首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture availability is the main limiting factor for growing second crops in rainfed rice fallows of eastern India. Only rainfed rice is grown with traditional practices during the rainy season (June–October) with large areas (13 m ha−1) remaining fallow during the subsequent dry season (November–March) inspite of annual rainfall of the order 1000–2000 mm. In this study an attempt was made to improve productivity of rainfed rice during rainy season and to grow second crops in rice fallow during dry (winter) season with supplemental irrigation from harvested rainwater. Rice was grown as first crop with improved as well as traditional farmers’ management practices to compare the productivity between these two treatments. Study revealed that 87.1–95.6% higher yield of rice was obtained with improved management over farmers’ practices. Five crops viz., maize, groundnut, sunflower, wheat and potato were grown in rice fallow during dry (winter) season with two, three and four supplemental irrigations and improved management. Sufficient amount of excess rainwater (runoff) was available (381 mm at 75% probability level) to store and recycle for supplementary irrigation to second crops grown after rice. Study revealed that supplemental irrigation had significant effect (P < 0.001) on grain yield of dry season crops and with two irrigation mean yields of 1845, 785, 905, 1420, 8050 kg ha−1 were obtained with maize (grain), groundnut, sunflower, wheat and potato (tuber), respectively. With four irrigations 214, 89, 78, 81, 54% yield was enhanced over two irrigations in respective five crops. Water use efficiency (WUE) of 13.8, 3.35, 3.39, 5.85 and 28.7 kg ha−1 was obtained in maize, groundnut, sunflower, wheat, potato (tuber), respectively with four irrigations. The different plant growth parameters like maximum above ground biomass, leaf area index and root length were also recorded with different levels of supplemental irrigation. The study amply revealed that there was scope to improve productivity of rainfed rice during rainy season and to grow another profitable crops during winter/dry season in rice fallow with supplemental irrigation from harvested rainwater of rainy season.  相似文献   

2.
With decreasing water availability for agriculture and increasing demand for rice, water use in rice production systems has to be reduced and water productivity increased. Alternately submerged–nonsubmerged (ASNS) systems save water compared with continuous submergence (CS). However, the reported effect on yield varies widely and detailed characterizations of the hydrological conditions of ASNS experiments are often lacking so that generalizations are difficult to make. We compared the effects of ASNS and CS on crop performance and water use, at different levels of N input, in field experiments in China and the Philippines, while recording in detail the hydrological dynamics during the experiment. The experiments were conducted in irrigated lowlands and followed ASNS practices as recommended to farmers in China. The sites had silty clay loam soils, shallow groundwater tables and percolation rates of 1–4.5 mm per day.Grain yields were 4.1–5.0 t ha−1 with 0 kg N ha−1 and 6.8–9.2 t ha−1 with 180 kg N ha−1. Biomass and yield did not significantly differ between ASNS and CS, but water productivity was significantly higher under ASNS than under CS in two out of three experiments. There was no significant water×N interaction on yield, biomass, and water productivity. Combined rainfall plus irrigation water inputs were 600–960 mm under CS, and 6–14% lower under ASNS. Irrigation water input was 15–18% lower under ASNS than under CS, but only significantly so in one experiment. Under ASNS, the soils had no ponded water for 40–60% of the total time of crop growth. During the nonsubmerged periods, ponded water depths or shallow groundwater tables never went deeper than −35 cm and remained most of the time within the rooted depth of the soil. Soil water potentials did not drop below −10 kPa. We argue that our results are typical for poorly-drained irrigated lowlands in Asia, and that ASNS can reduce water use up to 15% without affecting yield when the shallow groundwater stays within about 0–30 cm. A hydrological characterization and mapping of Asia’s rice area is needed to assess the extent and magnitude of potential water savings.  相似文献   

3.
Due to the increasing demand for food and fiber by its ever-increasing population, the pressure on fresh water resources of Pakistan is increasing. Optimum utilization of surface and groundwater resources has become extremely important to fill the gap between water demand and supply. At Lahore, Pakistan 18 lysimeters, each 3.05 m × 3.05 m × 6.1 m deep were constructed to investigate the effect of shallow water tables on crop water requirements. The lysimeters were connected to bottles with Marriotte siphons to maintain the water tables at the desired levels and tensiometers were installed to measure soil water potential. The crops studied included wheat, sugarcane, maize, sorghum, berseem and sunflower. The results of these studies showed that the contribution of groundwater in meeting the crop water requirements varied with the water-table depth. With the water table at 0.5 m depth, wheat met its entire water requirement from the groundwater and sunflower absorbed more than 80% of its required water from groundwater. Maize and sorghum were found to be waterlogging sensitive crops whose yields were reduced with higher water table. However, maximum sugarcane yield was obtained with the water table at or below 2.0 m depth. Generally, the water-table depth of 1.5–2.0 m was found to be optimum for all the crops studied. In areas where the water table is shallow, the present system of irrigation supplies and water allowance needs adjustments to avoid over irrigation and in-efficient use of water.  相似文献   

4.
Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat–rice and three for wheat–cotton) in Sirsa district, India during the agricultural year 2001–02. The ecohydrological soil–water–atmosphere–plant (SWAP) model, including detailed crop simulations in combination with field observations, was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and biophysical variables such as dry matter or grain yields. The use of observed soil moisture and salinity profiles was found successful to determine indirectly the soil hydraulic parameters through inverse modelling.Considerable spatial variation in WP values was observed not only for different crops but also for the same crop. For instance, the WPET, expressed in terms of crop grain (or seed) yield per unit amount of evapotranspiration, varied from 1.22 to 1.56 kg m−3 for wheat among different farmer fields. The corresponding value for cotton varied from 0.09 to 0.31 kg m−3. This indicates a considerable variation and scope for improvements in water productivity. The average WPET (kg m−3) was 1.39 for wheat, 0.94 for rice and 0.23 for cotton, and corresponds to average values for the climatic and growing conditions in Northwest India. Including percolation in the analysis, i.e. crop grain (or seed) yield per unit amount of evapotranspiration plus percolation, resulted in average WPETQ (kg m−3) values of 1.04 for wheat, 0.84 for rice and 0.21 for cotton. Factors responsible for low WP include the relative high amount of evaporation into evapotranspiration especially for rice, and percolation from field irrigations. Improving agronomic practices such as aerobic rice cultivation and soil mulching will reduce this non-beneficial loss of water through evaporation, and subsequently will improve the WPET at field scale. For wheat, the simulated water and salt limited yields were 20–60% higher than measured yields, and suggest substantial nutrition, pest, disease and/or weed stresses. Improved crop management in terms of timely sowing, optimum nutrient supply, and better pest, disease and weed control for wheat will multiply its WPET by a factor of 1.5! Moreover, severe water stress was observed on cotton (relative transpiration < 0.65) during the kharif (summer) season, which resulted in 1.4–3.3 times lower water and salt limited yields compared with simulated potential yields. Benefits in terms of increased cotton yields and improved water productivity will be gained by ensuring irrigation supply at cotton fields, especially during the dry years.  相似文献   

5.
The great challenge of the agricultural sector is to produce more food from less water, which can be achieved by increasing Crop Water Productivity (CWP). Based on a review of 84 literature sources with results of experiments not older than 25 years, it was found that the ranges of CWP of wheat, rice, cotton and maize exceed in all cases those reported by FAO earlier. Globally measured average CWP values per unit water depletion are 1.09, 1.09, 0.65, 0.23 and 1.80 kg m−3 for wheat, rice, cottonseed, cottonlint and maize, respectively. The range of CWP is very large (wheat, 0.6–1.7 kg m−3; rice, 0.6–1.6 kg m−3; cottonseed, 0.41–0.95 kg m−3; cottonlint, 0.14–0.33 kg m−3 and maize, 1.1–2.7 kg m−3) and thus offers tremendous opportunities for maintaining or increasing agricultural production with 20–40% less water resources. The variability of CWP can be ascribed to: (i) climate; (ii) irrigation water management and (iii) soil (nutrient) management, among others. The vapour pressure deficit is inversely related to CWP. Vapour pressure deficit decreases with latitude, and thus favourable areas for water wise irrigated agriculture are located at the higher latitudes. The most outstanding conclusion is that CWP can be increased significantly if irrigation is reduced and crop water deficit is intendently induced.  相似文献   

6.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

7.
Agricultural runoff contributes to water quality problems in the Hawkesbury–Nepean River near Sydney, Australia. This paper presents a case study of sediment, nitrogen (N) and phosphorus (P) losses from a market garden in the Hawkesbury–Nepean catchment. Event-based runoff sampling and flow and rainfall monitoring were carried out at the boundary of an 8-ha commercial market garden near Richmond, NSW, over two years (1995–1997). A record of fertiliser use and soil management was compiled during the runoff monitoring period. Soil management practices were similar to other market gardens on duplex soils in the area. Farm practices were consistent with ‘traditional’ industry practices.Over the 2-year period, stormwater runoff losses from the farm were equivalent to 19 t ha−1 per year of suspended sediment, 11 kg of P ha−1 per year, and 127 kg of N ha−1 per year. Sixty percent of soil loss occurred in summer (December, January and February), reflecting both seasonal climatic changes and soil management practices. Soil erosion was the major mechanism for P mobilisation and transport; however, a significant increase in the event mean concentration (EMC) of soluble P was observed over the 2 years. During this period, we measured an increase in extractable soil P (Bray) in surface soil from 174 to 304 mg kg−1 and a concomitant decrease in P sorption. The highest concentrations of N in runoff occurred after applications of poultry manure and during an extensive fallow period (late spring through to the end of summer). The results show that, in the Sydney region, market gardening on duplex soils using traditional practices is environmentally unsustainable, and may provide economic incentive to bring about change.  相似文献   

8.
Study was undertaken to assess the water use, moisture extraction and water use efficiency (WUE) of irrigated wheat, when grown in association with boundary plantation of poplar, at different distances (0–3, 3–6, 6–9, 9–12, 12–15 and >15 m (control)) from poplar (Populus deltoides M.) tree line. Presence of 3-year old poplar plantation at the boundary of wheat field caused 7.5% higher water use than control (plots having no effect of tree line) up to 3 m distance from tree line which further intensified up to 12.7% and extended up to 6 m distance with 4-year old plantation. Similarly, maximum moisture extraction, both laterally and vertically, observed near the tree line. Contrary to this, WUE of wheat was reduced by 4.6% between 0 and 3 m distance from tree line with 3-year old plantation, decline intensified further to 18.6% with 4-year old plantation. However, wheat was benefited by boundary plantation of trees between 3 and 9 m distance from the base of the tree line which resulted in increased WUE of the wheat crop up to 9%.  相似文献   

9.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

10.
《Agricultural Systems》2007,92(1-3):115-139
Because of drought and nutrient stress, the yields of rainfed lowland rice in Central Java, Indonesia, are generally low and unstable. Variation in groundwater depth can contribute to experimental variability in results of yield-increasing interventions. To test this hypothesis, we used the crop growth simulation model ORYZA2000 to explore the impacts of groundwater depth on the effect of sowing date, tillage, fertiliser-N application and supplementary irrigation on the yield of lowland rice at Jakenan, Central Java, Indonesia. ORYZA2000 was first parameterized and evaluated using data from eight seasons of field experiments between 1995 and 2000. The model adequately simulated the soil water balance, crop growth and grain yield. With shallow to medium groundwater depth (less than 0.5 m deep), rainfed rice yields are close to potential yields with timely sowing in the wet season. With groundwater tables fluctuating mostly between 0.5 and 1.5 m, rainfed yields are 0.5–1 Mg ha−1 lower than potential yields with timely sowing. The decrease in yield with late sowing sets in earlier and proceeds faster with deeper groundwater depths. Deep tillage and supplementary irrigation increase yield more with deep groundwater tables than with shallow groundwater tables, but N fertilisation increases yield more with shallow than with deep groundwater tables. Groundwater depth should be taken into account in the selection of yield-increasing interventions.  相似文献   

11.
The effects of opening tidal barriers (floodgates) upon water table levels and lateral transport of solutes adjacent drains was investigated at two sites on a coastal floodplain. The sites had contrasting geomorphology, soil texture and sediment hydraulic properties. The site with lower hydraulic conductivity (0.3–0.9 m day−1) soils (Romiaka) also had a higher elevation and hydraulic gradients towards the drain. While floodgate opening at Romiaka enhanced the amplitude of pre-existing tidal interaction with adjacent shallow groundwater, altered hydraulic gradients and caused some salt seepage, lateral solute movement from the drain was highly attenuated (<10 m). The site with very high hydraulic conductivity soils (Shark Creek; >125 m day−1) had a lower elevation and seasonally fluctuating hydraulic gradients. The introduction of a tidal pressure signal into the drain by opening the floodgate at Shark Creek caused tidal forcing of groundwater over 300 m from the drain. Floodgate opening at this site also caused changes in groundwater hydraulic gradients, leading to incursion of saline drain water into shallow groundwater over 80 m from the drain. Lateral movement of solutes was relatively rapid, due to macropore flow in oxidised acid sulfate soil horizons, and caused substantial changes to shallow groundwater chemical composition. Conversely, when groundwater hydraulic gradients were towards the drain at this site there was substantial lateral outflow of acid groundwater into drains. This study highlights the importance of assessing the hydraulic properties of soils next to drains on coastal floodplains prior to opening floodgates, particularly in acid sulfate soil backswamps, in order to prevent unintended saline intrusion into shallow groundwater.  相似文献   

12.
Soil water and salinity are crucial factors influencing crop production in arid regions. An autumn irrigation system employing the application of a large volume of water (2200–2600 m3 ha−1) is being developed in the Hetao Irrigation District of China, since the 1980s with the goal to reduce salinity levels in the root zone and increase the water availability for the following spring crops. However, the autumn irrigation can cause significant quantities of NO3 to leach from the plant root zone into the groundwater. In this study, we investigated the changes in soil water content, NO3–N and salinity within a 150 cm deep soil profile in four different types of farmlands: spring wheat (FW), maize (FM), spring wheat–maize inter-planting (FW–M) and sunflower (FS). Our results showed that (1) salt losses mainly occurred in the upper 60 cm of the soil and in the upper 40 cm for NO3–N; (2) the highest losses of salt and NO3–N could be observed in FW, whereas the lowest losses were found in FW–M.NO3–N concentration, pH and electrical conductivity (EC) in the groundwater were also monitored before and after the autumn irrigation. We found that the autumn irrigation caused the groundwater concentration of NO3–N to increase from 1.73 to 21.6 mg L−1, thereby, exceeding the standards of the World Health Organization (WHO). Our results suggest that extensive development of inter-planting tillage might be a viable measure to reduce groundwater pollution, and that the application of optimized minimum amounts of water and nitrogen to meet realistic yield goals, as well as the timely application of N fertilizers and the use of slow release fertilizers can be viable measures to minimize nitrate leaching.  相似文献   

13.
Since the late 1990s, aerobic rice varieties have been released to farmers in the North China Plain to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. Little is known about their yield potential, water use, water productivity (WP), and flood tolerance. In 2001–2002, experiments with aerobic rice varieties HD502 and HD297 and lowland rice variety JD305 were conducted under aerobic and flooded conditions. Under aerobic conditions, five irrigation treatments were implemented. Under flooded conditions, JD305 yielded up to 8.8 t ha−1, HD502 up to 6.8 t ha−1, and HD297 up to 5.4 t ha−1. Under aerobic conditions, the aerobic varieties yielded higher than the lowland variety. HD502 produced 3–3.5 t ha−1 with 450–500 mm total water input and 5.3–5.7 t ha−1 with 650 mm water input and more. HD297 produced 3–3.5 t ha−1 with 450–500 mm total water input and 4.7–5.3 t ha−1 with 650 mm water input and more. The water productivity of aerobic rice under aerobic conditions was higher or on a par with that of the lowland variety under flooded conditions, reaching values of 0.6–0.8 g grain kg−1 water. The relatively high yields of the aerobic varieties under aerobic soil conditions were obtained under “harsh” conditions for growing rice. The soil contained more than 80% sand, was permeable, and held water above field capacity for a few hours after irrigation only. The groundwater table was deeper than 20 m, the soil moisture content in the rootzone was mostly between 50 and 80% of saturation, and soil moisture tension went up to 90 kPa. We conclude that the aerobic rice varieties HD502 and HD297 are suitable for water-scarce environments, and can stand being periodically flooded.  相似文献   

14.
Skimming wells are meant to extract top fresh water layer in the fresh-saline aquifer. Their development in the Indus basin occurred through private sector in a technological vacuum. As a result, these wells have some technical, environmental and social constraints, which hinder the sustainability of these wells. As an initial step to improve the well technology, the hydraulic and hydro-salinity responses of the fresh-saline aquifer under different pumping regimes need to be monitored. The present paper reports the hydraulic and hydro-salinity behavior of the Indus basin aquifer in Pakistan under field conditions at farmers’ wells. Two sites, having 6- and 16-strainer wells were monitored during July 2000–December 2001. The 6-strainer well was operated for 4 h with single-, 4- and 6-strainer arrangements and the spatial behaviors of specific drawdown were observed under these arrangements. The 16-strainer well was monitored continuously for the above period. The well discharge, pumped water quality and pumping duration was recorded of every pumping event under farmer’s practice to extract groundwater. The rainfall and temporal water table fluctuation was also recorded at this site. The impact of 24 years of well operation on groundwater quality was observed by comparing the hydro-salinity profiles of 1974 and 1998 under 3-strainer well. The results showed that the specific drawdown was higher for single-strainer and it decreased with the increase in number of strainers in skimming wells and hence reduced the chances of saline-upconing. Each strainer in multi-strainer well contributes equally in well discharge provided the horizontal distances among the strainers are equal. The pumped water quality in fresh-saline aquifer was a very sensitive function of fresh water recharge and pumping duration. It was observed that with the increase in daily operation from 2 to 12 h per day, the pumped quality deteriorated three-folds and there was also 30% reduction in well discharge due to high suction lift. It was observed that continuous operation of a 3-strainer well having discharge of 14 lps over the 24 years had raised the fresh-saline interface (iso-concentration line of 1.5 dS/m) to 9 m. Keeping in review the observations, it is recommended that the daily operation of 4–6 h keep the water quality within marginal limit (<1.5 dS/m) and the pumping operation is also cost-effective with only 15–20% reduction in well discharge for the study area.  相似文献   

15.
This paper reports work done to assess the status of groundwater extraction technologies and practices in the Indus basin of Pakistan and hence to improve these technologies for sustainable groundwater extraction. A socio-technical approach was used which involved a field survey using participatory rural appraisal (PRA), monitoring of existing farmers’ wells for hydraulic and hydrosalinity behavior of these wells, and simulating hydrosalinity behavior under skimming wells using appropriate groundwater and solute transport models. The data collected in PRA shows a variety of wells designs, which reflects the absence of design code for these wells. Consequently, farmers have to choose one of the design options provided by the local drillers.We monitored a farmer's operation of a multi-borehole skimming well to extract groundwater to supplement canal water. Most of the time the well was operated daily, and occasionally on alternate days. The number of operating hours varied from 2 to 12 h per pumping event. We also conducted pumping tests in two wells, one with a single-borehole, and another with six boreholes. The data obtained at these two wells were used to develop guidelines for well design and operation using a flow model, MODFLOW and a solute transport model, MT3D.The parameters considered in the model studies were as follows: perforated well depth with respect to depth of the freshwater layer in the aquifer (i.e. well penetration ratio), number of boreholes and spatial distance between them in a multi-borehole well system, well discharge rate and daily operational hours. The results indicate that a single borehole well operated at a discharge rate of ranging from 32 to 180 m3/h (9–50 l/s) can be operated successfully with a 30–60% well penetration ratio for an operating time of 4–8 h/day where the thickness of the freshwater layer ranges from 20 to 30 m. Multi-borehole wells consisting of four to eight boreholes at a spacing of 3 m can be installed where the thickness of the freshwater layer ranges from 10 to 20 m without compromising the quantity and quality of pumped water.  相似文献   

16.
Kuttanad, the low-lying tract in Kerala State of south-west India, is a place where drainage problems have caused the agricultural production to remain low. The problem is more severe in the acid sulphate soils of Kuttanad. Besides the problems inherent to acid sulphate soils, the area also experiences problems of flooding, lack of fresh water and intrusion of saline water from the Arabian Sea. A subsurface drainage system consisting of 10 cm diameter clay tiles, each of 60 cm length, was installed at a depth of 1 m with two different spacings of 15 and 30 m for evaluating its influence in improving soil quality and crop production. Many of the critical crop growth parameters in the subsurface drained area, particularly the grain yield and 100 grain weight, were significantly superior to that of the ill-drained areas. Drain spacings up to 30 m was found to significantly improve the productivity of the area. The overall increase in rice yield due to subsurface drainage was 1.36 t/ha. It was also found that subsurface drainage could remove the chemical heterogeneity of soil which is the root cause for patchy crop growth and uneven ripening of rice crop in the area. Acidity in the subsurface drained area was always lower throughout the cropping season. The salinity in the soil could be controlled considerably by subsurface drainage. The iron transformations were not serious enough to cause concern for rice cultivation when subsurface drainage was adopted. Accumulation of sulphates in insoluble form occurred during drainage due to the oxidation of pyrite. Subsurface drainage was also very efficient in leaching sodium, calcium and magnesium. Chloride content in soil decreased drastically during drainage.  相似文献   

17.
Irrigated agriculture may negatively affect groundwater quality and increase off-site salt and nitrate contamination. Management alternatives aimed at reducing these potential problems were analysed in the 15498 ha CR-V Irrigation District (Spain) by monitoring 49 wells and modelling the hydrological regime in a representative well of the Miralbueno Aquifer. Groundwaters presented low to moderate electrical conductivity (EC) (mean = 0.89 dS/m) and high [NO3] (mean = 94 mg/L). The groundwater depth (GWD) during the 2001 hydrological year responded to the annual cycles of precipitation and irrigation as well as to the secondary cycles derived from irrigation scheduling. GWD were consistently simulated by the groundwater BAS-A model. Model results indicate that an increase in irrigation efficiency and the pumping of groundwater for irrigation will decrease GWD and aquifer's discharge by 56–70%, depending on scenarios. These recommendations will save good-quality water in the reservoir, will be beneficially economical to farmers, and will minimize off-site salt and nitrogen contamination.  相似文献   

18.
In this study an analysis was made on spatial variation of climatic water balance, (water surplus, actual evapotranspiration), probabilistic monthly monsoon rainfall and mapping of cold periods in agro-ecological region (AER) 12.0 of India using GIS and models. Since, rice is the dominant crop of the region, crop water requirements of rice was also spatially analyzed in different agro-ecological subregions (AESRs) of the AER 12.0 using CROPWAT 4.0 model and GIS. Study found that as per climatic water balance, large to moderate water surplus (520–70 mm) was available in AESR 12.1. The rainfall surplus of 220–370 mm was computed in AESR 12.2 and 370–520 mm in AESR 12.3 mm. Since winter rainfall is meagre and erratic, this amount of rainfall may be harvested and utilized for providing supplemental irrigation to winter crops or during dry spell of rainy season crops. Study also reveals that at 80% probability level (highly assured) in first month of southwest monsoon (June) 98–156 mm rainfall occurs in AESR 12.1, 103–144 mm in AESR 12.2 and 93–132 mm in AESR 12.3. These amounts of rainfall are sufficient to prepare land and sowing of direct seeded crops like maize, groundnut, blackgram, greengram, pigeonpea, cowpea, etc. that may be done from 24th standard week onwards (11th–7th June) after onset of southwest monsoon in the region. Based on existence of favorable temperature, among different AESRs, cold requiring crops may be tried in the districts of AER 12.1, but before cultivation of these crops, economic feasibility should be properly assessed. In normal rainfall year 450–550 mm, 600–720 mm and 775–875 mm crop water requirement was computed using CROPWAT 4.0 model for autumn rice, winter rice and summer rice, respectively in different AESRs of AER 12.0.  相似文献   

19.
Groundwater contamination was studied in a rural setting of the Upper Pantanoso Stream Basin (UPSB) in the southeast of Buenos Aires Province, Argentina, where potential contaminant sources include inorganic fertilizer. Nitrate–N concentrations, greater than accepted level for safe drinking-water of 10 mg l−1 were present in 36% of sampled wells and 67% of samples had nitrate concentrations exceeding the background level of 5 mg l−1. Temporal fluctuation of nitrate concentrations in the groundwater was attributed to seasonal fluctuations in recharge and plant growth. Nitrate concentration was measured in deep soil profiles to determine the extent of leaching. Nitrate accumulation in the unsaturated zone of a soil cropped with potatoes was three times higher than the baseline N concentration found in the pasture. The greatest nitrate concentration in the soil profile occurred under irrigated corn where excessive nitrogen was applied. These results show that high fertilization rates and irrigation lead to increased hazards of groundwater pollution.  相似文献   

20.
Crop yield is primarily water-limited in areas of West Asia and North Africa with a Mediterranean climate. Ten years of supplemental irrigation (SI) experiments in northern Syria were conducted to evaluate water–yield relations for bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L.), and optimal irrigation scheduling was proposed for various rainfall conditions. The sensitive growth stages of wheat to water stress were from stem elongation to booting, followed by anthesis, and grain-filling. Water stress to which crop subjected depends on rainfall and its distribution during the growing season; the stress started from early March (stem-elongation stage) or even in seedling stage in a dry year, and from mid-April (anthesis) in an average or wet year. Crop yield linearly increased with increase in evapotranspiration (ET), with an increase of 160 kg for bread wheat and of 116 kg for durum wheat per 10 mm increase of ET above the threshold of 200 mm. Water-use efficiency (WUE) with a yield ≥3 t ha−1 was ca. 60% higher than that with yield <3 t ha−1; this emphasises the importance of that to achieve effective use of water, optimal water supply and relatively high yields need to be ensured. Quadratic crop production functions with the total applied water were developed and used to estimate the levels of irrigation water for maximizing yield, net profit and levels to which the crops could be under-irrigated without reducing income below that which would be earned for full SI under limited water resources. The analysis suggested that irrigation scenarios for maximizing crop yield and/or the net profit under limited land resource conditions should not be recommended. The SI scenarios for maximizing the profit under limited water resource conditions or for a targeted yield of 4–5 t ha−1 were recommended for sustainable utilization of water resources and higher WUE. The time of irrigation was also suggested on the basis of crop sensitivity index to water stress taking rainfall probability and available soil water into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号