首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While aspen (Populus tremuloides Michx.) cover provides protection from growing season radiative frosts, reduced light levels can limit growth of understory white spruce (Picea glauca (Moench) Voss). The creation of openings around individual spruce can provide more light, but the chance of radiative frost damage increases as gaps become larger. We examined the relationship between opening size and light and temperature levels in the center of circular gaps created in young aspen stands ranging from 1.8 to 8 m tall. Models for predicting transmittance as a function of sky view factor and transmittance under intact stands are presented. Results indicated a strong relationship between light levels and opening size after considering pre-treatment light levels. The relationship between opening size and temperature was weak with minimum temperatures being more affected by the height and density of the surrounding stand than opening size.  相似文献   

2.
The boreal mixedwood forest type of the Canadian interior boreal is largely comprised of two dominant tree species: white spruce and trembling aspen (Picea glauca and Populus tremuloides). This forest type is expansive, providing important ecosystem services and economic production, yet such mixtures are difficult to establish after harvests. While aspen resprouts and grows vigorously following disturbance, spruce growth is relatively slow and is often limited by intense competition from associated vegetation, including aspen. To improve management, it is important to understand how environmental and vegetative conditions vary in relation to the competitive-facilitative relationship of spruce-aspen mixtures. In this study white spruce was planted across large canopy openings to determine whether survival and height growth is influenced by position within gap and by differing levels of competing vegetation control of aspen and understory plants. In addition, we addressed the issue of herbivory, which can pose a significant threat to planted spruce seedlings. Within each of four sites, linear gaps were created and five gap positions were recognized spanning the southern and northern forest understories, and southern, center and northern positions within each opening. Three different levels of vegetation management were implemented: a brush saw treatment in which all vegetation was cut to ground level, a mixing treatment in which all vegetation and rootstock was ground up, and a control with no vegetation management. The three herbivory treatments excluded large ungulates, small herbivores (rabbits, hares) or had no herbivore exclusion. Growth and survival of white spruce seedlings were measured for four years (1997-2000). Understory survival was significantly lower than within the gap, with the sheltered southern edge position providing the best initial environmental conditions and or ameliorative cover for spruce establishment. However, after four years the shelter effect starts to be inhibitive relative to center and northern gap positions, suggesting the removal of the canopy is necessary before spruce productivity declines. The optimal vegetation management treatment also changed over the study period. The most intensive treatment (mixing) initially showed a negative influence on survival and growth, but by year four, survival converged to approximately 75% for all treatments, and the mixing treatment produced the best height growth. The growth advantage became most evident in the center gap positions, which initially lagged the brushsaw and control treatments. Lastly, some growth losses from herbivory must be expected in boreal mixedwoods, although not enough to merit control. Results have implications for the timing and intensity of silvicultural treatments for harvesting and planting.  相似文献   

3.
In the boreal forest of Alberta, fire and wind often open gaps in the canopy where late-successional species can establish and over time cause a shift in the species distribution from deciduous (e.g., trembling aspen) dominated to mixedwood, to shade-tolerant conifer (e.g., white spruce) dominated stands. This study attempted to understand the change of density-dependent competition in a boreal chronosequence and the role of tree competition in affecting stand structure and mortality. Four 1-ha stem-mapped plots were established to represent a chronosequence comprised of aspen dominated, mixedwood, and spruce dominated stands in Alberta. Second order spatial point-pattern analysis using Ripley's K(t) function showed that intraspecific competition is a prevailing force causing conspecific tree mortality and thus shaping the stand structure. The results of bivariate K(t) function analysis did not reveal sufficient evidence of interspecific competition. This suggested that competitive interaction among heterospecific trees was not strong enough to cause significant tree mortality, but the analysis of marked correlation function revealed that interspecific competition could have a negative impact on tree growth. This study highlights the importance of density-dependent competition in understanding stand dynamics of boreal forests over succession.  相似文献   

4.
Aspen and balsam poplar regeneration from root suckers were assessed in boreal mixedwood forests nine years after logging in a variable retention experiment (EMEND Project—Ecosystem Management Emulating Natural Disturbance) located north of Peace River, Alberta, Canada. Five levels of retention of mature trees (2%, 10%, 20%, 50% or 75% of the original basal area) were applied in stands dominated by aspen, white spruce or mixtures of the two species. Basal area of aspen (or that of aspen plus balsam poplar combined) prior to logging strongly influenced sucker density of aspen (or aspen + balsam poplar combined) and in some cases their growth. Nine years after harvest there was a decline in sucker density and volume ha−1 with increasing retention levels of aspen (or both poplars combined); sucker density declined by 50% when only 20% of the original basal area was left in the stand. Retaining mature spruce trees in the stand had little influence on the number of suckers but did affect their total volume ha−1. Thus, we suggest that by knowing stand aspen and balsam poplar density prior to logging and varying levels of retention of aspen and balsam poplar or conifers at harvest, the density of Populus regeneration can be predicted by managers, thereby allowing them to create a range of mixedwood conditions.  相似文献   

5.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39 year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

6.
Establishing white spruce (Picea glauca (Moench) Voss) by planting it under established aspen (Populus tremuloides Michx.), stands has substantial potential as a technique for regenerating boreal mixedwood stands. The presence of an aspen overstory serves to ameliorate frost and winter injury problems and suppresses understory vegetation that may compete with white spruce. In this study we examine the growth of white spruce during the first 10 years after being planted underneath a 39-year-old stand of trembling aspen following thinning and fertilization. Results indicate successful establishment and reasonable growth rates of white spruce planted under thinned and unthinned aspen stands, even with aspen basal area of 51 m2 ha−1. Thinning of overstory aspen to 1000 or 2000 stems ha−1 did not increase light reaching seedlings, but did result in improvements in light above the shrub layer and in diameter and height growth of the underplanted seedlings. However, these increases in growth of underplanted spruce may not justify the expense of thinnings. Fertilization of these stands prior to planting had no effect on spruce growth. Growth of spruce underplanted at this site near Fort Nelson was similar to that at two other stands near Dawson Creek, B.C.  相似文献   

7.
Using tree data from permanent sample plots and climate data from the ClimateWNA model, mixed-effects height to live crown (HTC) models were developed for three boreal tree species in Alberta, Canada: trembling aspen (Populus tremuloides Michx.), lodgepole pine (Pinus contorta var. latifolia Engelm.) and white spruce (Picea glauca (Moench) Voss). Three model forms, the Wykoff model, a logistic model and an exponential model, were evaluated for each species. Tree height was the most significant predictor of HTC and was used in all models. In addition, we investigated the effects of competition and climatic variables on HTC modelling. Height–diameter ratio and either total stand basal area or basal area of coniferous trees were used as competition measures in the models. Different climate variables were evaluated, and spring degree-days below 0 °C, mean annual precipitation and summer heat–moisture index were incorporated into the aspen, lodgepole pine and white spruce models, respectively. Site index was only significant in lodgepole pine models. Residual variances were modelled as functions of tree height to account for heteroscedasticity still present in the mixed-effects models after the inclusion of random parameters. Based on model fitting and validation results as well as biological realism, the mixed-effects Wykoff models were the best for aspen and white spruce, and the mixed-effects logistic model was the best for lodgepole pine.  相似文献   

8.
The effects of competition from red raspberry (Rubus idaeus L.) and northern hardwood tree species on white spruce (Picea glauca (Moench) Voss) seedlings were examined on a clearcut site of the boreal mixedwood forest of the Bas-Saint-Laurent region of Quebec, Canada. A controlled experiment involving a gradient of five vegetation densities on the basis of the leaf area index (LAI) was established in a completely randomized plot design with six replications. Each of the five levels of vegetation cover (including vegetation-free plots) were examined to evaluate how they affected environmental factors (quantity and quality of light reaching the spruce seedlings, and soil temperature), spruce growth (height, basal diameter, volume index, and above-ground biomass), spruce mortality, browsing damage, spruce foliar mineral nutrition, as well as the stand structural development, during the first 5 years after seedling planting.

Each spruce growth variable analyzed in this study, according to a RMANOVA procedure, followed a negative hyperbolic form of density dependence of competitive effects. Loss of growth in young white spruce plantations in competition with northern hardwoods is likely to occur with the first few competitors. In cases where higher levels of competing vegetation were maintained over time, loss of spruce growth was extremely severe, to an extent where the exponential growth character of the young trees has been lost. At the end of the fifth year, spruce growing with no interference were larger in mean total above-ground biomass by a factor of 9.7 than those growing with the highest level of vegetation cover. Spruce did not develop a strategy of shade avoidance by increasing tree height, on the contrary. Spruce mortality differed among treatments only in the fifth year, indicating that early evaluation of spruce survival is not a strong indicator of competitive effects, when compared to diameter growth. Spruce foliar N and Ca contents were significantly reduced by the first level of competing vegetation cover, while K increased with the density of the vegetation cover, and P and Mg were not affected. Nitrogen nutrition of young white spruce planted on recently disturbed sites is discussed in relation to the potential root discrimination of this species against soil nitrate, a reaction observed by Kronzucker et al. [Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature London 385, 59–61]. The effects of hardwood competition indicate a prevalence of competition for light over a competition for nutrients, as revealed by the substantial increase in the h/d ratio of white spruce. Two indicators, h/d ratio and the quantity of light received at the tree seedling level, are suggested as a basis for the management of hardwood competition in a white spruce plantation.

Analysis of the stand structural development indicates that spruce height distribution was affected only by moderate or dense cover of vegetation, while diameter distribution, when compared to competing vegetation-free plots, was affected by the lowest level of vegetation cover. This study shows that competition influenced the stand structural development in the same way as genetic and micro-site factors by aggravating the amplitude of size inequality. The impact of hardwood competition is discussed in view of reaching an equilibrium between optimal spruce plantation growth and benefits from further silvicultural treatments, and maintaining hardwood species known to improve long term site quality, within a white spruce plantation.  相似文献   


9.
Individual tree-height increment models were developed for white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.) growing in the boreal mixed-species in Alberta. The models were formulated based on a selected base function (the Box–Lucas function), and the method of parameter prediction. Height increment was modeled as a nonlinear function of tree height, tree diameter, diameter increment, stand density, relative competitiveness of the tree in the stand, site productivity, and species composition. Since the data from permanent sample plots used in this study were time-dependent and cross-sectional, diagnostic techniques were applied to identify the models' error structure. Appropriate fits based on the identified error structure were accomplished using the nonlinear least squares procedures with a first-order autoregressive process. The models were also validated on independent testing data sets representing the population on which the models are to be used. Results showed that the average prediction biases were not significantly different from zero at α = 0.05, suggesting that the fitted models appropriately described the data and performed well when predictions were made. Biological implications of the variables that affect height increment in mixed-species stands were discussed.  相似文献   

10.
Aspen (Populus tremuloides Michx.) and white spruce (Picea glauca (Moench.) Voss) were planted 0.5 m apart in intimate mixtures in 5 × 4 m plots, with two moisture regimes—irrigation versus control—and five species compositions—pure aspen (Aw100), mixed aspen and spruce (Aw83Sw17, Aw50Sw50, Aw17Sw83), and pure spruce (Sw100), replicated six times. Fifth-year assessments indicated that irrigation increased individual tree growth (height, RCD, crown width), plot leaf area index (LAI), and wood biomass. Increased aspen composition reduced the availability of soil moisture and consequently the growth of individual trees. With increased aspen composition more growth was allocated to stem in aspen and to foliage in white spruce. Comparatively, aspen responded more to irrigation and thus their growth is more dependent on precipitation than that of spruce. Among the three growth variables assessed, height responded more to irrigation in both species. Equal mixtures and aspen-dominated mixtures in control plots had higher productivity in terms of total wood biomass in both absolute and relative terms. The implications of these findings are discussed in relation to managing aspen and white spruce mixedwood forests under increasing drought expected as a result of climate change.  相似文献   

11.
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.  相似文献   

12.
We examined radial and height growth-climate relationships of juvenile white spruce in three contrasting microenvironments within a prairie-forest ecotone of western Canada. The three microenvironments were (1) the understory of mature trembling aspen (Populus tremuloides Michx.) groves, (2) the understory of mature white spruce (Picea glauca (Moench) Voss) tree islands, and (3) the open prairie outside the influence of mature trees. Interannual patterns in radial and height growth from each of the three environments were related to the regional climate (temperature and precipitation). The growth-climate relationships identified indicated that growth of juvenile white spruce was conditioned primarily by direct moisture stress during the wettest month of the year, namely June precipitation in the current growing season (t). The growth of juvenile white spruce also responded secondarily to moisture stress indirectly induced by high temperatures in June (t). The results support the general understanding that the southern limit of conifer species in western Canada is controlled mainly by moisture stress either directly by low precipitation or indirectly due to temperature-induced drought stress.  相似文献   

13.
Height–diameter relationships based on stand characteristics (trees/ha, basal area, and dominant stand height) were investigated for balsam fir, balsam poplar, black spruce, jack pine, red pine, trembling aspen, white birch, and white spruce using data from permanent growth study plots in northern Ontario, Canada. Approximately half the data were used to estimate model parameters with the rest used for model evaluation. Multiple Chapman–Richards functions with parameters expressed in terms of various stand characteristics were fit to determine the best models for predicting height.  相似文献   

14.
Trembling aspen (Populus tremuloides Michx.) density and growth were assessed 9–12 years after stand establishment to determine whether mechanical site preparation (MSP) affects crop tree quality. Study sites were either treated with disc trenching or ripper ploughing and planted with white spruce (Picea glauca (Moench) Voss) seedlings immediately after harvest (treated) or were undisturbed since harvest (control). Stands were surveyed during the summer of 2002 with standard regeneration survey plots. Results show that aspen stem density and height were lower in MSP-treated areas relative to untreated areas. Diameter growth rates were unaffected by treatment, however the percentage of stem discolouration was higher in untreated control stands compared to site prepared areas. The results of this study indicate that there are no long-term benefits to carry out MSP for aspen promotion. However, as MSP does not appear to seriously harm the aspen crop, we suggest that this treatment can still be used on sites where aspen densities may be low without treatment (e.g., sites with extremely low soil temperatures, poor soil aeration, or vigorous competitive vegetation) or where a mixture of aspen and planted spruce are desired.  相似文献   

15.
Remnant tree stands left intact following a disturbance constitute the sole seed banks available for regeneration of coniferous species that neither bear serotinous cones nor reproduce vegetatively. The success of regeneration of tree species on these disturbed sites is, therefore, dependent on the distance from potential seed sources. The regeneration of balsam fir (Abies balsamea (L.) Mill.), white spruce (Picea glauca (Moench) Voss) and white cedar (Thuja occidentalis L.) was studied at two sites in Québec’s southwestern boreal forest in order to quantify the influence of remnant stands on spatial distribution of regeneration. The first site is located in an area that burned in 1944 while the second site is located in an area that was clear-cut in the mid-1980s. Canonical correspondence analyses were used to determine the respective contributions of environmental data and spatial variables to the pattern of spatial distribution of regeneration. The results reveal that distance from a remnant stand is the most important variable in explaining spatial distribution of regeneration when compared to environmental variables such as soil type, drainage, slope and altitude. The plots of regeneration density against distance from a remnant stand for both the burned site and logged site show that regeneration density decreases abruptly with distance from a remnant stand. Furthermore, spatial autocorrelation analyses (Moran’s I) indicate that even small remnant zones can significantly influence the pattern of spatial distribution of regeneration for the three species studied. The results presented here suggest that where preestablished regeneration is not abundant enough, alternative silvicultural systems such as strip clear-cutting or seed-tree systems could be used instead of cuts with protection of regeneration and soils (CPRS).  相似文献   

16.
The effects of partial cutting on species composition, new and residual-tree cohorts, tree size distribution, and tree growth was evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago, when 16–96% of the former stand basal area was removed.Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effects on tree species composition. The establishment of new-tree cohorts was positively related to the proportion of basal-area cut. The current stand basal area, tree species composition, and stand growth were significantly related to trees left after harvest (p<0.001). Trees that were 20–80 cm dbh at the time of cutting had the greatest tree-diameter and basal-area growth and contributed the most to stand growth. Diameter growth of Sitka spruce and western hemlock was similar, and the proportion of stand basal-area growth between species was consistent for different cutting intensities.Concerns about changing tree species composition, lack of spruce regeneration, and greatly reduced stand growth and vigor with partial cuts were largely unsubstantiated. Silvicultural systems based on partial cutting can provide rapidly growing trees for timber production while maintaining complex stand structures with mixtures of spruce and hemlock trees similar to old-growth stands.  相似文献   

17.
A site index model based on the Weibull cumulative distribution function was fitted to three stem analysis data sets of black spruce (Picea mariana (Mill) BSP), white spruce (Picea glauca (Moench) Voss) and aspen (Populus tremuloides Michx.). The resulting equations were compared with those based on the modified Richards' (1959) biological growth function (Ek 1971; Payandeh 1977, 1978). The Weibull-type model performed as well as or better than the biological growth function for white spruce and aspen, respectively, but it performed less accurately in the case of black spruce. The Weibull-type model appears to behave better, i.e., it produces more realistic height growth patterns, than the Richards function upon extrapolation particularly at young ages.  相似文献   

18.
Jack pine and trembling aspen are boreal tree species that are found growing either in naturally regenerated mono-specific stands, or in mixed-wood stands. We conducted a field survey and a manipulative field study to test the productivity-diversity hypothesis, which predicts that mixed-wood stands are more likely to occur on fertile soils, or following fertilization. We surveyed 44 mixed-wood stands and found 43 of these occurring on fertile clay deposits, and only one occurring on a nutrient poor till deposit. By contrast, the area surveyed comprised 45% clay and 55% till deposits. In a second study, we conducted a five year fertilization and brushing trial in a recently burned area dominated by jack pine saplings with patches of regenerating trembling aspen. Fertilization without brushing improved the growth and recruitment of aspen stems, but had no effect on jack pine growth and recruitment. Fertilization + brushing increased the growth of jack pine. Brushing the aspen, with or without fertilization, resulted in higher recruitment of jack pine. We conclude that soil fertility controls the mixing of jack pine with trembling aspen, that fertilization increases the likelihood of encroachment of aspen into areas formerly dominated by jack pine, and that brushing along with fertilization is necessary to promote jack pine growth.  相似文献   

19.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

20.
Seventy 1–28-year-old clearcuts were sampled to characterize post-harvest vegetation development and to determine the effect of mechanical site treatment and Picea glauca (Moench) Voss (white spruce) crop-seedling planting on regenerating boreal forest stands in the John D’Or—Wood Buffalo National Park area of northern Alberta in western Canada (58°35′N, 114°37′W). Natural Populus tremuloides/Rosa–Viburnum stands of wildfire origin (n = 25), widespread occurrence, and 52–91-year-old were sampled as a benchmark for comparison. Clearcut Populus-Picea and Picea stands reverted to early successional Populus tremuloides Michx. (trembling aspen)—dominated vegetation, with maximum sucker densities (mean 18 716, S.D. 13 239) within 4 years after stand initiation. Stem exclusion occurred most intensively 5–20 years after initiation, but was expected to continue until stands were >40–50-year-old. In untreated clearcuts, tree and understory shrub cover peaked near natural stand levels 18–20 years after harvesting, and graminoid cover remained constant (∼3%) but elevated compared to natural levels (<1%); whereas forb cover decreased linearly to natural stand levels by Year 28. The early composition of clearcuts was primarily composed of species that were common to the natural stands and also vegetatively reproduced. Mechanical site treatment and crop-seedling planting delayed attainment of maximum tree cover by 7 years, with total cover similar to natural stands. Site treatment reduced total shrub cover and prolonged the occurrence of elevated forb and graminoid cover values, probably in response to disruption of the pre-treatment ground vegetation. Calamagrostis canadensis L., a common crop-seedling competitor, was typically of minor importance on the sampled clearcuts compared to levels associated with more southerly boreal clearcuts. Detrended correspondence analysis ordinations based on species cover suggested untreated and treated clearcuts >13–16-year-old approximated the composition of natural stands. The data also suggested that silvicultural planting of P. glauca will accelerate stand development toward late-successional conifer-dominated vegetation relative to unplanted and natural stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号