首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract. Anecdotal and circumstantial evidence have suggested that the Olsen test underestimates plant-available phosphorus (P) in basaltic soils in Northern Ireland. Therefore, the ability of this test to predict plant-available P in basaltic (and non-basaltic) soils was investigated by regressing Olsen-P data against herbage P indices calculated from plant tissue test data using the diagnosis and recommendation integrated system. The average Olsen-P concentration for a range of fields situated on basaltic soils was considerably lower than the average Olsen-P concentration for a range of fields situated on non-basaltic soils, and yet mean sward P status, as given by the herbage P indices, was similar for both groups of fields. Herbage P indices were also much better correlated with Olsen-P measurements in non-basaltic soils than in basaltic soils. Furthermore, at low Olsen-P values (≶9mgPL−1) some swards on basaltic soils were genuinely deficient in P, while others were sufficient or even in surplus for this nutrient. The results confirm that Olsen-P is inadequate as a predictor of plant-available P in basaltic soils. It is concluded that an alternative soil test is needed to provide a reliable assessment of plant-available P in basaltic soils, to prevent overuse of fertilizer and manure P and to minimize the amounts of P entering local watercourses.  相似文献   

2.
Plant-available phosphorus (P) and P adsorption capacities are important for crop growth in acidic soils. Olsen P test, which is based on extraction with bicarbonate for predicting the amount of soil P available to plants, was used in this work. Soil P-adsorption capacities were determined by Langmuir line equation. The purpose of this work was to examine the suitability of Olsen P for predicting phytoavailable P and P sorption parameters in acid soil. To this end, we (i) assessed the phytoavailable P by successively pot-cropping rice and (ii) P adsorption characteristics of soil and their relation with Olsen P. Plant-available P, estimated by Olsen P in tested soil, was correlated to labile P. Qm (phosphorus sorption maximum) was negatively correlated with K (P sorption strength). P buffering capacity of soils was P3 (the highest P rate) >P2 (the second highest P rate) >P1 (the lowest P rate) >P0 (no P adding) after 75 day’s rice growth, which indicated P replenishment capacity was different among P treatments. This also suggested that P of plant uptake may decrease soil buffering capacity, especially for soils that contained relatively lower amounts of P. Qm and K were not significantly correlated to Olsen P. Degree of P saturation and Olsen P shared the similar trend with the change of P application rates and sampling dates. We concluded P status in soil can be characterized by degree of P saturation and Olsen P in tested soil. They were able to explain P status from both agronomic and environmental aspects.

Abbreviations: Qm, P sorption maximum; K, P sorption strength; P3, highest P rate in soil; P2, second highest P rate in soil; P1, lowest P rate in soil; P0, P adding in soil.  相似文献   


3.
Abstract

A study was undertaken to evaluate the agreement among different university laboratories performing the Olsen, Bray P1, and Mehlich I tests for P on a diverse group of noncalcareous agricultural soils and to develop relationships among the Olsen, Bray P1, Mehlich I, and Mehlich III soil tests. For each test, the results from the individual laboratories were highly correlated (r2 0.90) and in almost all instances the slopes of the equations describing the relationships among laboratories approached one, The results indicate that the Olsen, Bray P1 and Mehlich I soil tests may be performed with a high degree of precision when standard soil test procedures are followed.

Of the three most commonly performed tests in the U.S. (Olsen, Bray P1, and Mehlich I), the Olsen and Mehlich I tests were the most highly correlated (r2 = 0.87) although the Mehlich I test removed approximately one and one half times more P than did the Olsen test. Bray P1 and Olsen and Mehlich I P were less highly correlated (r2 ≤ 0.72) and the relationships between these variables were influenced by the texture of the soils. The quantity of P removed by the Bray P1 test was on the order of two and three times greater than that removed by the Olsen and Mehlich I tests, respectively. The Bray P1 and Mehlich III soil tests were highly correlated (r2 = 0.97) and similar quantities of P were extracted from the soil by the two tests.  相似文献   

4.
ABSTRACT

Lucerne or alfalfa (Medicago sativa L.) is grown as a forage crop on many livestock farms. In calcareous soils in eastern Turkey, lucerne production requires phosphorus (P) additions as the soils are naturally P deficient. Phosphorus sorption isotherms were used to estimate P fertilizer needs for lucerne grown for two years in a 3-cut system on a calcareous P deficient Aridisol in eastern Anatolia, Erzurum province, Turkey. Annual P applications ranged from 0–1200 kg P ha?1. The Langmuir two-surface adsorption equation was used to derive the maximum P sorption capacity of unamended soil and to determine soil solution P, maximum buffer capacity (MBC), equilibrium buffer capacity (EBC), and P saturation at the optimum economic P rate (OEPR) for dry matter (DM) production. Soils were tested for Olson P at the onset of the study and after two years of P applications. In both years, tissue was analyzed for P content at flowering prior to first cutting. The OEPR (2-year average) was 754 kg P ha?1 yr?1 corresponding with a soil solution P concentration of 0.30 mg L?1, a DM yield of 8725 kg DM ha?1, and $528 ha?1 annual profit. The P content of leaves at flowering increased linearly with P application beyond 100 kg P ha?1 and was 3.2 g kg?1 P at the OEPR. The unfertilized soil had an EBC, MBC, P saturation, and Xmax of 3304 mL g?1, 3401 mL g?1, 6%, and 1086 mL g?1, respectively, whereas two years of fertilization to the OEPR decreased EBC and MBC to 358 mL g?1 and 540 mL g?1, and increased P saturation and Olsen P to 56% and 32 mg kg?1, respectively. These results suggest a P saturation >50% or Olsen P >30 mg kg?1 are needed to maintain an optimum soil solution concentration of 0.30 mg L?1 in this calcareous Aridisol. Similar studies with different soils and initial soil test P levels are needed to conclude if these critical soil test values can be applied across the region.  相似文献   

5.
蔬菜地土壤磷饱和度及其对磷释放和水质的影响   总被引:24,自引:0,他引:24  
为了解蔬菜地土壤磷素的积累对水环境的影响,我们在浙江省选择了33个代表性蔬菜地,采集和分析了土壤、地表水和地下水样的磷素状况,从土壤磷饱和度的角度,研究了浙江省主要蔬菜土壤磷积累状况及其对地表和地下水水质和土壤磷释放潜力的影响。结果表明,半透膜渗析法测得的磷释放量与土壤磷积累呈正相关,磷释放量随土壤磷饱和度的提高而增加。蔬菜地土壤磷饱和度的增加可显著提高地表水体和地下水中磷的浓度,当土壤磷饱和度小于25%左右时,水体中磷浓度随土壤磷饱和度增加较为缓慢;但当磷饱和度大于25%时,水体中磷浓度随土壤磷饱和度提高迅速上升。地表水中磷浓度主要与表层土壤磷饱和度有关;地下水中磷浓度主要受深层土壤磷饱和度的影响,与表层土壤磷饱和度的相关性较小。土壤磷饱和度可很好地表征土壤磷释放和对环境的潜在影响。  相似文献   

6.
Increasing fertilizer costs have prompted farmers to ask whether soils could be maintained at lower levels of plant‐available phosphorus (Olsen P) than currently recommended without losing yield. To help answer this question, we assessed the response to Olsen P by spring barley grown from 1986 to 1991, followed by winter wheat from 1992 to 2008, on a silty clay loam soil. Each year the curve relating grain yield to Olsen P was fitted statistically to determine the asymptotic yield and the Olsen P associated with 98% of that yield, that is, the critical level of Olsen P. The variance accounted for by the relationship ranged between 83 and 97% in all but two years, suggesting that the availability of soil P was the major soil factor affecting yield and that Olsen P was a reliable measure of plant‐available P in soil. Asymptotic annual yield of spring barley ranged from 2.34 to 7.12 t/ha and of winter wheat from 3.87 to 10.36 t/ha. In part, this range in yields was because of changes in the cultivar grown while the range of yields for any one cultivar was probably due to differences in weather, principally rainfall, between years. Critical Olsen P ranged from 7 to 18 mg/kg for both cereal crops (with one outlier at 26 mg/kg for winter wheat) most probably due to seedbed and soil structure conditions affecting root growth, and thus acquisition of available soil P, and the way these soil factors were affected by weather. Thus, a general recommendation for cereals grown on this silty clay loam, which is comparatively easy to cultivate, would be to maintain Olsen P at about 20 mg/kg in the plough layer to minimize the risk of losing yield in some years. This value, 20 mg/kg, equivalent to 20 mg/L, is the midpoint of P Index 2, the recommended P Index given in the Fertiliser Manual (RB209) (Defra 2010) for soils growing arable crops and grass in England, Wales and Northern Ireland.  相似文献   

7.
The aim was to assess the ability of bicarbonate-extractable P (Olsen P) to estimate total plant-available P (TPAP) in reclaimed marsh soils (Aeric Endoaquepts) which differed widely in P buffering capacity (PBC). Total plant-available P was estimated as the cumulative P uptake for a final concentration of 0.02 mg P/L in the soil solution which is the typical P requirement for field crops. The Olsen P estimated for that concentration was adopted as the critical level for crop production. We found that TPAP was better predicted by anion exchange resin-extractable P (AER-P) (65% of variance accounted for) than by Olsen P, probably because the effectiveness of the AER depends on the soil P buffering capacity, a factor that greatly influences the availability of P to plants. The critical Olsen P level was found to depend on those soil properties affecting the relationship between sorbed P and P in soil solution, viz. the P buffering capacity of soil, the Na/Ca mole ratio in the 1:1 soil:water extract, which explained 63 and 84% of the variance in the critical level, respectively, and the affinity of the sorbing surfaces for P. These properties must be taken into account when using Olsen P as the P index for fertilizer management.  相似文献   

8.
The Mehlich 3 method for the determination of available phosphorus (P) is less laborious compared to the Olsen method and provides the advantage of multielement analysis. However, in Greece the Olsen P method is currently used because of its suitability for calcareous soils. The aims of this study were to compare (a) the Mehlich 3 and Olsen methods for 200 soils having different levels of pH and calcium carbonate and (b) Mehlich 3 colorimetric and Mehlich 3 inductively coupled plasma (ICP) analysis for 17 acidic and 23 alkaline soils. The correlation of Mehlich 3 P and Olsen P methods, excluding soils with pH less than 5 and soils with calcium carbonate levels from 10.3 to 48.3%, resulted in a linear slope of 0.24 and r2 of 0.82, and thus for this range of soils the Mehlich 3 test provided a more reliable measurement of P compared to the Olsen method. This study confirms also previous results that show that Mehlich 3 ICP test measures more P compared to Mehlich 3 colorimetry.  相似文献   

9.
The increasing cost of fertilizer has prompted farmers to ask whether soils could be maintained at lower levels of plant‐available phosphorus (Olsen P) than currently recommended, without limiting yield. To help answer this question, critical levels of Olsen P have been determined for spring barley, winter wheat, potatoes and sugar beet grown on a sandy clay loam and a poorly structured heavy textured silty clay loam. On each soil, there were plots with a range of well‐established levels of Olsen P and, in one experiment, two levels of soil organic matter (SOM). For each crop and each year, the response curve relating yield to Olsen P was fitted statistically to determine the asymptotic yield and the Olsen P associated with 98% of that yield, that is, the critical Olsen P. Maximum yield of all four crops varied greatly from year to year, in part due to applied nitrogen (N) where it was tested, and in part to seasonal variation in weather, mainly rainfall. The wide range in critical Olsen P, from 8 to 36 mg/kg, between years was most probably as a result of differences in soil conditions that affected root growth and thus acquisition of available soil phosphorus (P). Generally, a larger asymptotic yield was not necessarily associated with a larger critical Olsen P. Spring barley and winter wheat given little N required more Olsen P, 20–34 mg/kg, to achieve the asymptotic yield, compared to 10–17 mg/kg where ample N was given; presumably, more roots were needed to search the soil for the smaller amounts of available N and root growth is affected by the amount of plant‐available soil P. In a field experiment on one soil type, soil with little SOM required 2–3.5 times more Olsen P to produce the same yield as that on soil with more organic matter. Soil organic matter most probably improved soil structure and hence the ability of roots to grow and search for nutrients in field conditions because when these soils were cropped with ryegrass in controlled conditions in the glasshouse, the yields of grass were independent of SOM and there was the same critical Olsen P for both soils. Overall, the data confirm that, for these soil types, the current recommendations for Olsen P for arable crops in England, Wales and Northern Ireland are appropriate.  相似文献   

10.
11.
Phosphorus (P) speciation in 21 basaltic and four non-basaltic Irish grassland soils was determined by NaOH–EDTA extraction and 31P NMR spectroscopy. Organic P in basaltic soils ranged between 30 and 697 mg P kg−1 and consisted of phosphate monoesters (84–100%), DNA (0–16%) and phosphonates (0–5%). Inorganic P was mainly phosphate (83–100%) with small concentrations of pyrophosphate (0–17%). Phosphate monoesters were more important as a proportion of extracted P in basaltic soils, probably because of their greater oxalate-extractable Fe and Al contents. Phosphate monoesters appeared to be strongly associated with non-crystalline Al and increased with total soil P concentration, indicating that they do accumulate in grassland soils. In non-basaltic soils myo -inositol hexakisphosphate constituted between 20 and 52% of organic P, while scyllo -inositol hexakisphosphate constituted between 12 and 17%. These compounds were not quantified separately in basaltic soils because of poor NMR resolution in the phosphate monoester region, but appeared to represent a considerable proportion of the organic P in most samples. DNA concentrations were greater in basaltic soils compared with non-basaltic soils and were associated with acidic pH and large total C contents. The inability of the Olsen P test to assess effectively the P status of basaltic soils may result from strong phosphate sorption to Fe and Al oxides, inducing plant utilization of soil organic P. Phosphorus nutrient management should account for this to avoid over-application of P and associated financial and environmental costs.  相似文献   

12.
The usefulness of soil phosphorus (P) tests used in routine soil analyses is limited by the fact that a single measurement cannot encompass all P‐related factors potentially affecting plant performance. In this work, we performed micropot (15 mL) experiments to test the hypothesis that the predictive value of two common soil P tests (Olsen P and CaCl2‐P) can be improved by considering properties commonly measured in laboratory analyses. Forty‐nine sets of soils ranging widely in properties were used for this purpose, each set consisting of samples with similar properties but differing in P status. Ryegrass and turnip were grown in a chamber for 30 days in two separate experiments and their yields at harvest recorded. The critical Olsen P and CaCl2‐P levels, which were taken to be those corresponding to 95% asymptotic yield as calculated from data fitted to a Mitscherlich equation, were greater for turnip than for ryegrass, probably as a result of the difference in yield (49 and 160 mg dry matter/micropot on average for ryegrass and turnip, respectively) and hence in P requirements between the two species. Critical Olsen P spanned narrower ranges than critical CaCl2‐P in both crops and is therefore seemingly the more robust of the two tests. Both critical P values exhibited moderate correlations with soil properties. Thus, critical Olsen P was (a) lower in soils with a medium pH – which is consistent with the fact that the bicarbonate solution method tends to overestimate plant‐available P in strongly acid and calcareous soils; (b) positively correlated with pH and carbonate content in calcareous soils; and (c) uncorrelated with soil properties in noncalcareous soils. On the other hand, critical CaCl2‐P in some soil groups was negatively correlated with some properties increasing the P buffering capacity of soil (e.g. Fe oxide content). Taken together, our results suggest that routinely measured soil properties help to predict critical Olsen P better than critical CaCl2‐P.  相似文献   

13.
Abstract

Phosphorus fertilizer recommendations were compared by interpretations from P isotherms, Olsen extractable P and the Mitscherlich‐Bray model based on the Olsen method for 15 soils from the Chaouia (dryland) region of Morocco. The P isotherms were fit to straight line and second degree polynomial equations. The P buffer indexes (PBI) derived from the isotherms were not significantly correlated to P buffer capacities as measured by a single P buffer capacity index, but negatively correlated to Olsen P (r = ‐0.63), relative yield (r = ‐0.76) and P uptake (r = ‐0.66). Phosphorus in solution was a quadratic function of P added in 0.01 M CaCl2equilibrium solution. The P fertilizer recommendations to maintain soil solution P concentrations at 0.01, 0.12 and 0.20 mg P L‐1were higher than recommended by direct interpretation of plant response to Olsen extractable P and the quantity based on the Mitscherlich‐Bray model as calculated from Olsen available P values. The P fertilizer recommended to maintain soil solution P of 0.10 mg P L‐1was significantly correlated with Olsen P (r = 0.71) as was that recommended Mitscherlich‐Bray log transformation model (r = 0.81), and nonlinear least square estimation (r = 0.78). Field research will be needed to evaluate if the P fertilizer recommended to maintain this solution P concentration is adequate for maximum economic wheat grain yield under field conditions  相似文献   

14.
I. D&#;AZ  J. TORRENT 《土壤圈》2016,26(5):636-642
Maintaining soil phosphorus(P) at adequate levels for plant growth requires assessing how the long-term P balance(viz., the difference between P inputs and outputs) results in changes in soil test P. The hypothesis that routinely measured soil properties can help predict the conversion factor of P balance into Olsen P was tested at 39 sites in agricultural areas of the Mediterranean region in Spain. A set of soil samples from each site was analyzed for Olsen P, inorganic P(P extracted using 0.5 mol L~(-1) H_2SO_4), pseudototal P(P extracted using 0.5 mol L~(-1) H_2SO_4 following ignition at 550℃), and organic P(the difference between pseudototal P and inorganic P). Organic and Olsen P were uncorrelated in most of the 39 soil sets, which suggests that organic P content changed little with P inputs and outputs. The slopes of the regression lines of Olsen P against pseudototal and inorganic P, which were used as two different measures of the conversion factor, ranged widely(from 0.03 to 0.25 approximately), with their average values(about 0.10) being similar to those found in long-term experiments conducted in temperate areas. Neither conversion factor was significantly correlated with any routinely measured soil property; however, the conversion factor for inorganic P was significantly lower for calcareous soils than for noncalcareous soils. Our negative results suggest the need to isolate the influence of soil properties from that of management systems and environmental factors relating to P dynamics in future studies.  相似文献   

15.
Abstract

This work aimed to calibrate Mehlich 1, Mehlich 3, Bray 1, Olsen, and ion‐exchange resin extraction methods with maize phosphorus (P) responses in a pot study with lowland and upland soils with different P‐buffer capacities and to evaluate whether the calibration can be enhanced through the knowledge of remaining P. The experimental design was completely randomized with four replications in a factorial arrangement involving five P concentrations and four lowland or seven upland soils. The remaining P for each soil was determined, P‐buffer capacity was estimated, and the soils were grouped according to the results. Correlation coefficients showed that the remaining P is strongly dependent on clay and soil organic‐matter content, and its determination was useful to the evaluation of the extractants. The classification and grouping of soils according to their P‐buffer capacity improved the correlations between extracted P and plant response for Mehlich 1 and Bray 1 extractants. The Mehlich 3, Olsen, and resin methods presented better performances, independent of soil grouping.  相似文献   

16.
Abstract. The Olsen method is an indicator of plant-available phosphorus (P). The effect of time and temperature on residual phosphate in soils was measured using the Olsen method in a pot experiment. Four soils were investigated: two from Pakistan and one each from England (calcareous) and Colombia (acidic). Two levels of residual phosphate were developed in each soil after addition of phosphate by incubation at either 10 °C or 45 °C. The amount of phosphate added was based on the P maximum of each soil, calculated using the Langmuir equation. Ryegrass was used as the test crop. The pooled data for the four soils incubated at 10 °C showed good correlation between Olsen P and dry matter yield or P uptake ( r 2= 0.85 and 0.77, respectively), whereas at 45 °C, each soil had its own relationship and pooled data did not show correlation of Olsen P with dry matter yield or P uptake. When the data at both temperatures were pooled, Olsen P was a good indicator of yield and uptake for the English soil. For the Pakistani soils, Olsen P after 45 °C treatment was an underestimate relative to the 10 °C data and for the Colombian soil it was an overestimate. The reasons for these differences need to be explored further before high temperature incubation can be used to simulate long-term changes in the field.  相似文献   

17.
Soil Olsen P level has a major influence on crop yield, efficient P utilization, and soil fertility. In this study, the optimum Olsen P range was determined from long-term (1990-2012) field experiments in three typical soil types of China under single cropping of maize or double cropping of maize and wheat. The critical soil Olsen P value for crop yield was evaluated using three different models, and the relationships among P use efficiency (PUE), Olsen P, and total P were analyzed. The agronomic critical soil Olsen P values obtained from the three models for the neutral soil of Gongzhuling and the calcareous soil of Zhengzhou were similar; however, the values from the linear-linear and linear-plateau models for both maize and wheat were substantially lower than those from the Mitscherlich model for the acidic soil of Qiyang. The PUE response change rates (linear equation slopes) under different soil Olsen P levels were small, indicating slight or no changes in the PUE as the soil Olsen P increased in all three soils. A comparison of the Olsen P levels that achieved the maximal PUE with the agronomic critical values derived from the three models indicated that the linear-plateau model exhibited the best performance. The regression equation coefficients of Olsen P response to total P decreased as follows:Zhengzhou (73 mg g-1) > Qiyang (65 mg g-1) > Gongzhuling (55 mg g-1). The Olsen P level increased as the total P increased, which may result in a decrease in PUE. To achieve a relatively high crop yield, PUE, and soil fertility, the optimum Olsen P range should be 13-40, 10-40, and 29-40 mg kg-1 at Gongzhuling, Zhengzhou, and Qiyang, respectively.  相似文献   

18.
Although land use clearly modifies soil properties, the intensity of the modifications depends on the management procedures and also on the soil properties themselves. To enable construction of models that describe soil nutrient losses, extensive databases corresponding to soils under different land use must be made available. Analysis of 404 samples of soils (from Galicia, NW Spain), under different types of use revealed that most of the soil properties underwent changes in the following order: forest use (least modified) ‐ grassland ‐ arable (most modified). Decreases in the contents of organic matter, extractable oxides and P‐adsorption capacity followed the same order, as did increases in the contents of available P (total, inorganic and organic), P desorbed with distilled water, and degree of P saturation. In general, in all of the soils, independently of their use, the amount of P desorbed (whether total P, molybdate reactive P or particulate P) was more closely related to the degree of P saturation than to the levels of P extracted with bicarbonate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
比较了O lsen(0.5 mol L-1NaHCO3)和B ray-1(0.03 mol L-1NH4F-0.025 mol L-1HC l)提取剂土水比1∶4和1∶20(W/V),对我国5种类型旱耕地土壤(pHKC l3.3~7.4)无机磷(Pi)和有机磷(Po)及外加正磷酸盐态无机磷的提取效应。结果表明,以O lsen提取剂土水比1∶20对土壤Pi和Po的提取效果最佳,其测定结果是评价土壤磷素供应能力(有效磷)和活性有机磷含量较为适宜的指标。测定的土壤大多数(占60%)磷素供应能力较差(O lsen-Pi为4.2~14.0mg kg-1),应适当加强其磷素的投入。测定的土壤活性有机磷(O lsen-PO)含量为1.4~37.9 mg kg-1,占土壤全磷的0.2%~15.8%,大多数(75%)土壤占1%~6%。采用O lsen提取剂时土壤外加Pi的固定率随土水比减小而增高,当土水比1∶4提取时,酸性和强酸性(pHKC l3.3~5.5)土壤对外加Pi的固定率达40%~86%,据此推测实际田间条件下土壤对外加Pi的固定率更大。表明酸性和强酸性旱耕地土壤对外加Pi具有强烈的固定作用。  相似文献   

20.
Abstract

Investigating the relation between concentration or release of phosphorus (P) into soil solution (CaCl2‐P, determined by 0.01 M CaCl2 extraction of soils) and soil test phosphorus (Olsen P, or 0.5 N NaHCO3‐extractable soil phosphorus) for 10 widely ranging and variously managed soils from central Italy, a change point was evident where the slopes of two linear relationships meet. In other words, it was possible to distinguish two sections of the plots of CaCl2‐P against Olsen P, for which increases of CaCl2‐P per unit of soil test P increase were significantly (p<0.05) greater above than below these change points. Values of change point ranged from 14.8 to 253.1 mg kg?1 Olsen P and were very closely correlated (p<0.001) to phosphorus sorption capacity of soils. Similar change points were also previously observed when Olsen P (and also Mehlich 3 P) of surface soils was related to the P concentration of surface runoff and subsurface drainage. Because insufficient data are available relating P in surface soils and amount of P loss by overland, subsurface, or drainage flow, using the CaCl2 extraction of soil can be convenient to determine a change point in soil test P, which may be used in support of agricultural and environmental P management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号