首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of soil compaction and cultivation on soil mineral N dynamics were investigated through an 18-month, in situ N mineralisation experiment during the inter-rotation and early establishment period of a second rotation (2R) hoop pine (Araucaria cunninghamii Aiton ex A. Cunn) plantation in southeast Queensland, Australia. Treatments were 0, 1 and 16 passes of a fully laden forwarder (gross weight, 40.2 Mg) and cultivation by disc plough (zero cultivation and cultivation). Nitrate N was the dominant form of mineral N throughout the 18-month sampling period in both non-cultivated and cultivated soils, varying between 10 and 40 kg ha−1 whilst ammonium N remained <10 kg ha−1. Compaction had no significant effect on N mineralisation or nitrification. However, the remediation of the effects of compaction on soil through the use of the disc plough had significant impacts on N mineralisation, nitrification and N leaching. On a seasonal basis, the mean net N mineralisation increased from around 30 to 53 kg ha−1, nitrification from 28 to 43 kg ha−1 and nitrate N leaching from around 10 to 73 kg ha−1 following cultivation.  相似文献   

2.
This paper examines carbon (C) pools, fluxes, and net ecosystem balance for a high-elevation red spruce–Fraser fir forest [Picea rubens Sarg./Abies fraseri (Pursh.) Poir.] in the Great Smoky Mountains National Park (GSMNP), based on measurements in fifty-four 20 m × 20 m permanent plots located between 1525 and 1970 m elevation. Forest floor and mineral soil C was determined from destructive sampling of the O horizon and incremental soil cores (to a depth of 50 cm) in each plot. Overstory C pools and net C sequestration in live trees was estimated from periodic inventories between 1993 and 2003. The CO2 release from standing and downed wood was based on biomass and C concentration estimates and published decomposition constants by decay class and species. Soil respiration was measured in situ between 2002 and 2004 in a subset of eight plots along an elevation gradient. Litterfall was collected from a total of 16 plots over a 2–5-year period.The forest contained on average 403 Mg C ha−1, almost half of which stored belowground. Live trees, predominantly spruce, represented a large but highly variable C pool (mean: 126 Mg C ha−1, CV = 39%); while dead wood (61 Mg C ha−1), mostly fir, accounted for as much as 15% of total ecosystem C. The 10-year mean C sequestration in living trees was 2700 kg C ha−1 year−1, but increased from 2180 kg C ha−1 year−1 in 1993–1998 to 3110 kg C ha−1 year−1 in 1998–2003, especially at higher elevations. Dead wood also increased during that period, releasing on average 1600 kg C ha−1 year−1. Estimated net soil C efflux ranged between 1000 and 1450 kg C ha−1 year−1, depending on the calculation of total belowground C allocation. Based on current flux estimates, this old-growth system was close to C neutral.  相似文献   

3.
Forest degradation and savannization are critical environmental issues associated with forest fires in the Gran Sabana, southern Venezuela. Yet little is known about the ecological consequences resulting from the conversion of forest to savanna in this region. In this study we quantified the change in C and nutrients in aboveground biomass along a fire induced gradient consisting of unburned tall primary forest (TF), slightly fire-affected medium forest (MF), strongly fire-affected low forest (LF) and savanna (S). Total aboveground biomass (TAGB) decreased from 411 Mg ha−1 in TF to 313 Mg ha−1 in MF, 13 Mg ha−1 in LF and 5 Mg ha−1 in S. The pools of C and nutrients in TAGB decreased 13–25% from TF to MF, 88–97% from TF to LF and 97–98% from TF to S. In TF and MF, about 40% of C and over 80% of base cations (Ca, K and Mg) was stored in TAGB, whereas the bulk of N and P were stored in the soil (90% of N and 72% of P). This distribution of elements was different in LF and S, where about 50% of base cations were stored in TAGB, and more than 94% of C, 98% of N and 87% of P were stored in the mineral soil. The large amount of elements stored in the biomass of the tall unburned forest demonstrates the high sensitivity of this ecosystem to fire. The change from tall forest to low forest and savanna implies large losses of C and nutrients stored in aboveground biomass and soils (namely 390–399 Mg C ha−1, 11–13 Mg N ha−1, 70–72 kg P ha−1, 783–818 kg K ha−1, 736–889 kg Ca ha−1, and 200–225 kg Mg ha−1). Such drain of C and nutrients in soils extremely low in silicates, which can replenish the lost nutrients by weathering reduces the recuperation chance of these ecosystems and therefore their future capacity to sequester C and accumulate nutrients.  相似文献   

4.
In 1984, a liming experiment with a surface application of 4 t ha−1 of dolomitic limestone was started at the acidic N-saturated Norway spruce forest “Höglwald” in southern Germany and monitored until 2004. The decay of surface humus due to the accelerated mineralisation accounted for 18.5 ± 2.7 t ha−1 C or 50% of the initial pool and 721.6 ± 115.0 kg ha−1 N or 46% for N. Due to some translocation of organic material to the mineral soil the values to 40 cm depth are slightly lower (13.5 ± 4.4 t ha−1 C or 15% of the initial pool and 631.6 ± 192.8 kg ha−1 N or 13% for N). In the control plot NO3 concentrations at 40 cm depth were above the European level of drinking water (0.8 mmolc l−1 or 50 mg NO3 l−1) for nearly the whole investigation period. Liming increased NO3 concentrations in seepage water for approximately 15 years, and accelerated leaching losses by 396.2 NO3–N kg ha−1 from 1984 to 2003. The increase in pH of the soil matrix was more or less restricted to the humus layer and the upper 5 cm of the mineral soil during the whole time span, while the base cations Ca and Mg reached deeper horizons with seepage water. From 1984 to 2003, an amount that nearly equalled the applied Mg, was leached out of the main rooting zone, while most of the applied Ca was retained. The time series of the elemental concentrations in needles showed minor changes. Ca concentrations in needles increased with liming, while Mg remained nearly unchanged, and P decreased in older needles.  相似文献   

5.
Mechanised thinning operations can be carried out in the forest where skid roads are provided on which harvesters and forwarders can move. In the transition to continuous cover forestry (CCF) it is better to keep a thinner network of skid roads in the forest. Instead of tracks for harvesters and forwarders, these areas can be used for younger generations of trees. Moreover, fewer skid roads in the forest environment make the stand more natural. Fewer skid roads were introduced in this research as an alternative thinning operation with midfield1 (MF) to the most popular mechanised thinning operation with skid roads2 (SR). The aim of this paper is to analyse the productivity and economic aspects of thinning operations based on harvesters and forwarders, where there are different distances between skid roads. In both of the operations, harvesters and forwarders were used, but in the MF operation a chainsaw was additionally used to cut trees beyond the reach of the harvester boom. The distances between skid roads in the MF operation were 35–38 m, while in the other they were 18–20 m. The research was carried out in premature pine stands in a flat terrain in Poland. Bigger productivity and lower costs were found in the MF thinning operations. In the younger 44-year-old stand, the average harvester (Timberjack 770) productivity (in operational time) in the MF operation was 5.87 m3h−1 and in the SR operation 4.52 m3h−1; forwarding provided by the Vimek 606 6WD achieved a productivity of 5.03 and 4.52 m3h−1, respectively. In the older 72-year-old stand, the Timberjack 1270B productivity was 11.53 m3h−1 in MF and 8.70 m3h−1 in SR; the Timberjack 1010B forwarder achieved 11.22 m3h−1 (MF) and 8.84 m3h−1(SR).The costs of harvesting and forwarding 1 m3 of wood were lower in the MF operations. In the younger stand, harvesting costs were 5.78 €/m3 (MF) and 6.72 €/m3 (SR) while forwarding costs were 1.94 and 2.18 €/m3 respectively. In the older stand, harvesting costs were 5.58 €/m3 (MF) and 6.78 €/m3 (SR); the forwarding costs were 2.65 €/m3 (MF) and 3.41 €/m3 (SR).  相似文献   

6.
Phosphorus deficiency is widespread in the subhumid highlands of eastern Africa but there are few data on the effect of P deficiency on the growth of agroforestry tree species. We studied the effect of P application on growth, nutrient uptake and dry matter partitioning in young trees of Calliandra calothyrsus, Cedrela serrulata, Eucalyptus grandis, Grevillea robusta, Markhamia lutea, Senna spectabilis, and Sesbania sesban on a P-deficient soil (Kandiudalfic Eutrudox, bicarbonate-EDTA extractable P = 1 mg kg−1) in western Kenya. The trees were grown at two P levels (control and 500 kg added P ha−1) at 1 m2 spacing in a randomized complete block design with three replications. Leaf K concentrations were in the low range for all species (5–9 mg g−1) and K deficiency may have limited responses to P. Averaged over species, P addition increased aboveground shoot dry matter by a factor of 2.6 at 62 and 124 days, but the response decreased to 1.3 at 325 days. The increases at 62 days were large in sesbania (5.4) and eucalyptus (3.2) but small in calliandra (1.4) and markhamia (1.1). Relative response to P was more strongly correlated with shoot growth rate per unit root length among species than with shoot growth rate alone. Calliandra, which had high early growth rate but low response to added P, had an exceptionally high root length (6.0 km m−2) compared with the other species (0.3–2.1 km m−2). P addition increased N and P content but decreased final shoot K content in sesbania and calliandra, and had little effect on K content in the other species. The high-yielding species (eucalyptus, sesbania and calliandra) accumulated more than 30 g N and 2 g P m−2 in shoots in 325 days of growth. The proportion of total shoot N in wood (branch + stem) was in a higher range (67–75%) in the shrubby species (sesbania, calliandra, senna) than in the upperstorey tree species (38–43%). Slow early shoot growth relative to total root length, and high specific root length (root length per unit root mass) are proposed as criteria for the selection of species and provenances that are well adapted to P deficient soils.  相似文献   

7.
We used a combination of data from USDA Forest Service inventories, intensive chronosequences, extensive sites, and satellite remote sensing, to estimate biomass and net primary production (NPP) for the forested region of western Oregon. The study area was divided into four ecoregions differing widely in climatic conditions and management regime. The forest age distributions (as derived from inventory data) differed by ecozone with fewer old stands in the Coast Range and the East Cascades, and a relatively uniform distribution of ages from 0 to 815 in the Cascade Mountains. Age distributions also differed by land ownership, with fewer old stands on non-federal lands than on national forest lands. Estimated biomass increased rapidly in early stand development and tended to stabilize after about 200 years. Peak biomass in the semi-arid East Cascades was about one-third that of the other ecoregions (median biomass at asymptote ∼9 and ∼25 kg C m−2, respectively). The timing and magnitude of maximum net primary production also varied by ecoregion, with the high productivity Coast Range forests reaching a maximum NPP before 30 years of age (median ∼1 kg C m−2 y−1), and the low productivity East Cascades reaching a maximum NPP between 80 and 100 years (median ∼0.3 kg C m−2 y−1). Productivity was generally lower in older stands with the exception of the East Cascades ecoregion where, contrary to the paradigm of age-related decline in forest growth, the oldest stands had the highest NPP. The East Cascades also differed from the other ecoregions in that the proportion of NPP allocated belowground decreased rather than increased with stand age. This study demonstrates the value of combining data from intensive and extensive measurement sites for improved estimates of carbon stocks and fluxes as well as improved parameterization of process models used in scaling carbon flux over broad regions.  相似文献   

8.
Nitrate in the soil water below the root zone is a pre-condition for nitrate leaching, and it indicates loss of nutrients from the forest ecosystem. Nitrate leaching may potentially cause eutrophication of surface water and contamination of ground water. In order to evaluate the extent of nitrate leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7×7 km grid including 111 points in forests. During winters of 1986–1993, soil samples were obtained from a depth of 0–25, 25–50, 50–75 and 75–100 cm. Nitrate concentrations in soil solutions were determined by means of a 1 M KCl extraction. The influence of forest size, forest-type, soil-type, tree species and sampling time on the nitrate concentrations was analysed in a statistical model. The analysis focused on data from depth 75–100 cm, as nitrate is considered potentially lost from the ecosystem at this depth. The range of nitrate concentrations was 0–141 mg NO3–N dm−3 and the estimated mean value was 1.51 mg NO3–N dm−3. The concentration was influenced by (1) forest size (concentrations in forests <10 ha were higher than concentrations in forests >50 ha), (2) forest-type (afforested arable land had higher concentrations than forest-type `other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution below the root zone was mostly rather low, indicating that, generally, N saturation has not yet occurred in Danish forest ecosystems. However, median concentrations exceeding drinking water standards (11.3 mg NO3–N dm−3) were found at 7% of the sites. Furthermore, 30% of the sites had median concentrations above 2 mg NO3–N dm−3, suggested as an elevated level for Danish forest ecosystems, equalling annual N losses of more than 2–6 kg ha−1 year−1.  相似文献   

9.
Nothofagus antarctica (Forster f.) Oersted is a deciduous tree species, which naturally grows on poorly drained or drier eastern sites in the Andes Mountain near Patagonian steppe. Above- and below-ground biomass and nutrients pools were measured in pure even-aged stands at different ages (5–220 years) and crown classes. Functions were fitted for total biomass and nutrients accumulation, and root/shoot ratio of individual trees against age. Total biomass accumulated for mature dominant trees was eight times greater than mature suppressed trees. Biomass root/shoot ratio decreased with age from 1.8 to a steady-state of 0.5. All nutrients concentration (except Ca) decreased with age and varied according to the degree of crown suppression classes. Nutrient concentrations varied between biomass pool components following the order leaves > bark > small branches > fine roots > medium roots > rooten wood > coarse roots > sapwood > heartwood. Total nutrient accumulation followed the order dominant > codominant > intermediate > suppressed trees and its accumulation rate varied over time, e.g. P accumulation rate of dominant trees increased from 0.17 g tree−1 year−1 during regeneration to 1.39 g tree−1 year−1 in mature trees. Nutrients uptake reached a peak during the period of maximum biomass production, and root/shoot ratio of nutrients decreased from its maximum value at 5 years of age (0.6, 4.0, 0.9, 1.5, 1.0 and 2.6 for N, P, K, Ca, S and Mg, respectively) to a steady-state asymptote beyond 50 years of age. Thus, accumulation of nutrients in roots was greater during the regeneration phase of stand development, and nutrient accumulation increased in above-ground over time. Also, nutrient use efficiency increased in mature trees (111–220 years) and decreased in suppressed crown classes. The equations developed for individual trees have been used to estimate stand biomass and nutrient accumulation from forest inventories data. Total stand biomass varied from 62.5 to 133.4 t ha−1 and total nutrients accumulation ranged from 3 kg Mg ha−1 to 1235 kg Ca ha−1. Proposed equations can be used for practical purposes such as to estimate pasture nutrients requirement in a silvopastoral system based on nutrients supply from leaf litter returns, or to determine amelioration practices like debarking stems before harvesting.  相似文献   

10.
The regeneration of mature Norway spruce with European beech using the shelterwood silvicultural system is a good example of continuous cover forestry. In contrast, the regeneration may also start with clear-cut plots, which often occur after calamities like wind-throw or bark beetle attack. During regeneration the forest ecosystem becomes a highly dynamic system. Nutrient losses from the soil may occur as the element turnover is affected by the reduced nutrient uptake of forest trees as well as the enhanced mineralisation and nitrification due to higher soil temperature and soil moisture. Continuous cover forestry may help to reduce these nutrient losses. In order to test this, we investigated water and element fluxes of two chronosequences. The first investigated regeneration in the shelterwood system, while the second concerned itself with regeneration on clear-cut plots. In a shelterwood-cut about 30% of the mature spruce trees are removed and young beech trees are planted. Some 10 years later a secondary felling is carried out and at age 20 of the beech regeneration the final harvest of the mature trees occurs. Thus, the studied time steps were (a) the first 5 years after the initial cut and planting, (b) 10-year-old beech regeneration after the second shelterwood cut and (c) 20-year-old beech regeneration after the final harvest.Our results indicate that nutrient losses with seepage water – especially nitrogen, calcium and magnesium – occur during the first years after the clear cut and, to a lesser extent, after secondary felling on the selective-cut plot. This may temporarily affect seepage water quality due to elevated nitrate concentrations, which reached values of more than 100 mg l−1. In the time span between planting and an age 20 of the beech regeneration, total losses of nitrogen from the main rooting zone reach 230 kg ha−1 after clear cut. Preliminary estimates of the total nitrogen loss in the shelterwood system range between 150 and 230 kg ha−1 indicating either significantly lower or equal losses of nutrients. In the second case, however, element output is distributed more equally over the 20-year-period than after clear felling where 85% of the nitrate leaching occurs during the first 3 years.  相似文献   

11.
A gradient of increasing N deposition was identified in a southwestern to northeastern transect through the New Jersey pine barrens. The effect of this change in N deposition rate on soil chemistry and ectomycorrhizal morphotype community of pitch pine was studied by sampling from the field under mature pine trees, by planting bait seedlings into the field and in a greenhouse study where seedlings were given differential rates of N applications (0, 35, 140 kg ha−1 equivalent). The field transect showed a significant but small increase in N deposition from 0.35 to 0.72 kg N ha−1 (during the ca. 6 months of the study) equating to 7.84 ± 0.50 kg ha−1 year−1 at the northernmost site, 5.31 ± 0.70 at the middle and 3.66 ± 0.61 kg ha−1 year−1 N at the southwestern most site. Along this transect the ectomycorrhizal morphotype abundance and richness declined significantly under pitch pine. The decline in richness was significantly correlated with the N deposition rate. Bait pitch pine seedlings planted into one of the field sites and fertilized with increasing levels of N showed a reduction in ectomycorrhizal morphotype richness with increased N addition. In a greenhouse study, pine seedling biomass was inversely related to N addition. Nitrogen content of plants increased with increasing N supply, but P content of plants decreased, suggesting that P is a limiting nutrient in this ecosystem. Extractable N from the upper soil horizons increased in cores to which tree seedlings had been added as N addition increased. This indicates an approach to a critical loading of N for these oligotrophic soils, where N supply exceeds seedling N demand. In treeless cores N supply appears to exceed microbial immobilization potential even when no exogenous N is applied. As N supply to greenhouse seedlings increased, ectomycorrhizal morphotype richness declined. By combining data from the field and greenhouse studies, specific ectomycorrhizal morphotype groups were identified by their response to added N. Cortinarius- and Lactarius-like morphotypes were restricted to low levels of N availability. Suilloid- and Ascomycete-like morphotypes were more abundant as soil N availability increases, whereas Russula-like types showed an inverse relationship to N availability. We discuss the results from these oligotrophic sandy soils in comparison with European data derived from richer soils, where mycorrhizal fungal community responses appear to occur only at much higher levels of exogenous N. We attribute these differences to the evolved adaptations of pitch pine and their symbionts to growth in highly oligotrophic environments.  相似文献   

12.
Plant nitrogen conservation which may affect, for instance, rates of litter decomposition, soil N mineralization and N availability is thought to vary along gradients of soil fertility. Since Austrocedrus chilensis is adapted to a wide moisture gradient, we hypothesed that different intensities of N conservation would be found depending on site characteristics. We studied four sites along a moisture gradient in the Andean–Patagonian Region of Argentina, representative of the three A. chilensis forest-types (marginal, compact and mixed forests), and measured the following indicators of N conservation: (i) carbon, nitrogen and C/N ratio in young, mature and senescent leaves, total soil litter and soil; (ii) lignin concentration and lignin/N ratio in senescent leaves and total litter, and (iii) potential soil N mineralization during a 16-week incubation. A. chilensis showed a strong capacity to conserve N: (i) low N concentration in both young and mature leaves (10 and 6.5 g kg−1, respectively); (ii) high N resorption proficiency (5.1 g N kg−1 in senescent leaves) and N use efficiency (200), and (iii) high values of C/N, lignin and lignin/N in senescent leaves (107, 250 g kg−1 and 50, respectively), and total litter (36, 420 g kg−1 and 33, respectively). Some indicators (resorption proficiency, C/N in senescent leaves and lignin/N in total litter) were independent of site characteristics, while others (N and C/N in green leaves and lignin in litter) showed significant differences, suggesting a higher capacity to conserve N in the intermediate sites of the gradient (compact forests). Contrary to expectations, the marginal forest (drier, less fertile soils) showed the lowest values of lignin in litter, the highest N concentrations in green leaves and the highest rates of potential N mineralization.  相似文献   

13.
The growing stock more than doubled from 1.6 to 3.4 million m3 between 1912 and 2005 in forests on an area of 387 km2 in southern Finland. The stock expansion continued for 93 years noting interim results, which were available for 1959, 1982, 1994 and 1999. Forested area in the region hardly changed. Carbon sequestration was mainly a result of a long-term recovery from forest degradation, a legacy of land use in the 18th and 19th centuries. Tree demography responded to management change especially of mature stands: Average tree size and stocking density of stands increased. On average the expanding biomass stock sequestered 18 tons C annually per km2 (18 g C per m2). In comparison, the emissions of fossil carbon in the region were estimated at 12 tons C per km2 (12 g C per m2) on average. However, fossil CO2 emissions exceeded biomass sequestration in recent decades. The powerful and persistent expansion of the carbon stock was an unintended co-benefit of forestry, which was motivated by the intention to improve timber yield. On the more negative side the change in management introduced clear-cuts, and a loss of diverse elements of the pre-industrial biota.  相似文献   

14.
Two field experiments, located in Central and Northern Sweden, were used to study the influence of standing volume on volume increment and ingrowth in uneven-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinnings. Each experiment had a 3 × 2 factorial block design with two replications. Treatments were thinning grade, removing about 45, 65, and 85% of pre-thinning basal area, and thinning type, removing the larger or the smaller trees, respectively. Each site also had two untreated control plots. Plot size was 0.25 ha. Volume increment was 0.5–6.8 m3 ha−1 year−1 for the plots, and significantly positively (p < 0.01) correlated with standing volume. Within treatment pairs, plots thinned from Above had consistently higher volume increment than plots thinned from Below. Ingrowth ranged from 3 to 33 stems ha−1 year−1, with an average of 14 and 21 stems ha−1 year−1 at the northern and southern site, respectively. At the southern site ingrowth was significantly negatively (p < 0.01) correlated with standing volume, but not at the northern site. Mean annual mortality after thinning was 2 and 7 stems ha−1 year−1at the northern and southern site, respectively.  相似文献   

15.
Biodiversity loss is a major problem in terms of loss of genetic and ecosystem services and more specifically via impacts on the livelihoods, food security and health of the poor. This study modeled forest management strategies that balance economic gains and biodiversity conservation benefits in planted tropical forests. A forest-level model was developed that maximized the net present value (NPV) from selling timber and carbon sequestration while maintaining a given level of biodiversity (as per the population density of birds). The model was applied to Eucalyptus urophylla planted forests in Yen Bai Province, Vietnam. It was found that the inclusion of biodiversity conservation in the model induces a longer optimal rotation age compared to the period that maximizes the joint value from timber and carbon sequestration (from 8 to 10.9 years). The average NPV when considering timber values plus carbon sequestration was 13 million Vietnamese Dong (VND) ha 1 (765 USD ha 1), and timber, carbon sequestration and biodiversity values were 11 million VND (676 USD) ha 1. Given this differential, governments in such tropical countries may need to consider additional incentives to forest owners if they are to encourage maximizing biodiversity and its associated benefits. The results also have some implications for implementing the climate control measure of “Reducing Emissions from Deforestation and Forest Degradation-plus (REDD +)” in developing countries, i.e., payment for carbon sequestration and biodiversity benefits in planted forests.  相似文献   

16.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

17.
During the period 1976–1991, a combined experiment of acidification, liming and nitrogen addition in a mature spruce stand was conducted at Farabol in south-east Sweden. The aim of this study was to investigate the effects of these treatments on the ground vegetation 0, 1, 5 and 15 years after experimental establishment. The treatment regimes were nitrogen (200 kg N ha−1, repeated three times at 4–5-year intervals, totally 600 kg N ha−1), sulphur powder (50 and 100 kg S ha−1 a−1, totally 600 and 1200 kg ha−1), sulphur plus nitrogen (600+600 kg ha−1) and limestone (500 kg ha−1 a−1, i.e. totally 6000 kg ha−1). The results showed that nitrogen addition and liming promoted the abundance of the grass Deschampsia flexuosa, while acidification had a negative effect on D. flexuosa and herbs in the field layer. There was a negative reaction giving immediate damage to the bryophytes in connection with additions of nitrogen, sulphur powder and lime. The magnitude of damage and the capacity to recover varied among species as well as among treatments. The recovery from immediate damage after liming was much faster than after the treatments with sulphur powder and/or nitrogen. A negative interaction between sulphur powder and nitrogen was found for herbs and mosses where the combined effects were stronger than the effects of a single treatment alone. Acidification also had a negative effect on the total number of species. The results of this study showed that acidification and nitrogen deposition could negatively influence forest vegetation by changing the nutrient availability in the soils. Liming led to an improved growth of the forest ground vegetation and the flora changed towards a more nitrophilic species composition.  相似文献   

18.
Carbon budgets are developed to understand ecosystem dynamics and are increasingly being used to develop global change policy. Traditionally, forest carbon budgets have focused on the biological carbon cycle; however, it is important to include the industrial forest carbon cycle as well. The overall objective of this study was to quantify the major carbon fluxes associated with the production of Wisconsin's industrial roundwood, by using life cycle inventory (LCI) methodology to produce an industrial forest carbon budget. To achieve this objective we (1) developed carbon LCIs for the harvest process for three major forest ownerships (state, national, and private non-industrial), (2) developed carbon LCIs for a dimensional lumber and two oriented strand board (OSB) mills and (3) completed a scaled version of 1 and 2 to include more Wisconsin forestlands and to incorporate the other major processes within the industrial forest carbon cycle (e.g. primary mill, secondary mill, product use and product disposal processes of the industrial forest carbon cycle). The carbon budgets for the harvesting process of the Chequamegon-Nicolet National Forest (CNNF), the Northern Highland American Legion State Forest (NHAL), and the non-industrial private forests that participated in the managed forest laws of Wisconsin (MFL-NIPF) were 0.10, 0.18 and 0.11 tonnes C ha−1 year−1), respectively. The dimensional lumber and OSB products were both net carbon sources, and released 0.05–0.09 tonnes C/tonnes C processed). More carbon is sequestered than released within the industrial forest carbon cycle of Wisconsin's national (6 g C m−2 year−1), state (12 g C m−2 year−1) and non-industrial private forests (7 g C m−2 year−1). Using published net ecosystem production data we estimate that the net forest carbon cycle budget (sum of the biological and industrial C cycle, [Gower, S.T., 2003. Patterns and mechanisms of the forest carbon cycle. Ann. Rev. Environ. Resour. 28, 169–204]) for the CNNF ranges between −897 and 348 g C m−2 year−1. Life cycle inventories of wood and paper products should be clear and explicitly state what processes are included, so that results can be used by policy makers and future researchers.  相似文献   

19.
A financial assessment of forest investments is comprehensive if the analysis includes reliable yield estimates, land expectation value (LEV) and risk calculation. All of these aspects were considered and applied to teak plantations in Colombia, an emergent economy where high forest productivity, low opportunity cost of land, and decreased financial/economic risk have substantially contributed to promote forest investments. The von Bertalanffy non-linear mixed effect model was used to estimate forest yields using data collected from 31 permanent sample plots, measured over a 17 year period. A stochastic version of LEV along with other financial criteria was calculated by using a computer algorithm and Monte Carlo simulation. Finally, probabilities obtained from stochastic financial calculations were used in logistic models to estimate probabilities of success for a forest plantation project, a measure of risk assessment, after changing land prices. Results suggest that the potential forest productivity (i.e., the biological asymptote) ranges from 93 to 372 m3 ha 1. The mean annual increment is 27.8 m3 ha 1 year 1, which is attained 6 years after the forest plantation is established. Profitability analyses for teak plantations in Colombia suggest a LEV of US$7000 ha 1. The risk analyses indicate negligible financial risk for forestlands whose prices are lower than US$2000 ha 1.  相似文献   

20.
Studies on basic density of woody species in Amazonian savannas are needed to convert data on woody volume to biomass. These ecosystems, which have large carbon stocks, emit greenhouse gases annually due to frequent burnings. Basic density (g cm−3: oven-dry weight/wet volume), measured from complete sample disks (bark, sapwood and heartwood), was calculated for the most abundant woody species in three types of open savannas (Sg: grassy-woody savanna; Sp: savanna parkland; Tp: steppe-like parkland) in Roraima, a state in the northern part of Brazil’s Amazon region. The species selected represent 90–95% of the woody biomass estimated in these ecosystem types. Seven additional species were lumped in an “others” group. In total, we sampled 107 trees: 40 in Sg, 37 in Sp and 30 in Tp. Bowdichia virgilioides (0.516 ± 0.021 (S.E.) g cm−3) was the species with the highest basic density, followed by the “others” group (0.485 ± 0.057 g cm−3), Curatella americana (0.413 ± 0.028 g cm−3), Byrsonima crassifolia + B. coccolobifolia (0.394 ± 0.019 g cm−3), Himatanthus articulatus (0.375 ± 0.020 g cm−3) and B. verbascifolia (0.332 ± 0.020 g cm−3). Basic density of the species with the greatest woody biomass in Roraima’s open savannas (C. americana and B. crassifolia + B. coccolobifolia) did not differ significantly at the 5% level (ANOVA) among the three ecosystem types studied. Wood basic density in these savannas (weighted mean = 0.404 ± 0.025 g cm−3) is lower than that in Amazonian forests (weighted mean = 0.680 g cm−3). These results reduce uncertainty in calculations of carbon stocks and of greenhouse gas emissions from clearing and burning tropical savanna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号