.01). Tree mortality during the last 2 years consisted of 482 trees and 381 m3, or 1.28 trees/ha×year and 1.01 m3/ha×year. In 25–33% of cases it was wind-related. Uprooted and broken trees were of larger DBH than dead standing. The distribution into the categories of mortality was strongly dependent on tree species (chi-square test, d.f.=10,P=0). Dead standing dominated in CWD of pine and alder. Broken trees comprised almost a half in CWD of aspen, and about one-third in birch, alder and oak. Uprooting most often occurred in spruce, aspen and birch. Edaphic conditions and stand age had a pronounced impact on distribution into mortality categories for spruce (chi-square test, d.f.=20, P<0.00001) and pine (d.f.=8, P≤0.0003). On peat soil, only a minority of trees of both pine and spruce was uprooted, and standing dead prevailed. In CWD of spruce and pine, the proportions of both dead standing and broken decreased and that of uprooted trees increased on mineral soils of higher moisture and bulk density in older stands. By contrast, uprooting in birch and alder occurred less often on more wet sites, where the proportions of standing snags were higher. A total of 41 species of wood-decomposing polypores were found in the study area. Among those, 10 (24%) were of conservation value.  相似文献   

9.
This analysis employs a spruce budworm (Choristoneura fumiferana Clem.) decision support system to examine costs and benefits of sequestering (protecting) carbon in forests through pest management. We analyzed 24 alternative spruce budworm protection scenarios for outbreaks on Prince Albert Forest Management Area (PAFMA) in Saskatchewan and Crown License 1 in New Brunswick. Scenarios included two outbreak severities (moderate and severe), three protection frequencies (very aggressive—protecting every year of the outbreak; aggressive—protecting the peak 3 years of outbreak; and semi-aggressive—protecting every second year of outbreak), and four protection program sizes (10,000 ha, 25,000 ha, 100,000 ha, or 150,000 ha). Under a severe outbreak, the largest (150,000 ha), very aggressive protection scenario provided the highest net CO2 protected at 24.95 million metric tons (Mt) in PAFMA and 29.19 Mt in License 1. This protection scenario also provided the highest net present value at $64.23 M and $91.36 M in PAFMA and License 1, respectively. On the other hand, benefit/cost ratios were maximized under the smallest (10,000 ha) protection size at 11.90 and 15.37 using the aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. Finally, the discounted cost per ton of CO2 protected was minimized at $0.48 and $0.37 using the smallest aggressive and semi-aggressive protection frequencies in PAFMA and License 1, respectively. The comparable costs and benefits from the moderate outbreak scenarios were similar, but generally less than, the severe outbreak scenarios. These results provide forest managers with important information needed to justify such carbon sequestration programs on economic grounds.  相似文献   

10.
We studied how variations in fire severity and the degree of cutting before burning affected soil invertebrates in a Pinus sylvestris forest in central Sweden. A varied depth of burn in the mor layer was obtained by exclusion of rain and addition of fuel in small plots (1 m×2 m) in clear-cut, selectively cut and uncut part of the forest before large-scale prescribed burning took place. Soil samples were taken from the plots immediately before, the day after, and two months after the fire. The overall mortality of invertebrates depended on the proportion of organic soil consumed by the fire, and for individual taxa it ranged between 59 and 100%. Invertebrates that lived deeper in soil suffered lesser mortality than those in the vegetation and litter layers did. Greater mobility in soil (Staphylinidae) or a thick cuticle (Oribatediae, Elateridae) may have contributed to the higher survival observed in these taxa. The beetles Atomaria pulchra (Cryptophagidae), Corticaria rubripes (Lathridiidae), and other fire-favoured insects colonised the burned forest the very day the fire burned. These species preferred the hard-burned plots and the uncut stand for colonisation. Sixty days after the fire, the abundance of invertebrates was lower in the burned cut stands compared to the burned uncut stand. The species composition of beetles in the burned stands was then characterised by a few very abundant fire-favoured species.  相似文献   

11.
General non-site-specific allometric relationships are required for the conversion of forest inventory measurements to regional scale estimates of forest carbon sequestration. To determine the most appropriate predictor variables to produce a general allometric relationship, we examined Eucalyptus pilularis aboveground biomass data from seven contrasting sites. Predictor variables included diameter at breast height (dbh), stem volume, dbh2 × H, dbh × H and height (H). The data set contained 105 trees, ranging from 6 to over 20,000 kg tree−1, with dbh ranging from 5 to 129 cm. We observed significant site differences in (1) partitioning of biomass between the stem, branch wood and foliage; (2) stem wood density and (3) relationship between dbh and height. For all predictor variables, site had a significant effect on the allometric relationships. Examination of the model residuals of the site-specific and general relationship indicated that using dbh alone as the predictor variable produced the most stable general relationship. Furthermore, the apparent site effect could be removed by the addition of a constant value to the measured diameter (dbh + 1), to account for the differing diameter distribution across the seven sites. Surprisingly, the inclusion of height as a second predictor variable decreased the performance of the general model. We have therefore demonstrated that for E. pilularis a general allometric relationship using dbh alone as the predictor variable can be as accurate as site-specific allometry, whilst being applicable to a wide range of environments, management regimes and ages. This simplifies regional estimates of aboveground biomass from inventory measurements, eliminating the need for site-specific allometric relationships or modifiers such as height, wood density or expansion factors.  相似文献   

12.
The magnitude of nitrogen storage and its temporal change in forest ecosystems are important when analysing global change. For example, the accelerated growth of European forests has been linked to increased nitrogen deposition, but the changes in the N inputs that cause long-term changes in ecosystems have not yet been identified. We used two Swedish forest optimum nutrition experiments with Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) to study the long-term fate of N applied to these forest ecosystems. In the pine experiment, in addition to fertiliser (NPK) application, soil acidity was manipulated by application of lime and dilute sulphuric acid. From the spruce experiment, we selected treatments with similar fertiliser doses as in the pine experiment and with and without lime addition.We quantified various terms in the N budget 12 years (pine) and 7 years (spruce) after the last N addition. In the pine stand the NPK-treatment was the only treatment to produce a significant increase in N in the tree biomass (97% above control), whereas in the spruce stand the N additions increased tree N in all treatment combinations (207% above control). In the pine stand the relative distribution of nitrogen between trees and soil did not vary across treatments, with trees containing around 12% of ecosystem N and humus containing around 44% of soil N. The increases in N stocks in the pine stands were mainly in the soil. In contrast, in the spruce ecosystem trees accumulated most of the added N and the increase in the soil was restricted to the humus layer.In the pine ecosystem, large losses of added N (between 254 and 738 kg ha−1 out of 1040 kg ha−1 added as fertiliser) occurred, whereas in the spruce ecosystem we recovered more N than could be accounted for by inputs (between 250 and 591 kg ha−1). There was no clear pattern in the interaction between acidification/liming and N additions.  相似文献   

13.
This study evaluates the effect of two different thinning treatments (2 and 3), and a control without thinning (1), on stand stability of secondary even-aged Norway spruce stands, in relation to the main risk factors of snow and wind, which should be considered in the period of stand conversion. Treatment 2 is a heavy thinning at top heights of 10, 12.5 and 15 m; treatment 3 starts with the first heavy thinning at the top height of 10 m, but the second and third treatments are delayed till a top height of 20 and 22.5 m are reached. The experimental stands are in secondary Norway spruce forest growing on a site considered unsuitable for that species and especially at risk from snow and storm damage. The investigated thinning variants significantly influenced the stability of the experimental stands. Both thinning treatments encouraged diameter increment and therefore their h/d ratio reached lower levels than the control. In treatment 2, the h/d ratio stabilized in the period of intensive treatment at around 80; i.e., it is the most suitable treatment from the viewpoint of stem-break resistance. Treatment 3 did not stop h/d ratio increase, but slowed it compared to the control variant without thinning. Subsequently the later interventions at the top heights of 20 m and, especially, 22.5 m stopped the increase of the h/d ratio and kept it under the critical value of 90.  相似文献   

14.
Multi-aged stands are not a common structural type of mountain-ash forest in the Central Highlands of Victoria, southeastern Australia, but they are nevertheless important, particularly as habitat for wildlife. Extensive field data and information generated from spatial models of climate, topography and radiation regimes were examined to identify factors which related to the occurrence of stands of multi-aged mountain-ash forest. The probability of occurrence of multi-aged stands increased significantly (p < 0.001) with the age of the forest. There also was evidence that multi-aged stands were more likely to occur on steeper slopes (p = 0.01). When actual on-ground field measurements were ignored and program-generated climate, topography and radiation data only were modeled, a decrease in the shortwave radiation ratio (a measure of the estimated solar radiation budget) was associated with a significantly increased probability of occurrence (p = 0.03) of multi-aged stands. Our analyses indicated there are particular parts of mountain-ash forest landscapes where complex multi-aged stand structures are more likely to develop. This has implications for the methods used to harvest mountain-ash forests for timber and pulpwood, particularly the need for increased retention of structural components of stands targeted for logging.  相似文献   

15.
The aim of the presented research project is to fit a site index model capable for predicting changes in site-productivity in a changing climate. A generalized additive model is used to predict site index as a function of soil and climate variables. The climate parameter values are estimated using the regional climate model WETTREG, based on global climate simulations with the global circulation model ECHAM5/MPI-OM for the reference period from 1961 to 1990. The climate values are further regionalized on a 200 m × 200 m grid. The generalized additive model quantifies the partial linear and non-linear effects of the predictor variables on site index. The model is parameterized for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.) in Lower Saxony, Germany. Two case studies investigate the model's ability to generate information in order to support forest management planning decisions under a changing climate. One example analyzes the possible shift in site index of spruce along a precipitation gradient under the International Panel on Climate Change (IPCC) emission scenario A1B in the period from 2041 to 2050. The other case study shows possible future changes in site index of beech along a temperature gradient.  相似文献   

16.
Wood volume yield and stand structure were investigated for Norway spruce understorey growing at 1500 trees ha−1 under birch shelters of two different densities, 300 and 600 trees ha−1, and Norway spruce growing without shelter, in a field trial in the boreal coniferous forest, 56 years after the establishment of the stand and 19 years after establishment of the trial.Wood volume yield in sheltered spruce (mean annual increments of 1.87 and 1.78 m3 ha−1 year−1 under the dense and sparse shelterwoods, respectively) was significantly lower than that of unsheltered spruce (mean annual increment 2.43 m3 ha−1 year−1). The loss in wood volume yield for sheltered spruce was more than compensated for by the additional wood volume yield in the shelterwoods (mean annual increments 3.26 and 1.88 m3 ha−1 year−1 for the dense and sparse shelterwood respectively).Shelterwood density did not produce any significant differences in inequality of the understorey stands, measured as skewness and the Gini coefficient for the wood volume distributions. This implies that two-sided competition for nutrients and water was more significant than competition for light.Immediately after trial establishment, trees in the no shelterwood treatment (i.e. where all overstory trees had been removed) showed a marked increase in diameter growth. Over time, the growth rate of unsheltered Norway spruce was reduced to a level comparable to that of sheltered spruce. The difference in average diameter has persisted during the trial period. There was no similar effect on height growth, resulting in an increased slenderness index (h/d) with increased shelterwood density for the understorey trees.  相似文献   

17.
In the 1970s, public opposition to clearcut harvesting in hardwood forests of the eastern United States led forest managers and scientists to consider alternative practices that retain a low-density overstory forest cover. From 1979 to 1984, a form of clearcut-with-reserves harvesting was applied in 80-year-old Appalachian mixed-hardwoods to create four experimental stands with two-aged structures. The residual stand basal area averaged 5.3 m2/ha, comprising an average of 36 reserve trees/ha. The reserve trees were evenly distributed throughout the stand, initially with considerable space between their crowns, thus providing the sunlight and seedbed conditions needed to recruit desirable shade-intolerant reproduction after harvest. This study examined the response of the 100-year-old reserve trees and the development of the 20-year-old natural reproduction located in their immediate vicinity.Diameter at breast height (Dbh), height, and relative position were recorded for all reproduction ≥2.5 cm within transects adjacent to northern red oak (Quercus rubra L.) and yellow-poplar (Liriodendron tulipifera L.) reserve trees. Each transect was divided into five zones, which represented positions relative to the reserve tree crown edge, and basal area was computed for each of three shade tolerance classes within each zone. A repeated measures ANOVA was used to compare basal area of reproduction by tolerance classes and zone. In general, basal area of reproduction, particularly that of shade-intolerant species, increased with distance from the reserve tree. Regression analyses also indicated that dbh and height of reproduction was positively related to distance from the reserve trees. Although height growth of reserve trees was similar for both species, northern red oak exhibited significantly greater dbh and crown radial growth than yellow-poplar.The results indicated that reserve trees influence the growth rate and species composition of reproduction in their immediate vicinity. Basal area of reproduction increased from 10.1 to 17.7 m2/ha with increasing distance from the reserve trees. Basal area of intolerant species more than doubled along the same gradient. Basal area of reproduction in the two-age stands was 30–40% less than that observed in even-aged stands on similar growing sites, but the reduction was offset by growth of the reserve trees. The surface area covered by the reserve tree crowns increased approximately 88% for northern red oak and 44% for yellow-poplar. Since the sphere of influence of reserve trees increases over time, forest managers must consider their long-term impact on reproduction when prescribing clearcut-with-reserves harvests and other practices that involve retaining trees for many years.  相似文献   

18.
In this study we integrated digital terrain models, forest inventory maps, optical remote sensing and field data to analyze the spatial structure of a 4850 km2 boreal mixedwood forest landscape in northeastern British Columbia. We built independent maps of forest cover and landform using a Bayesian classification algorithm and quantitative surface analysis. These data were used to test the strength of the association between topographic position and forest cover using a modified electivity index. We then used logistic regression to test whether the probability of a site being occupied by either mixedwood or hardwood is correlated to its distance from white spruce (Picea glauca) seed sources. The relationship between forest cover and topography showed significant departures from randomness, with white spruce preferentially associated with channels and concave slopes, and hardwoods preferentially associated with ridges and convex slopes. The analysis of mixedwood and hardwood stand distribution showed a positive correlation between hardwood occurrence and distance from spruce stands, suggesting that the dispersal limitations of white spruce is a significant influence on landscape vegetation dynamics. Overall, the results support the hypothesis that mixedwood dynamics are the product of ecological processes at multiple scales. Furthermore, these dynamics are only revealed by taking a varied approach to both data gathering and analyses.  相似文献   

19.
Stand susceptibility to defoliation by spruce budworm, Choristoneura fumiferana (Clem.), was examined in the Fort Nelson area of the Prince George Forest Region of British Columbia. In a retrospective study, defoliation maps of the study area were overlaid onto British Columbia Ministry of Forests cover type maps using a geographic information system. Analysis of the combined data identified forest characteristics associated with increased susceptibility to defoliation by spruce budworm. These were stands where the leading species was white spruce (Picea glauca (Moench) Voss), or where spruce was associated with aspen (Populus tremuloides Michx. and P. balsamifera L.) in mixed stands. Susceptibility to defoliation also was related to site quality, level of crown closure and stand age. Spruce stands on medium quality sites (site index 15 to 25 m, at reference breast height age 50 years) were more susceptible than stands on both poor- and high-quality sites. When spruce was mixed with aspen, stands on higher quality sites were more susceptible to budworm attack than poor sites. Open stands, where crown closure was <50%, were more susceptible to attack by spruce budworm than closed canopy stands. Older stands (120–199 years) were more susceptible to budworm attack than younger stands (40–110 years). In defoliated plots monitored for 6 years, tree mortality and top-kill reached a maximum of 30.4 and 47.2%, respectively. The losses varied with level of defoliation and were reduced by applications of the biological pesticide Bacillus thuringiensis.  相似文献   

20.
Two field experiments, located in Central and Northern Sweden, were used to study the influence of standing volume on volume increment and ingrowth in uneven-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinnings. Each experiment had a 3 × 2 factorial block design with two replications. Treatments were thinning grade, removing about 45, 65, and 85% of pre-thinning basal area, and thinning type, removing the larger or the smaller trees, respectively. Each site also had two untreated control plots. Plot size was 0.25 ha. Volume increment was 0.5–6.8 m3 ha−1 year−1 for the plots, and significantly positively (p < 0.01) correlated with standing volume. Within treatment pairs, plots thinned from Above had consistently higher volume increment than plots thinned from Below. Ingrowth ranged from 3 to 33 stems ha−1 year−1, with an average of 14 and 21 stems ha−1 year−1 at the northern and southern site, respectively. At the southern site ingrowth was significantly negatively (p < 0.01) correlated with standing volume, but not at the northern site. Mean annual mortality after thinning was 2 and 7 stems ha−1 year−1at the northern and southern site, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号