首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

2.
Boreal mixedwoods are an important element and the most productive forest type in the Canadian boreal forests. However, they experience frequent disturbances. In order to better understand the responses of boreal mixedwoods to different combinations of anthropogenic and natural disturbances, we investigated the natural regeneration of boreal mixedwoods that were previously subjected to three different harvesting treatments (clearcut, partial-cut and uncut control) and naturally regenerated, but subsequently burnt by a severe natural fire 6 years later. The study was conducted 8 years following the fire. Significant interactions were found among harvesting method, species and block in several regeneration variables. There were a total of 12 woody species (trees and shrubs) regenerated, but not all the species were present in all the sites. In general, the species richness and species diversity of the new stands were lowest on clearcut sites while the differences between partial-cut and control varied with blocks. However, the combined total density for all species was lowest on uncut control sites. Density and regeneration index data show that trembling aspen was the predominant tree species in all stands except at one uncut control site where jack pine was the dominant species. The density of trembling aspen generally declined from clearcut to partial to the uncut control. Pincherry, beaked hazel and mountain maple were the dominant shrub species in the new stands, but no general patterns were found in terms of variations in density with harvesting methods for any of the shrub species. Jack pine and white birch were the tallest tree species in the clearcut treatment while white birch was taller than jack pine in the partial-cut and control. The results suggest that active measures are necessary to restore the complex structure of the initial mixedwoods.  相似文献   

3.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

4.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

5.
White spruce (Picea glauca (Moench) Voss) is a dominant species in late-successional ecosystems along the Tanana River, interior Alaska, and the most important commercial timber species in these boreal floodplain forests. Whereas white spruce commonly seed in on young terraces in early primary succession, the species does not become a conspicuous component of the vegetation until after 60–80 years. To address what abiotic and/or biotic factors may explain the paucity of spruce in earlier stages of succession, we examined germination and growth of planted white spruce seedlings across an environmental gradient that included variation in soil physico-chemical properties in the presence and absence of mammal browsing. The effect of browsing pressure over the first four years after planting was most noticeable on the older terraces. Likewise, direct effects of hare browsing on spruce seedling mortality were only manifested at the oldest sites. Spruce germination and survival was inversely proportional to soil cation concentrations, which was largely controlled by temperature-driven evapotranspiration. High light intensities and high air temperatures significantly reduced seedling growth, whereas variation in soil moisture only explained a significant amount of variation in seedling survival. Temperatures within the needle clusters on terminal shoots reached values that adversely affect photosynthesis (>32 °C) on multiple occasions over the growing season. We conclude that the direct (temperature) and indirect (soil chemistry) effects of high insolation are major factors constraining spruce performance on early successional terraces, and that these effects can be significantly exacerbated by mammal browsing on associated deciduous vegetation.  相似文献   

6.
Survival and growth of planted white spruce was assessed under partial harvest treatments and different site preparation techniques in mixedwood forests of two compositions prior to logging: deciduous dominated (d-dom) – primarily comprised of mature trembling aspen (Populus tremuloides Michx.) and coniferous dominated (c-dom) – primarily comprised of mature white spruce (Picea glauca (Moench) Voss). Levels of overstory retention were 0% (clearcut), 50% and 75% of original basal area, and site preparation techniques were inverted mounding, high speed mixing, scalping and control (no treatment). The survival and growth of white spruce were assessed seven years after planting. The experiment was established as a part of the Ecosystem Management Emulating Natural Disturbance (EMEND) experiment located in northern Alberta, Canada. In the c-dom, the 50% and 75% retention of overstory resulted in reduced growth and survival of white spruce seedlings compared to clearcuts. In contrast, in the d-dom, the seedlings performed best in sites that had 50% of the overstory retained. For the c-dom, the mounding and mixing treatments yielded the best growth of spruce seedlings, while scalping yielded the worst. In the d-dom, spruce growth was highest in sites with the mixing treatment. In the d-dom, growth and survival of the planted spruce was greater than in the c-dom. The natural regeneration of deciduous trees was suppressed by the retention of canopy regardless of original composition.  相似文献   

7.
Recently, in addition to logging residues, stumps have become an important component in energy production since there is growing global interest in the use of renewable energy sources in order to decrease anthropogenic carbon emissions. Harvesting of stumps influences the forest floor by changing vegetation and soil organic layers and exposing mineral soil across large areas. We studied whether stump harvesting after clear felling poses further short-term changes in boreal forest soil decomposer community (microbes and mesofauna) and vegetation when compared to the traditional site preparation practice (mounding). In general, stump harvesting caused decline in enchytraeid abundance but did not induce further major changes in decomposer community otherwise nor in vegetation of each soil micro-habitat (intact soil and exposed mineral soil). However, the abundances of almost all decomposer animals were lower in the exposed mineral soil than in the intact soil. Stump removal increased the area of exposed mineral soil in the clear felled areas, leading to lower amount of high quality habitat for most decomposer organisms. Hence, it is obvious that there are (or will be) differences in the decomposer community dynamics between the treatments at the forest stand level. Both species richness and coverage of plants benefitted from large-scale exposure of mineral soil. Because the stump removal procedure disturbs soil organic layers and negatively affects the decomposer community, it has the potential to alter nutrient dynamics in forests.  相似文献   

8.
The effect of seed water content (WC) (2–3, 5–6 and 22–25%, on a fresh weight basis), storage temperature (+4, −20, −80 and −196°C) and storage duration (6, 12, 24, 48 and 60 months) on the germination of white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) B.S.P.) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) seed was investigated. Germination of white spruce control (untreated) seeds and seeds adjusted to 2–3% and 5–6% WC declined after 48 months of storage at −80 and −196°C, with a further decline at 60 months at −20, −80, −196°C. Germination remained high when control white spruce seeds and seeds with 2–3, 5–6% WC were stored at +4°C, over all storage durations. Generally, black spruce and lodgepole pine exhibited high germination at all storage temperatures at 2–3% and 5–6% WC as well as the control (untreated) seed, for up to 60 months in storage. Germination declined for all three species when seed was conditioned to 22–25% WC. This loss in germination was partially recovered in white spruce seed stored at +4, −20 and −80°C after storage durations of 24, 12 and 48 months, respectively, and in black spruce seeds stored at −20 and −196°C after storage durations of 24 months. Mean germination time (MGT) was relatively constant for all species, under all conditions, except for seed conditioned to 22–25% WC, where MGT increased for white spruce seed stored 48 months at −80 and −196°C, and for black spruce seed stored 24 months at +4 and −80°C and 60 months at −196°C. These results show that the optimal storage temperatures are 4°C for white spruce, and 4, −20, −80, and −196°C for black spruce and lodgepole pine, and 2–6% water content is optimal for all 3 species at these temperatures.  相似文献   

9.
We investigated the effects of herbaceous and woody vegetation control on the survival and growth of planted eastern white pine (Pinus strobus L.) seedlings through six growing seasons. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns, and low-shrubs, and was maintained for 0, 2, or 4 years after white pine seedlings were planted. Woody control involved the removal of all tall-shrub and deciduous trees, and was conducted at the time of planting, at the end of the second or fifth growing seasons, or not at all. Seedling height and basal diameter responded positively and proportionally to duration of herbaceous vegetation control. Gains associated with woody control were generally not significant unless some degree of herbaceous vegetation control was also conducted. Only herbaceous control increased pine crown closure and rate of crown closure. Herbaceous control and the presence of 5000–15,000 stems per ha of young overtopping aspen were associated with reduced weevil (Pissodes strobi Peck.) injury and increased pine height growth. The study suggests that white pine restoration strategies on clearcut sites should focus on the proactive, early management of understory vegetation and the gradual reduction of overtopping cover from woody vegetation to create a seedling light environment that supports acceptable growth with minimal weevil damage.  相似文献   

10.
In the boreal forest, conifer release treatments can leave a low quality hardwood component, which does not contribute to healthy, productive mixedwood forests. In this study, the growth and quality of trembling aspen (Populus tremuloides Michx.) regeneration were examined 5-7 years after spraying with glyphosate herbicide before and after harvesting. Results were compared to those from a partial cut and clearcut treatment without herbicide treatments. The preharvest spray treatment effectively reduced aspen density and height but did not lower regeneration quality—assessed by stem and crown deformation and stem stain—compared to the postharvest spray and clearcut treatments. Increased stem stain in the postharvest spray treatment was largely associated with the stem section that grew prior to herbicide application—post-herbicide growth was not affected. While the effect of stem stain may be restricted to growth that occurred before herbicide use, stem deformation from stem dieback may have longer term effects. In the partial cut treatments both density and stocking of aspen regeneration were lower, but aspen basal diameter growth, height growth, and quality were similar to those in the clearcut treatment. Thus, preharvest spray should promote conifer growth by reducing the density and growth of aspen regeneration without reducing the quality of aspen; this should be considered a preferred treatment to support for management objectives calling for productive and healthy mixtures of fast-growing aspen and slow-growing conifers.  相似文献   

11.
Careful logging around advance growth and tree planting following site preparation or not (fill planting) have been widely used to regenerate black spruce (Picea mariana) stands in the boreal forest of Canada. An experiment was established in 1990 to compare these regeneration modes and natural seeding over a 25-year period following two types of scarification (cone- or disk-trenching) that were applied at two intensities (single- or double-pass). Without scarification, the three types of regeneration had slow height growth during the first 10 years (3.4–5.8?cm/year). Thereafter, planted seedlings (6.1–9.8?cm/year) and pre-established layers (5.8–8.5?cm/year) had 2–3 times higher growth than natural seedlings (2.6–3.1?cm/year). Scarification improved height growth of the three types of regeneration, but planted seedlings responded much earlier, and more strongly over the 25 years (+9.4?cm/year) than layers (+2.8?cm/year) and natural seedlings (+2.7?cm/year). A shift in the proportion of layers and natural seedlings was observed following treatment. Long-term monitoring revealed that double-pass scarification was beneficial to layer growth from years 15 to 20, while no positive effect was observed on natural or planted seedlings. Our results suggest that decades may be required for natural regeneration to respond to scarification in cold soils of the boreal forest.  相似文献   

12.
Insects respond to changes in microhabitat caused by canopy disturbance, and thus can be used to examine the ecological impacts of harvesting. Single-tree selection harvesting is the most common silvicultural system used to emulate local small-scale natural disturbance and maintain uneven-aged forest structure in temperate forests. Here, we test for differences in richness, abundance, and composition of hymenopteran and saproxylic insect assemblages at four different taxon levels (selected insect orders; and all hymenopteran families, and braconid subfamilies and morphospecies) between the canopy and understory of unharvested and single-tree selection harvested sites in a northern temperate forest from central Canada. Harvesting had no effect on insect assemblage richness, composition or abundance at the three highest taxon levels (order, family and subfamily). Similarly, richness and abundance at the lowest-taxon level (braconid morphospecies) were similar, although composition differed slightly between unharvested and harvested stands. Insect assemblages were vertically stratified, with generally higher abundance (for Diptera, Hymenoptera, some hymenopteran families and braconid subfamilies) and richness (for braconid morphospecies) in the understory than the canopy. In particular, composition of the braconid morphospecies assemblage showed relatively low similarity between the understory and canopy. Single-tree selection harvesting appears to influ-ence wood-associated insect taxa only subtly through small changes in community composition at the lowest taxon level, and thus is recommended as a conservative approach for managing these northern temperate forests.  相似文献   

13.
Forest management practices have led to a reduction in the volume and a change in the composition of coarse woody debris (CWD) in many forest types. This study compared CWD volume and composition in reserves and two types of managed forest in the central boreal zone of Sweden. Ten areas were surveyed, each containing clear-cut, mature managed and old-growth stands, to determine the volume of standing and lying CWD in terms of species composition, decay class and size class. Volumes of CWD on clear-cuts and in mature managed forests were high compared with previous studies. Old-growth forests (72.6 m3 ha?1) contained a greater volume of CWD than mature managed forests (23.3 m3 ha?1) and clear-cuts (13.6 m3 ha?1). Differences were greatest for the larger size classes and intermediate decay stages. Despite stand ages being up to 144 years, CWD volume and composition in managed forests was more similar to clear-cuts than to old-growth forests.  相似文献   

14.
Fifteen stems of jack pine (Pinus banksiana Lamb.) of 3 commercial thinned plots (control, moderate, and intensive thinning) and 15 stems of black spruce (Picea mariana (Mill.) B.S.P), both coming from the Abitibi-Témiscamingue region – Canada, were cross-cut into three 2.4?m length sections: bottom, middle, and top logs. Logs were processed with a chipper-canter at three cutting widths (12.7, 19.1, and 25.4?mm), producing chips and a three-faced cant. The middle section of the cant was used to evaluate surface quality across the grain on each face. Roughness and waviness parameters and depth of torn grain were recorded. Knot characteristics were assessed in the three cant faces. Poorer surface quality was found in the lower part compared to the upper part of the cant for both species. At larger cutting widths, jack pine logs coming from a natural stand showed lower surface quality compared to logs from thinned stands. Black spruce waviness increased with the cutting width and stem height. These results were attributed to the increase of forces and vibration when cutting at larger cutting widths, which was worsened by the presence of bigger, more numerous knots at the control plot and in the top logs. Black spruce had deeper torn grain compared to jack pine. Their differences in knot characteristics resulted in a maximum torn grain depth favored by the presence of more knots rather than by bigger knot size. Other knot characteristics, such as the position of the knots in the cant face, the insertion angle of the branch and the distribution of the knots around the log, should be studied to better understand the relationship between torn grain formation and knottiness.  相似文献   

15.
The success of various grass-legume mixtures in controlling competing vegetation, and their effect on subsequent survival and growth of Sitka spruce seedlings was studied on a coastal alluvial site in northwestern British Columbia. Mechanically scarified (bladed) strips were hand seeded to pure and combined mixtures of legumes, bunchgrasses, and sodforming grasses. An unseeded control (bladed but not seeded) was also established.Alsike clover (Trifolium hybridum L.) was the most successful legume species. Orchardgrass (Dactylis glomerata L.), big bluegrass (Poa ampla Merr.), and creeping red fescue (Festuca rubra L.) were the most successful grass species. Red alder (Alnus rubra Bong.) density and height were lower in legume-seeded treatments. Red elderberry (Sambucus racemosa L.) and salmonberry (Rubus spectabilis Pursh.) were effectively reduced by blading and have reestablished slowly. A combination of blading and early establishment of either sodforming grasses or bunchgrasses effectively decreased reinvasion by thimbleberry (Rubus parviflorus Nutt.).Growth of Sitka spruce was best in the unseeded control treatment or in the treatments with legumes but no sodforming grasses. Presence of sodforming grasses decreased both diameter and height growth. Sitka spruce diameter decreased with increasing red alder density. After 5 growing seasons, spruce has outgrown all competitors except red alder.  相似文献   

16.
Otsamo  Rikka 《New Forests》2000,19(1):51-68
Early performance of two dipterocarp species Anisoptera marginata and Shorea parvifolia, and a long-living pioneer species Peronema canescens (Verbenaceae) planted in artificial gaps (size 260 m2) and surrounding untreated stands was studied in a fast-growing plantation of Acacia mangium on an Imperata cylindrica grassland site in South Kalimantan, Indonesia. Forty seedlings of each species were planted at one-meter intervals in lines across each of the five gaps, starting and ending under closed stand. Survival, height and diameter (d0.05) increments were measured, and the effect of gap opening on the composition and abundance of understorey vegetation (grass, shrub and native tree seedlings and saplings) was studied. 19 months after planting, average survival rates were 97% for A. marginata, 94% for P. canescens and 71% for S. parvifolia, with no statistical differences between gap and closed stand. Substantial mortality and damage of dipterocarps were caused by wild boars; minor damage by dieback (for S. parvifolia) and insect pests (for A. marginata). Early growth was clearly influenced by distance from gap centre and light conditions; the growth of seedlings was greater the nearer the seedlings were situated to centre and the higher the level of daily photosynthetic photon flux density (PPFD) was. Gap opening increased the growth of shrub species Chromolaena odorata, but not that of Imperata grass. It also increased the density and height growth of saplings of native pioneer and secondary tree species. Seedling density increased both in closed stand and actual gaps, but was higher inside gaps.Results indicate good prospects for diversifying the composition of fast-growing forest plantations on severely degraded former forest lands and integrating slow-growing valuable species in plantation programs. Both in-depth ecophysiological studies on species-specific growth requirements, and practical oriented research on silvicultural options and economics need further studies.  相似文献   

17.
We examined how the density, growth and survival of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton) regeneration are influenced by gap size, soil nutrient availability and understory vegetation. We used a factorial combination of (1) three gap sizes (small: <100 m2; medium: 100–300 m2; large: ∼1000 m2); (2) presence/absence of liming (92% CaCO3 at 500 kg ha−1, 1st year post-harvest); and (3) presence/absence of vegetation control (weeding twice a year; 1st to 3rd year post-harvest). We monitored height increment and survival of 1500 seedlings and saplings of both species from the 3rd to the 6th year post-harvest, and assessed density 6 years post-harvest. Both species exhibited a complex set of density, growth and survival responses across the combination of treatments. Compared to sugar maple, yellow birch had an overall lower density, greater growth, and similar survival rate; the two species attained maximum values in different gap size for density, and similar gap size for growth and survival. Liming had very little or no effect on the species. The growth of yellow birch was slightly but significantly greater when understory vegetation was controlled, particularly in medium and large gaps. These results suggest that a variety of canopy gap sizes can provide the right combination of understory conditions for regenerating these two functionally different tree species.  相似文献   

18.
The influence of herbaceous and woody vegetation control, either singly or in combination, on leaf gas exchange, water status, and nutrient relations of planted eastern white pine (Pinus strobus L.) seedlings was examined in a central Ontario clearcut over four consecutive growing seasons (GSs). Net carbon assimilation (An), leaf conductance to water vapour (Gwv), water use efficiency (WUE), and midday leaf water potential (ψm) were measured periodically during the second to fourth GSs of vegetation control treatments, while leaf nutrient relations were examined in GS five. Leaf An and Gwv were reduced (p ≤ 0.05) in the presence of herbaceous vegetation in GS two, by both herbaceous and woody vegetation in GS three, and only by woody vegetation (largely trembling aspen (Populus tremuloides Michx.)) in GS four. Leaf WUE was increased (p ≤ 0.05) in all three GSs in which herbaceous vegetation control was applied and where woody vegetation provided partial shading of planted white pine. Leaf water status was comparatively less responsive to vegetation control treatments, but leaf ψm was increased (p ≤ 0.05) in the presence of woody vegetation in GSs two and four, likely due to shading and reduced atmospheric evaporative demand of the white pine seedling environment. Within a given GS, the effects of vegetation control on An, Gwv, and ψm were strongly linked to treatment-induced changes in total vegetative cover, and light and soil moisture availability. Seedling height, diameter, and volume growth rates were positively correlated with An and WUE in GSs two and three, but less so in GS four. Vector analysis suggested that herbaceous competition induced foliar N, P, and K deficiencies in five-year-old white pine seedlings while competition from aspen resulted in foliar Ca deficiency.  相似文献   

19.
Upland hardwood stands on mesic, escarpment-oriented sites on the Cumberland Plateau region of northeastern Alabama provide a myriad management opportunities. Stands are primarily managed for Quercus, but the high species diversity allows for management that targets multiple species. Stand composition is unique in that dominant species include shade tolerant species such as Acer saccharum, intermediate tolerant Quercus spp. and Carya spp., and intolerant Liriodendron tulipifera. Three replications of five levels of disturbance were created to assess species compositional changes; disturbances included three levels of harvest intensity, a mid-story herbicide treatment, and a control. After eight growing seasons, there were no discernable differences in species richness, diversity or evenness. Importance values based on relative basal area and relative density also changed little, except for clearcuts where L. tulipifera greatly increased. An initial gradient in basal area, canopy cover, and light created by harvesting or thinning dissipated following five growing seasons. Options exist for future stand management, including promoting two-aged or uneven-aged systems. Maintenance of Quercus will require additional tending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号