首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A significant portion of the irrigated acreage in the intermountain western U.S. is comprised of cool season grass pastures. Droughts, coupled with increasing demands for limited water supplies in the region, have decreased the water volumes available for irrigating these pastures and other crops. Consequently, relationship between crop yield and irrigation (water production functions) should be defined for various species and cultivars to help growers and water managers make appropriate selections based on water availability.During a 3-year study on the Colorado Plateau, a line-source irrigation system was used to evaluate the relationship between applied water and dry forage production of orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), meadow brome (Bromus riparius Rehmann), smooth brome (Bromus inermis Leyss.), two cultivars of intermediate wheatgrass (Elytrigia intermedium [Host] Nevski), crested wheatgrass (Agropyron cristatum L. Gaertn. X desertorum [Fisch. ex Link] J.A. Schultes) and perennial ryegrass (Lolium perenne L.). Irrigation treatments, including precipitation, ranged from 457 to 970 mm in 1996, 427 to 754 mm in 1997 and 490 to 998 mm in 1998. There was a positive linear relationship between yield and irrigation for all cultivars when averaged over all years but the relationships varied between cultivars and years. Orchardgrass, meadow brome and tall fescue produced more dry forage than the other grasses at the highest irrigation levels in all years. These grasses also produced the greatest rates of yield increase per unit of irrigation (average of 0.0129 Mg ha−1 mm−1) and exhibited greater yield stability from year to year than the other grasses at irrigation levels above 700 mm. The intermediate wheatgrasses produced more forage than the other grasses under limited irrigation (less than 600 mm) but the average production rate with irrigation (0.0066 Mg ha−1 mm−1) was only about half that of the aforementioned grasses. The average rate of forage produced per mm of irrigation was intermediate in the smooth brome (0.0096 Mg ha−1) and lowest in the crested wheatgrass and perennial ryegrass (0.0048 and 0.0034 Mg ha−1, respectively). These results suggest that orchardgrass and meadow brome be included in irrigated pastures receiving more than 700 mm of water annually while the intermediate wheatgrasses be selected for pastures receiving an annual water application of less than 700 mm.  相似文献   

2.
Wetlands in arid and semi-arid regions often experience water shortage problems due to interrupted water supply. Rapid population growth and economic development have caused deterioration or total destruction of many wetlands in such regions. Protection or restoration of these wetlands require a good understanding of the relationship between water supply and the soil wetness. This paper presents a model simulation study of such a relationship based on weather and soil data from Xi’an, China. The study area has an average annual precipitation of 600 mm and evaporation of 1200 mm. The simulation results showed that, to produce a certain wet condition, the required amount of water supply varied with recharging time due to different evapotranspiration rates. To maintain a consecutive water table depth within 30 cm (1) for 5% of the growing season, water requirements varied from 7 cm to 16 cm for different recharging months; (2) for 12.5% of the growing season, water requirement varied from 9 cm to 20 cm; and (3) for 25% of the growing season, water requirements varied from 13 cm to 27 cm. The highest water requirement occurred in summer when the air temperature is the highest of the year. Simulation results also showed that the timing of recharge not only has an important effect on the threshold water requirement, but also on the overall soil wetness of a year. Recharging at earlier time of the growing season produced longer wet periods, but the overall water table remained low during the rest of the growing season. Later inflow only influenced the water table for a small portion of the growing season, but it maintained a generally high water table in winter months and the early part of the next growing season.  相似文献   

3.
Performance of three-crop growth models for dynamic simulation of soil water balance in the sandyloam soils cropped to oilseed Brassica was evaluated. The model parameters were subjected to sensitivity analysis, modified and calibrated for local environment and verified with experimental field values. Simulated root zone (0–120 cm) moisture from Campbell–Diaz model was more sensitive to stepwise changes in input parameters as compared to the O'Leary and SWASIM models. While calibrating these models during post-rainy season of 1992–1993, simulated profile moisture from the Campbell–Diaz and SWASIM models, on an average, did not deviate by more than ± 5% from measurements except on one or two occasions whereas the O'Leary model gave slight overestimates up to seed filling stage and underestimates of the order of −6% in the post-seed filling stage. Campbell–Diaz model requiring least number of inputs yielded the lowest error estimates (6.01–11.06 mm) followed by the SWASIM (6.46–18.88 mm) and O'Leary (8.3–20.6 mm) models. The Campbell–Diaz and SWASIM models can also be successfully used with common coefficients and also to simulate layerwise soil moisture contents, respectively.  相似文献   

4.
A field study was conducted in northwestern Negev to determine the effect of the amount of water and its salinity level on the yield of Pima cotton (cv. S5). Irrigations were applied by means of a double line-source sprinkler system using two parallel lines, each supplied with water of a different salinity. The water salinity ranged from 2 to 7.5 dS m−1 and the seasonal water application ranged from 30.0 to 68.0 cm. With water amounts of up to 50.0 cm (42% of Class A evaporation), an increase in water salinity caused a reduction in the seed cotton yield and the salinity threshold increased with an increasing amount of water. The maximum yield of seed cotton (about 5000 kg ha−1) was obtained with a water application of 50 cm and a water salinity between 4 to 5 dS m−1. With seasonal water applications exceeding 50 cm, an increase in salinity increased the yield. This is attributed to a depression of excessive vegetative growth in the presence of large amounts of water.  相似文献   

5.
Pivot-irrigation was managed with tensiometers on a field cropped with sugarcane at Analaiva (west coast of Madagascar). The volumes of water delivered by the pivot were 20 mm or less (expressed in terms of equivalent rain), depending on the stage of the crop. These applications were made when suctions at certain depths attained fixed values: a single value of 500  hPa in the top layer of the soil in the installation and growth stages of the crop, double values (600 hPa at 50 cm, 400 hPa at 150 cm) at the ripening stage.To characterize water movement in the soil, lines of isoflux were calculated from the hydrodynamic properties of the soil, and plotted so that the flux of water determined by the Darcy–Buckingham law would be read on the profile of hydraulic head. Maps of two-dimensional water movement were drawn independently from the data collected by an array of 30 tensiometers crossing a cane row. Before the rainy season, the water consumed by the crop corresponds to the irrigation water. At the ripening stage, an upward flux from the deep layer of the soil (wetted during the previous months of rains) is obtained by the strict management of irrigation.  相似文献   

6.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

7.
With decreasing water availability for agriculture and increasing demand for rice, water use in rice production systems has to be reduced and water productivity increased. Alternately submerged–nonsubmerged (ASNS) systems save water compared with continuous submergence (CS). However, the reported effect on yield varies widely and detailed characterizations of the hydrological conditions of ASNS experiments are often lacking so that generalizations are difficult to make. We compared the effects of ASNS and CS on crop performance and water use, at different levels of N input, in field experiments in China and the Philippines, while recording in detail the hydrological dynamics during the experiment. The experiments were conducted in irrigated lowlands and followed ASNS practices as recommended to farmers in China. The sites had silty clay loam soils, shallow groundwater tables and percolation rates of 1–4.5 mm per day.Grain yields were 4.1–5.0 t ha−1 with 0 kg N ha−1 and 6.8–9.2 t ha−1 with 180 kg N ha−1. Biomass and yield did not significantly differ between ASNS and CS, but water productivity was significantly higher under ASNS than under CS in two out of three experiments. There was no significant water×N interaction on yield, biomass, and water productivity. Combined rainfall plus irrigation water inputs were 600–960 mm under CS, and 6–14% lower under ASNS. Irrigation water input was 15–18% lower under ASNS than under CS, but only significantly so in one experiment. Under ASNS, the soils had no ponded water for 40–60% of the total time of crop growth. During the nonsubmerged periods, ponded water depths or shallow groundwater tables never went deeper than −35 cm and remained most of the time within the rooted depth of the soil. Soil water potentials did not drop below −10 kPa. We argue that our results are typical for poorly-drained irrigated lowlands in Asia, and that ASNS can reduce water use up to 15% without affecting yield when the shallow groundwater stays within about 0–30 cm. A hydrological characterization and mapping of Asia’s rice area is needed to assess the extent and magnitude of potential water savings.  相似文献   

8.
Productive tree plantations on degraded land within Pakistan’s irrigation areas may help control salinity by extracting shallow groundwater, but their adoption has been limited by a lack of information on tree–water–salt interactions. Tree growth, water use, climate and soil conditions were monitored between 1994 and 1998 in young plantations of Eucalyptus, Acacia and Prosopis at two locations in Punjab province. Eucalyptus camaldulensis on an irrigated, non-saline site near Lahore showed best growth till the age of 5 years, and an annual water use of 1393 mm. Irrigated Eucalyptus microtheca at this site and unirrigated E. camaldulensis dependent on saline groundwater at Pacca Anna also transpired over 1000 mm of water per year. Basal area growth of Acacia ampliceps at the latter site was similar to E. camaldulensis, but its water use was less. Lowest annual water use of 235 mm was shown by an understocked stand of Prosopis juliflora. Canopy conductance decreased with increasing vapour pressure deficit to a species-dependent minimum value. Results of soil sampling, chloride balance modelling and intensive monitoring of soil solution salinity demonstrated accumulation of salt in the root zone of plantations using saline groundwater. The concentration of stored salt varied seasonally as a result of water table fluctuations and redistribution processes within the unsaturated zone. The apparent limitation of salt accumulation by these processes and the continuing satisfactory growth of the plantations justify cautious support of tree growing as a control measure for shallow water tables and salinisation in Pakistan.  相似文献   

9.
In rainfed rice ecosystem, conservation of rainwater to maximum extent can reduce the supplemental irrigation water requirement of the crop and drainage need of the catchment. The results of 3 years of experimental study on the above stated aspects in diked rice fields with various weir heights (6–30 cm at an interval of 4 cm) revealed that about 56.75% and 99.5% of the rainfall can be stored in 6 and 30 cm weir height plots, respectively. Sediment losses of 347.8 kg/ha and 3.3 kg/ha have been recorded in runoff water coming out of 6 cm and 30 cm weir height plots, respectively in a cropping season. Similarly, total Kjeldahl nitrogen (TKN) loss in runoff water from rice field ranged from 4.23 kg/ha (6 cm weir height plots) to 0.17 kg/ha (26 cm weir height plots) and available potassium loss ranged from 2.20 kg/ha (6 cm weir height plots) to 0.04 kg/ha (30 cm weir height plots). Conservation of rainwater in rice fields with various weir heights could not create any significant impact on grain yield differences, leaf area index and other biometric characters. Irrigation requirement of 18 cm and above weir height plots was found to be half of the requirement of 6 cm weir height plots. Keeping in view the aspects of conserving rainwater, sediment and nutrient and minimizing irrigation requirement, 22–26 cm of dike height is considered to be suitable for rice fields of Bhubaneswar region.  相似文献   

10.
Pecan orchards require more irrigation water to maximize yield than any other crop grown in the Southwest US. This paper reports daily evapotranspiration (Et) measurements for 2001 and 2002 in a 5.1 ha, mature pecan orchard on the Rio Grande floodplain, 7 km south of Las Cruces, NM, USA. The 21-year-old stand had an average tree height of 12.8 m, diameter at breast height of 30 cm, and tree spacing of 9.7 m × 9.7 m. Additional pecan orchards surrounded the study orchard. When the tensiometer reached a suction of 65 kPa at the 45 cm depth, the orchard was flood-irrigated. Sparling meters were installed on the pumps and read before and after each irrigation. The total irrigation amount was 1940 mm in 2001 and 1870 mm in 2002. A walk-up tower was placed in the orchard’s center to support flux sensors at 16 m height. The instrument package included a net radiation (Rn), discs for soil heat flux (G), and two sets of one-propeller eddy covariance (OPEC) sensors. OPEC systems measure sensible heat flux (H) with a sensitive, vertically oriented propeller anemometer and a fine-wire thermocouple. Latent heat flux (LE) was obtained as a residual in the surface energy balance LE = Rn − GH. The maximum daily evapotranspiration was 8 mm/day, and the yearly cumulative evapotranspiration averaged for 2 years was 1420 mm, resulting in a yearly average irrigation application efficiency of 79%. The crop coefficient (daily measured Et/reference Penman Et) ranged from 0.2 to 1.1. Increased evaporation due to irrigation was detected only for the April 9 irrigation in 2001. The seasonal water use was 4% lower in 2001 and 12% lower in 2002 than previously reported values.  相似文献   

11.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

12.
Greenhouse grown tomato was used to test partial root drying (PRD), a newly developing irrigation technique to save irrigation water, in Spring- and Fall-planted fresh-market tomato (Lycopersicon esculentum L., cv. Fantastic) cultivar. The PRD practice simply requires wetting of one half of the rooting zone and leaving the other half dry, thereby utilizing reduced amount of irrigation water applied. The wetted and dry sides are interchanged in the subsequent irrigations. Six irrigation treatments were tested during the two-year work in 2000 and 2001: (1) FULL, control treatment where the full amount of irrigation water, which was measured using Class-A pan evaporation data, was applied to the roots on all sides of the plant; (2) 1PRD30, 30% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged with every irrigation; (3) 1PRD50; (4) 2PRD50, 50% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged every and every other irrigation, respectively; (5) DI30 and (6) DI50, 30 and 50% deficit irrigations, respectively. The defined deficit levels were all in comparison to FULL irrigation. During the first year study in 2000, only three treatments (FULL, 1PRD30 and 2PRD50) were tested. Five treatments with exception of 2PRD50 were included in 2001. The FULL irrigation treatment, in Spring-planted tomato having a 153 day growth period, yielded 110.9 t ha−1. The resulting irrigation-water-use efficiency (IWUE) was 321.8 kg (ha mm)−1. The 1PRD50 treatment gave 86.6 t ha−1, which was not statistically different (P ≤ 0.05) from the FULL irrigation (the control) and had 56% higher IWUE. Although yield differences were not statistically significant in Fall-planted tomato, the highest fruit yield was again obtained under FULL irrigation treatment (205.2 t ha−1) over a growth period of 259 days after transplanting. The PRD treatments had 7–10% additional yield over the deficit irrigation receiving the same amount of water. The PRD treatments gave 10–27% higher marketable tomato yield (>60 g per fruit), compared with the DI treatments. Abscisic acid (ABA) concentrations measured in fresh leaf tissue was the highest under PRD practice relative to FULL and DI treatments. The high ABA content of fresh-leaf tissue observed in the work supports the root signalling mechanism reported earlier in plants having undergone partial root drying cycles.  相似文献   

13.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

14.
Since the late 1990s, aerobic rice varieties have been released to farmers in the North China Plain to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. Little is known about their yield potential, water use, water productivity (WP), and flood tolerance. In 2001–2002, experiments with aerobic rice varieties HD502 and HD297 and lowland rice variety JD305 were conducted under aerobic and flooded conditions. Under aerobic conditions, five irrigation treatments were implemented. Under flooded conditions, JD305 yielded up to 8.8 t ha−1, HD502 up to 6.8 t ha−1, and HD297 up to 5.4 t ha−1. Under aerobic conditions, the aerobic varieties yielded higher than the lowland variety. HD502 produced 3–3.5 t ha−1 with 450–500 mm total water input and 5.3–5.7 t ha−1 with 650 mm water input and more. HD297 produced 3–3.5 t ha−1 with 450–500 mm total water input and 4.7–5.3 t ha−1 with 650 mm water input and more. The water productivity of aerobic rice under aerobic conditions was higher or on a par with that of the lowland variety under flooded conditions, reaching values of 0.6–0.8 g grain kg−1 water. The relatively high yields of the aerobic varieties under aerobic soil conditions were obtained under “harsh” conditions for growing rice. The soil contained more than 80% sand, was permeable, and held water above field capacity for a few hours after irrigation only. The groundwater table was deeper than 20 m, the soil moisture content in the rootzone was mostly between 50 and 80% of saturation, and soil moisture tension went up to 90 kPa. We conclude that the aerobic rice varieties HD502 and HD297 are suitable for water-scarce environments, and can stand being periodically flooded.  相似文献   

15.
The ridge and furrow rainfall harvesting (RFRH) system with mulches is being promoted to increase water availability for crops for higher and stable agricultural production in many areas of the Loess Plateau in northwest China. In the system, plastic-covered ridges serve as rainfall-harvesting zones and stone-, straw- or film-mulched furrows serve as planting zones. To adopt this system more effectively, a field study (using corn as an indicator crop) was conducted to determine the effects of different ridge:furrow ratios and supplemental irrigation on crop yield and water use efficiency (WUE) in the RFRH system with mulches during the growing seasons of 1998 and 1999.The results indicated that the ridge:furrow ratios had a significant effect on crop yield and yield components. The 120:60 cm ridge and furrow (120 cm wide ridge and 60 cm wide furrow) system increased yield by 27.9%, seed weight per head by 14.8%, seed number per head by 7.4% and 1000-seed weight by 4.7%, compared with the 60:60 cm ridge and furrow (60 cm wide ridge and 60 cm wide furrow) system. No differences in WUE were found between the two ratio systems. For corn and winter wheat, the optimum ridge:furrow ratio seems to be 1:1 in the 300-mm rainfall area, 1:2 in the 400-mm rainfall area and 1:4 in the 500-mm rainfall area. The optimum ridge:furrow ratio seems to be 1:3 for millet in the 300-mm rainfall area, although it is unnecessary to adopt RFRH practice in regions with more than 400 mm rainfall. The most effective ridge size for crop production seems 60 cm in the Loess Plateau. Implementing supplemental irrigation in the RFRH system is also a useful way to deal with the temporal problem of moisture deficits. In the case of corn, supplemental irrigation at its critical growth stage can increase both grain yield and WUE by 20%. The combination of in situ RFRH system with supplemental irrigation practice will make the RFRH system more attractive.  相似文献   

16.
Efficient irrigation regimes are becoming increasingly important in commercial orchards. Accurate measurements of the components of the water balance equation in olive orchards are required for optimising water management and for validating models related to the water balance in orchards and to crop water consumption. The aim of this work was to determine the components of the water balance in an olive orchard with mature ‘Manzanilla’ olive trees under three water treatments: treatment I, trees irrigated daily to supply crop water demand; treatment D, trees irrigated three times during the dry season, receiving a total of about 30% of the irrigation amount in treatment I; and treatment R, rainfed trees. The relationships between soil water content and soil hydraulic conductivity and between soil water content and soil matric potential were determined at different depths in situ at different locations in the orchard in order to estimate the rate of water lost by drainage. The average size and shape of the wet bulb under the dripper was simulated using the Philip’s theory. The results were validated for a 3 l h−1 dripper in the orchard. The water amounts supplied to the I trees during the irrigation seasons of 1997 and 1998 were calculated based on the actual rainfall, the potential evapotranspiration in the area and the reduction coefficients determined previously for the particular orchard conditions. The calculated irrigation needs were 418 mm in 1997 and 389 mm in 1998. With these water supplies, the values of soil water content in the wet bulbs remained constant during the two dry seasons. The water losses by drainage estimated for the irrigation periods of 1997 and 1998 were 61 and 51 mm, respectively. These low values of water loss indicate that the irrigation amounts applied were adequate. For the hydrological year 1997–1998, the crop evapotranspiration was 653 mm in treatment I, 405 mm in treatment D and 378 mm in treatment R. Water losses by drainage were 119 mm in treatment I, 81 mm in treatment D and 4 mm in treatment R. The estimated water runoff was 345 mm in treatments I and R, and 348 mm in treatment D. These high values were due to heavy rainfall recorded in winter. The total rainfall during the hydrological year was 730 mm, about 1.4 times the average in the area. The simulated dimensions of the wet bulb given by the model based on the Philip’s theory showed a good agreement with the values measured. In a period in which the reference evapotranspiration was 7.9 mm per day, estimations of tree transpiration from sap flow measurements, and of evaporation from the soil surface from a relationship obtained for the orchard conditions, yielded an average daily evapotranspiration of 70 l for one I tree, and 48 l for one R tree.  相似文献   

17.
Soil water and salinity are crucial factors influencing crop production in arid regions. An autumn irrigation system employing the application of a large volume of water (2200–2600 m3 ha−1) is being developed in the Hetao Irrigation District of China, since the 1980s with the goal to reduce salinity levels in the root zone and increase the water availability for the following spring crops. However, the autumn irrigation can cause significant quantities of NO3 to leach from the plant root zone into the groundwater. In this study, we investigated the changes in soil water content, NO3–N and salinity within a 150 cm deep soil profile in four different types of farmlands: spring wheat (FW), maize (FM), spring wheat–maize inter-planting (FW–M) and sunflower (FS). Our results showed that (1) salt losses mainly occurred in the upper 60 cm of the soil and in the upper 40 cm for NO3–N; (2) the highest losses of salt and NO3–N could be observed in FW, whereas the lowest losses were found in FW–M.NO3–N concentration, pH and electrical conductivity (EC) in the groundwater were also monitored before and after the autumn irrigation. We found that the autumn irrigation caused the groundwater concentration of NO3–N to increase from 1.73 to 21.6 mg L−1, thereby, exceeding the standards of the World Health Organization (WHO). Our results suggest that extensive development of inter-planting tillage might be a viable measure to reduce groundwater pollution, and that the application of optimized minimum amounts of water and nitrogen to meet realistic yield goals, as well as the timely application of N fertilizers and the use of slow release fertilizers can be viable measures to minimize nitrate leaching.  相似文献   

18.
Frequent fertigation of crops is often advocated in the technical and popular literature, but there is limited evidence of the benefits of high-frequency fertigation. Field experiments were conducted on an Indo-American Hybrid var., Creole Red, of onion crop during three winter seasons of 1999–2000 through 2001–2002 in coarse-textured soil of Delhi under the semi-arid region of India. Three irrigation levels of 60, 80 and 100% of the crop evapotranspiration (ET) and four fertigation frequencies of daily, alternate day, weekly and monthly comprised the fertigation treatment. Analysis of soil samples indicated considerable influence of fertigation frequency on NO3-N distribution in soil profile. NO3-N in lower soil profiles (30.0–60.0 cm soil depth) was marginally affected in daily, alternate day and weekly fertigation. However, fluctuations of NO3-N content in 0.0–15.0, 15.0–30.0, 30.0–45.0 and 45.0–60.0 cm soil depth was more in monthly fertigation frequency. The level of soil NO3-N after the crop season shows that more NO3-N leached through the soil profile in monthly fertigation frequency. Amounts of irrigation water applied in three irrigation treatments proved to be too small to cause significant differences in the content of NO3-N leached beyond rooting depth of onion. Yield of onion was not significantly affected in daily, alternate day and weekly fertigation, though there was a trend of lower yields with monthly fertigation. The highest yield was recorded in daily fertigation (28.74 t ha−1) followed by alternate day fertigation (28.4 t ha−1). Lowest yield was recorded in monthly fertigation frequency (21.4 t ha−1). Application of 56.4 cm irrigation water and 3.4 kg ha−1 urea per fertigation (daily) resulted in highest yield of onion with less leaching of NO3-N.  相似文献   

19.
The effects of supplemental irrigation and irrigation practices on soil water storage and barley crop yield were studied for a crust-forming soil at the University of Jordan Research Station near Al-Muwaqqar village during the 1996/97 growing season. An amount of 0.0, 48.9, 73.3, 122.2 and 167 mm supplemental irrigation water were applied. The 48.9, 73.3 and 122.2 mm applications were applied through surface irrigation into furrows with blocked ends, and the 0.0 and 167 mm applications via sprinkler irrigation. The greatest water infiltration and subsequent soil storage was achieved with the 122.2 mm application followed by the 73.3 mm irrigation, both surface applied. Application efficiency (the fraction of applied water that infiltrated into the soil and stored in the 600 mm soil profile) and soil water storage associated with supplemental blocked furrow irrigation was significantly greater than with supplemental sprinkler irrigation. For arid zone soil, which has little or no structural stability, application of supplemental irrigation water via short, blocked-end furrows prevents runoff and increases the opportunity time for infiltration, thereby increasing the amount of applied water that is infiltrated into the soil and stored in the soil profile. Supplemental irrigation, applied by a low-rate sprinkler system, was not as effective because of the low infiltration rates that resulted from the development of a surface throttle due to dispersion of soil aggregates at the soil surface. The differences in stored water had a significant effect on grain and straw yields of barley. Without supplemental irrigation, barley grain and straw yields were zero in natural rainfall cultivation with a total rainfall of 136.5 mm. Barley yields in the control treatment, with a 167 mm supplemental sprinkler irrigation were low being 0.19 and 1.09 ton/ha of barley grain and straw, respectively. Supplemental irrigation through blocked-end furrows increased barley grain and straw yields significantly compared with supplemental sprinkler irrigation to a maximum of 0.59 and 1.8 ton/ha, respectively. The improvement coming from the increased water storage associated with furrows. Since irrigation water is very limited if available, farmers are encouraged to form such furrows for reducing runoff from rainfall thereby increasing the amount of water available for forage and field crop production.  相似文献   

20.
Analysis of field water balance components provides information necessary to minimize the risk of offsite movement of contaminants from crop production practices or animal manure applications. The objective of this study was to determine the timing and amount of surface runoff and drainage from the root zone for a hillslope in the Ozark Highlands of US. A 0.4 ha watershed with slopes of 8–20% having tall fescue (Festuca arundinacea Schreb.) cover was established in northwestern Arkansas (35°56′W, 93°51′N). Continuous measurements of water balance parameters were made from June 1997 to August 1998. Soil water drainage was estimated as the residual of weekly water balance calculations. Runoff occurred in response to three precipitation events in the winter of 1998 and totaled 30.6 mm of water or 2.6% of the 1185 mm of precipitation that fell at the site during the study period. Storms of comparable or greater intensity during other seasons failed to produce runoff, a result that was likely due to dry soil conditions and taller grass canopy. Drainage through the root zone totaled 117 mm and occurred primarily during an 83-day interval in the winter of 1998. The water balance was dominated by evaporation, which accounted for 91% (1080 mm) of the precipitation. Tall fescue was capable of sustaining relatively high evaporation rates between infrequent summer rains thereby dewatering the soil profile, which was not replenished until winter. Delaying spring animal manure applications in the Ozarks until evaporation has increased and the soil profile has begun to dry would decrease the risk of offsite transport of potential contaminants contained in the manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号