首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Because of the complexity, subjectivity, time, and technical skill required for determination of manual bone marrow differential cell counts, an alternative method is needed. Several flow cytometric methods have been described, but all have limitations. OBJECTIVE: The purpose of this study was to evaluate a technique for bone marrow differential cell counting based on flow cytometric evaluation of CD45 expression and intracellular complexity (CD45 scatter plots). METHODS: Bone marrow was obtained from 15 dogs that were being evaluated for hematologic disorders. In preliminary studies, the location of bone marrow subpopulations in the CD45 scatter plots was evaluated by labeling bone marrow with lineage-specific markers. A template was developed to identify these cell populations. Gates were set to identify granulocytes, myeloblasts, monocyte/macrophages, lymphocytes, and nucleated erythroid populations. RESULTS: The CD45 labeling technique accurately quantified granulocytes, myeloblasts, erythroid precursors, and lymphocytes in canine bone marrow. Correlation coefficients with manual counts for granulocytes, myeloblasts, erythroid cells, lymphocytes, and monocyte/macrophages were 0.90, 0.89, 0.96, 0.91, and 0.54, respectively. CONCLUSIONS: The capacity of the CD45 scatter-plot technique to quantify lymphocytes and myeloblasts is an advantage over previously described techniques. The simplicity of the CD45 labeling method and the ease with which batches of samples can be analyzed makes the technique potentially applicable as a routine test in clinical and research laboratories.  相似文献   

2.
Microglia are the principal immune effector elements of the brain sharing immunophenotypic and functional characteristics of macrophages as well as of antigen presenting cells (APCs). The purpose of this study was to isolate canine microglial cells and make them available for ex vivo characterizations of their functions and immunophenotype. After isolation, carried out by density gradient centrifugation, microglial cells accumulated on distinct interfaces of 1.077 and 1.066 g/ml of a Percoll gradient. Identification of microglial cells in other species is realized by their specific immunophenotype of CD11b/c+ and CD45low. Our results indicate, that expression of CD45 is very low or even absent in canine microglial cells. In addition, they expressed CD18 and CD11b/c+, as determined by flow cytometry and immunohistochemistry. Fourteen additional monoclonal antibodies (mAbs) were used to characterize and compare canine microglial cells with monocytes. Microglia and monocytes can be clearly distinguished by their differential expression intensity of surface antigens (CD45, CD44, CD14). Functional characterization was assessed by a reactive oxygen species (ROS)-generation test and phagocytosis assay using flow cytometry. In conclusion, ex vivo examination of microglia is possible in dogs and most probably reflects the conditions in vivo. The measurement of tissue culture artifacts can be largely avoided using this method.  相似文献   

3.
CD20 expression in normal canine B cells and in canine non-Hodgkin lymphoma   总被引:1,自引:0,他引:1  
We examined the expression of CD20 in normal canine peripheral blood mononuclear cells, normal canine spleen, and canine non-Hodgkin lymphoma (NHL) to determine the feasibility of using this antigen as a diagnostic aid and as a possible target for therapy. An antibody generated against a C-terminal (intracytoplasmic) epitope of human CD20 recognized proteins of 32-36 kd in normal and malignant canine lymphocytes. This antibody showed restricted membrane binding in a subset of lymphocytes in peripheral blood, in the B-cell regions from a normal canine spleen and lymph node, and in malignant cells from 19 dogs with B-cell NHL, but not from 15 dogs with T-cell NHL. The patterns of CD20 reactivity in these samples overlapped those seen using an antibody that recognizes canine CD79a. This anti-CD20 antibody is therefore suitable as an aid to phenotype canine NHL. In contrast, normal canine B cells were not recognized by any of 28 antibodies directed against the extracellular domains of human CD20 (including the chimeric mouse-human antibody Rituximab) or by any of 12 antibodies directed against the extracellular domains of mouse CD20. Thus, the use of CD20 as a therapeutic target will require the generation of specific antibodies against the extracellular domains of canine CD20.  相似文献   

4.
5.
6.
CD30 is a novel therapeutic target in human mast cell (MC) neoplasms. In this ‘comparative oncology’ study, we examined CD30 expression and regulation in neoplastic canine MC using a panel of immunomodulatory cytokines [interleukin‐2 (IL‐2), IL‐4, IL‐5, IL‐6, IL‐13 and stem cell factor (SCF)] and the canine mastocytoma cell lines NI‐1 and C2. Of all cytokines tested IL‐4 was found to downregulate expression of CD30 in NI‐1 and C2 cells. We also found that the CD30‐targeting antibody‐conjugate brentuximab vedotin induces growth inhibition and apoptosis in both MC lines. Next, we asked whether IL‐4‐induced downregulation of CD30 interferes with brentuximab vedotin‐effects. Indeed, pre‐incubation of NI‐1 cells with IL‐4 decreased responsiveness towards brentuximab vedotin. To overcome IL‐4‐mediated resistance, we applied drug combinations and found that brentuximab vedotin synergizes with the Kit‐targeting drugs masitinib and PKC412 in inhibiting growth of NI‐1 and C2 cells. In summary, CD30 is a new marker and IL‐4‐regulated target in neoplastic canine MC.  相似文献   

7.
8.
Swine cell binding analyses of a set of 48 monoclonal antibodies (mAbs), including eleven standards, assigned to the CD44 and CD45 subset group of the Second International Swine CD Workshop yielded 13 clusters. Although none of these corresponded to CD44, seven mAbs formed a cluster which was identified as being specific for restricted epitopes of CD45 (CD45R). In addition, a T-cell subset specific cluster comprised of four mAbs was also identified. Two mAbs (STH106 and SwNL 554.1) reacted exclusively with CD8 bright lymphocytes, the other two (2B11 and F01G9) with a subset of CD4 lymphocytes. The other 10 clusters were either specific for MHC-class I like molecules or overlapped with clusters identified by the adhesion molecule subgroup and are therefore just briefly discussed in this report. The specificity of all the mAbs in the CD45R cluster was verified by their ability to immunoprecipitate distinct proteins and to react with CHO cells expressing individual isoforms of CD45. Three CD45R mAbs (3a56, MIL5, −a2) did react with a 210 kDa isoform(s), while another three (STH267, FG2F9, 6E3/7) only recognized a 226 kDa isoform(s). The remaining one (MAC326) precipitated both a 210 and 226 kDa protein. The specificity of all the mAbs in the CD45R cluster, and of the CD45 common mAbs, was confirmed by their reactivity with CHO cells transfected with cDNAs encoding the extracellular and transmembrane portions of distinct CD45R isoforms. Those mAbs recognizing a 210 kDa protein reacted with CHO cells expressing the CD45RC isoform, while those capable of precipitating a 226 kDa, but not the 210 kDa, polypeptide recognized CHO cells expressing either the CD45RAC and the relatively rare CD45RA isoform. MAC326 was unique in its inability to react with CHO cells engineered to produce the CD45RC and CD45RAC isoforms. Thus, three mAbs (6E3/7, STH267, and FG2F9) appear to be specific for an epitope(s) encoded by the A exon, while one (MAC326) recognizes a determinant encoded by the C exon. The remaining three mAbs (3a56, −a2, MIL5) are apparently specific for an epitope(s) which results from the fusion of the C exon to the invariant leader sequence and is destroyed by inclusion of the A exon. All three CD45 common mAbs, K252.1E4, MAC323 and 74.9.3, did react with the CHO cells lines expressing either the CD45RA, CD45RC, CD45RAC or CD45RO isoforms, but not with untransfected CHO cells. When the natural expression of CD45 isoforms was examined by reacting lymphocytes with CD45R mAbs, a high level expression of isoforms containing the A exon-generated domain was detected in all B cells while the majority of CD4+ T cells had undetectable or lower expression density of this protein than B cells. In contrast, the density of expression of the CD45 isoform(s) containing the C exon-generated domain ranged from undetectable to high in CD4+ T cells whereas the amounts were approximately ten-fold lower in B cells. Overall this panel of CD45 mAbs will be very useful in analyzing the maturation and differentiation of swine lymphoid cells subsets.  相似文献   

9.
10.
To assess the influence of a live attenuated oral vaccine against porcine post-weaning colibacillosis (PWC) induced by enterotoxigenic Escherichia coli (ETEC) on mucosal lymphoid cell CD45 isoforms expression, experimental group of weaned pigs (n=6) was immunized orally with F4ac+ non-ETEC strain (day 0) and challenged with F4ac+ ETEC strain 7 days latter. Non-immunized ETEC-infected pigs (n=6) served as control. All pigs were killed on post-challenge day 7. The small intestine was excised for isolation of jejunal lamina propria (JLP) and ileal Peyer's patch (IPP) lymphocytes and immunohistochemical studies. The results obtained by immunophenotyping of isolated cells show that the proportion of CD45RA+ and CD45RC+ JLP, but not IPP, cells were higher in the non-ETEC-immunized ETEC-infected pigs versus non-immunized infected. Additionally, while CD45RA+ JLP cells increased only slightly, the expression of CD45RC isoform on the JLP cells was significantly higher (P< or =0.01) in the experimental than in the control group. The results of the quantitative phenotypic analysis of isolated lymphocytes were not confirmed by immunohistochemical in situ staining. The majority of intestinal immune cells was found to express CD45RA antigen in situ, but no differences were observed between the two groups of weaned pigs neither in CD45RA+ nor in CD45RC+ cells. Our overall evidence indicates that the increased expression of CD45RC isoform was in fact induced in a limited number of JLP T cells in the vaccinated pigs. This was accompanied with the impaired protection of the vaccinated pigs from challenge-induced PWC.  相似文献   

11.
Multiparameter flow cytometry analysis and specific cluster differentiation (CD) molecules were used to determine the expression profiles of B- and T-cell antigens on lymph node preparations from 59 dogs with generalized or multisystemic lymphoma. Lymph node samples from 11 healthy dogs were labeled to validate the specificity of antibodies and to formulate guidelines for interpretation of the results obtained from lymphoma samples. In normal lymph nodes, T-lymphocytes expressing CD3, CD4, or CD8 beta represented 59+/-11%, 43+/-8%, or 16+/-5% of the total cells, whereas B-lymphocytes expressing either CD21 or surface IgM (IgM) represented 37+/-9% or 14+/-5%, respectively. Small lymphocytes could be distinguished from large lymphocytes by forward light scatter. Of the patient samples 29 different breeds were represented with Golden and Labrador retriever being the most common. The lymphoma samples segregated into three groups based on CD antigen expression. Thirty cases predominantly expressed one or more combinations of CD79a, IgM, and CD21 representing a B-cell lineage. Three B-cell cases also expressed the stem cell antigen, CD34. Sixteen cases expressed one or more combinations of CD3, CD4, and CD8 consistent with a T-cell lineage and CD3+CD4+CD8--phenotype was the most common. Thirteen cases showed a mixed expression profile for T- and B-cell antigens and in three cases CD14 was highly expressed. Clinical response was poorest for T-cell lymphomas. Leukemic states occurred in all three phenotypes; but mixed cell cases had the greatest proportion. Dual immunofluorescence staining confirmed co-expression of T-cell (CD3) and B-cell antigens (CD79a or CD21) on neoplastic lymphocytes of six mixed cell cases. In one mixed cell case, dual immunostaining identified lymphocyte populations that stained mutually exclusive for CD79a and CD3. Six mixed cell lymphomas tested by PCR showed clonality for rearranged antigen receptor. Four cases that were CD79a+CD3+ had TCRgamma chain gene rearrangements, whereas two cases that were CD3+CD8+CD21+ had Ig heavy chain rearrangement. One case expressing multiple CD molecules (CD3+CD8+CD21+CD14+) was PCR negative for both Ig and TCRgamma gene rearrangement and could not be classified into a B- or T-cell lineage. We show for the first time co-expression of B- and T-cell markers on lymphoma cells that had specific T- or B-cell gene rearrangements. These findings suggest that aberrant CD molecule expression is not an uncommon finding in canine lymphomas and is a useful diagnostic marker for malignancy.  相似文献   

12.
CD10 is an important cell marker in the diagnosis of acute lymphoblastic leukaemia and of breast myoepithelial (ME) cells in humans. The objective of this study was to assess the value of CD10 as a marker of canine ME cells using immunohistochemistry on routinely processed normal, dysplastic and neoplastic mammary tissue. Five different CD10 positive cell types were identified on the basis of cell morphology, pattern of immunoreactivity, and on the co-expression of additional cell lineage-specific markers.Type 1 cells were typical fusiform cells with a ME cell phenotype (calponin- and cytokeratin [CK] 14-positive, CK8/18-negative). Type 2 cells were typical or atypical polyhedral cells with a luminal epithelial (LE) cell phenotype (calponin- and CK14-negative, CK8/18-positive). Type 3 cells had a type 1 phenotype with variable morphology, and type 4 were atypical neoplastic cells with a mixed ME/LE phenotype. Type 5 cells were typical fusiform cells with a stromal phenotype.Type 1 cells were considered normal ME cells and were found in all sample types; type 2 cells were considered normal or neoplastic LE cells and were also found in all sample types; types 3 and 4 cells were restricted to tumour samples and to malignant tumours, respectively, and type 5 cells were found in all sample types, although predominantly in neoplastic tissue. The findings indicate that the CD10 antigen is a sensitive (although not specific) marker of canine ME cells in normal, dysplastic and neoplastic mammary tissue. Differences in the distribution and staining intensity of CD10-positive cells suggest a number of potential roles for this protein in the pathogenesis of canine mammary neoplasia.  相似文献   

13.
14.
Isolation and characterization of pediatric canine bone marrow CD34+ cells   总被引:4,自引:0,他引:4  
Historically, the dog has been a valuable model for bone marrow transplantation studies, with many of the advances achieved in the dog being directly transferable to human clinical bone marrow transplantation protocols. In addition, dogs are also a source of many well-characterized homologues of human genetic diseases, making them an ideal large animal model in which to evaluate gene therapy protocols. It is generally accepted that progenitor cells for many human hematopoietic cell lineages reside in the CD34+ fraction of cells from bone marrow, cord blood, or peripheral blood. In addition, CD34+ cells are the current targets for human gene therapy of diseases involving the hematopoietic system. In this study, we have isolated and characterized highly enriched populations of canine CD34+ cells isolated from dogs 1 week to 3 months of age. Bone marrow isolated from 2- to 3-week-old dogs contained up to 18% CD34+ cells and this high percentage dropped sharply with age. In in vitro 6-day liquid suspension cultures, CD34+ cells harvested from 3-week-old dogs expanded almost two times more than those from 3-month-old dogs and the cells from younger dogs were also more responsive to human Flt-3 ligand (Flt3L). In culture, the percent and number of CD34+ cells from both ages of dogs dropped sharply between 2 and 4 days, although the number of CD34+ cells at day 6 of culture was higher for cells harvested from the younger dogs. CD34+ cells harvested from both ages of dogs had similar enrichment and depletion values in CFU-GM methylcellulose assays. Canine CD34+/Rho123lo cells expressed c-kit mRNA while the CD34+/Rhohi cells did not. When transplanted to a sub-lethally irradiated recipient, CD34+ cells from 1- to 3-week-old dogs gave rise to both myeloid and lymphoid lineages in the periphery. This study demonstrates that canine CD34+ bone marrow cells have similar in vitro and in vivo characteristics as human CD34+ cells. In addition, ontogeny-related functional differences reported for human CD34+ cells appear to exist in the dog as well, suggesting pediatric CD34+ cells may be better targets for gene transfer than adult bone marrow. The demonstration of similarities between canine and human CD34+ cells enhances the dog as a large, preclinical model to evaluate strategies for improving bone marrow transplantation protocols, for gene therapy protocols that target CD34+ cells, and to study the engraftment potential of various cell populations that may contain hematopoietic progenitor cell activity.  相似文献   

15.
This paper describes three anti-sheep monoclonal antibodies. The tissue distribution and apparent molecular weight of the antigens detected by these antibodies is consistent with them reacting with sheep leucocyte common antigen (CD45 (VPM18], MHC class I (VPM19) and CD5 (VPM29). An ELISA method is described that permits the cross-reactivity of different antibodies to be assessed, this confirms the identity of the antigens detected by VPM18, VPM19 and VPM29. This method is also of value as either a positive or a negative screen in the construction of further monoclonals. A study of the expression of these three antigens on efferent lymph small lymphocytes and antigen-activated lymphoblasts shows that the density of CD45 on lymphoblasts (activated either in vivo or in vitro) is approximately half that of small lymphocytes whereas the density of MHC class I is the same in both populations. Furthermore, about 75% of small lymphocytes express CD5 but less than 10% of lymphoblasts are positive. Cell membrane CD5 expression is lost on lymphocyte activation. It does not seem to be linked to cell membranes via phosphatidylinositol and the loss is not due to the breaking of that link.  相似文献   

16.
This investigation sought to identify the presence of immune cells in normal canine corneal epithelium. A whole-mount immunofluorescence study of normal canine epithelium using monoclonal antibodies against CD45, CD11c, CD1c and MHC class II was performed. CD45-positive cells were located in all epithelial layers throughout the cornea, occurring in greater numbers (51.98 ± 4.1/mm2) at the periphery and decreasing towards the central region (11.8 ± 3.1/mm2). CD11c-positive cells were also observed, but were fewer in number. The findings show that the normal canine cornea carries a significant number of cells of immune origin; these cells seem to be of an inactive phenotype as they do not express MHC class II. Further studies are needed to determine whether these cells can express co-stimulatory molecules and act as antigen presenting cells if stimulated.  相似文献   

17.
18.
The zonary and endotheliochorial dog placenta is the most invasive placenta of carnivores. The importance of matrix metalloproteinases (MMP) in placenta invasiveness has been determined in several mammals including species with haemochorial, epitheliochorial and endotheliochorial placentation. Regarding the latter, the expression of MMP enzymes has been studied in the cat and the mature canine placenta. The aim of this study was to analyse the expression and activity of MMP‐2 and MMP‐9 in the early dog placenta. Placentae from 18 to 30 days of pregnancy were collected from four bitches. Two placentae from each bitch were analysed. Placental tissue from one uterine horn was fixed in formaldehyde for immunohistochemistry, while marginal haematoma, labyrinth, non‐implantative and implantative endometrium from the contralateral horn were immediately frozen in dry ice for the analysis of MMP expression (Western blot [WB]) and activity (zymography). MMP‐2 and MMP‐9 were evidenced in the labyrinth, maternal glands and marginal haematoma; this finding was directly correlated with levels of MMP expression by WB, and with the activity of MMP‐2, mainly in the haematoma (the area of major remodelling of tissues). Thus, although MMP‐9 is well expressed in the early canine placenta, it is not active. Given the important role of MMPs for invasiveness, maternal–foetal angiogenesis and the establishment of a correct foetal nutrition, the results are consistent with the findings in other species in which the MMP‐2 activation precedes the MMP‐9 one in early placentation.  相似文献   

19.
In this study, canine monocyte-derived dendritic cells (cMo-DC) were produced in presence of canine GM-CSF (cGM-CSF) and canine IL-4 (cIL-4), and they were characterized by their dendritic morphology, MLR functionality and phenotype. We noticed that cMo-DC were labelled with three anti-human CD86 (FUN-1, BU63 and IT2.2 clones), whereas resting and activated lymphocytes or monocytes were not stained. CD86 expression was induced by cIL-4 and was up-regulated during the differentiation of the cMo-DC, with a maximum at day 7. Furthermore, cMo-DC were very potent even in low numbers as stimulator cells in allogeneic MLR, and BU63 mAb was able to completely block the cMo-DC-induced proliferation in MLR. We also observed that cMo-DC highly expressed MHC Class II and CD32, but we failed to determine their maturation state since the lack of commercially available canine markers. Moreover, cMo-DC contained cytoplasmic periodic microstructures, potentially new ultrastructural markers of canine DC recently described. In conclusion, this work demonstrates that the CD86 costimulatory marker is now usable for a better characterization of in vitro canine DC.  相似文献   

20.
Chimeric antigen receptor (CAR) CAR-T cell therapy targeting CD20 can be a novel adoptive cell therapy for canine patients with B-cell malignancy. After injection of the CAR-T cells in vivo, monitoring circulating CAR-T cells is essential to prove in vivo persistence of CAR-T cells. In this study, we developed a novel monoclonal antibody against canine CD20 CAR, whose single-chain variable fragment was derived from the our previously reported anti-canine CD20 therapeutic antibody. Furthermore, we proved that this monoclonal antibody can detect therapeutic anti-canine CD20 chimeric antibody in the serum from healthy beagle dogs injected with the therapeutic antibody for safety study. This monoclonal antibody is a useful tool for monitoring both canine CD20-CAR-T cells and anti-canine CD20 therapeutic antibody for canine lymphoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号