首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
碱性亮氨酸拉链(bZIP)转录因子是真核生物转录因子中分布最广泛、最保守的一类蛋白。目前在许多植物中已发现大量的bZIP转录因子,这些bZIP转录因子成员广泛参与种子贮藏基因的表达、植物的生长发育、光信号传导、病害防御、生物和非生物胁迫应答以及ABA的敏感性等各种信号的反应。本研究首次从紫花苜蓿(Medicago sativa)全转录组水平鉴定出bZIP转录因子家族共包含138个基因,根据bZIP蛋白序列进行系统进化分析可以将其分为10类;对MsbZIP基因的系统进化分析表明该基因家族在分类上有很高的保守性。该转录因子家族的基因密码子偏好性分析表明,MsbZIP基因密码子偏好使用A/T碱基。此外,MsbZIP基因GO功能注释分析结果显示,138个MsbZIP基因最终分为23个GO分类,总体包括分子功能和生物学过程两类。相关性分析结果表明,共有372对基因表达相关性极显著(P0.01)。本研究可为紫花苜蓿bZIP转录因子功能特性、进化历程和生物功能的深入研究奠定基础。  相似文献   

2.
紫花苜蓿是世界最重要的豆科牧草之一,干旱是影响其产量和地理分布的关键瓶颈。在紫花苜蓿响应干旱胁迫过程中,转录因子发挥着重要的调控作用。TCP(teosinte branchesd 1/cycloidea/pro-liferating cell factors)为植物特有的转录因子,在植物生长、发育、响应逆境胁迫中都具有重要的生物学功能。截至目前,该基因家族在紫花苜蓿中的分布以及响应干旱胁迫的生物学功能仍未见报道。因此,为进一步挖掘紫花苜蓿中响应干旱胁迫功能基因,本研究利用生物信息学方法在全基因组水平对TCP基因家族进行了鉴定,并对其系统进化、基因结构、染色体定位、共线性分析以及干旱胁迫下的表达模式进行了分析。结果表明,紫花苜蓿基因组中共鉴定出40个MsTCP基因,不均匀地分布于20条染色体上,其中包括17对旁系同源基因对,且都是基因片段复制事件。系统发育和保守结构域分析发现,MsTCP基因可以分为2个大分支和3个亚家族(PCF, CIN与CYC/TB1),同一分支中的成员具有相同氨基酸数目的TCP结构域,同亚家族中的成员具有相似的保守基序与基因结构。此外,通过分析紫花苜蓿响应干旱转录组数据共鉴定出4个可能与紫花苜蓿响应干旱胁迫有关的MsTCP基因(MsTCP23,MsTCP27,MsTCP29,MsTCP33)。qRT-PCR结果进一步表明PEG模拟干旱胁迫处理后,这4个基因的表达量在根和叶中均显著上调,进一步确定了这些基因的确响应紫花苜蓿干旱胁迫。该研究为后期深入解析紫花苜蓿响应干旱胁迫理论以及通过基因工程技术创制高抗旱紫花苜蓿新种质奠定基础。  相似文献   

3.
甘油-3-磷酸酰基转移酶(glycerol-3-phosphate?acyltransferase,?GPAT)是三酰甘油(triacylglycerol,?TAG)生物合成的限速酶,催化TAG生物合成的起始步骤,为多种脂质合成提供了底物,会直接参与到植物的生长发育和抗逆过程.蒺藜苜蓿(Medicago truncatula)作为豆科模式植物具有基因组小、生长周期短、遗传转化效率高等特点.为了解GPAT基因在苜蓿抗逆尤其是在耐盐中的作用,本研究选择蒺藜苜蓿基因组为研究对象,采用Blastp和Hmm结构域搜索方法,共鉴定出24个mtGPAT基因.根据系统进化、基因结构和结构域差异将其分成3个亚家族.同时染色体定位分析发现,24个mtGPAT基因不均匀分布在7条苜蓿染色体上,每条染色体上分布有2~5个基因.基因表达谱分析表明:蒺藜苜蓿GPAT基因具有器官特异性,并且会参与盐胁迫反应.这些结果可为进一步深入研究蒺藜苜蓿GPAT家族基因的功能提供理论基础.  相似文献   

4.
甘油-3-磷酸酰基转移酶(glycerol-3-phosphate acyltransferase, GPAT)是三酰甘油(triacylglycerol, TAG)生物合成的限速酶,催化TAG生物合成的起始步骤,为多种脂质合成提供了底物,会直接参与到植物的生长发育和抗逆过程。蒺藜苜蓿(Medicago truncatula)作为豆科模式植物具有基因组小、生长周期短、遗传转化效率高等特点。为了解GPAT基因在苜蓿抗逆尤其是在耐盐中的作用,本研究选择蒺藜苜蓿基因组为研究对象,采用Blastp和Hmm结构域搜索方法,共鉴定出24个mtGPAT基因。根据系统进化、基因结构和结构域差异将其分成3个亚家族。同时染色体定位分析发现,24个mtGPAT基因不均匀分布在7条苜蓿染色体上,每条染色体上分布有2~5个基因。基因表达谱分析表明:蒺藜苜蓿GPAT基因具有器官特异性,并且会参与盐胁迫反应。这些结果可为进一步深入研究蒺藜苜蓿GPAT家族基因的功能提供理论基础。  相似文献   

5.
叶绿体atpA基因位于ATP合酶的CF1上,编码α亚基,是光合作用不可缺少的关键基因。本研究利用RT-PCR技术,从‘新疆大叶’苜蓿(Medicago sativa L.‘Xinjiang Daye’)中克隆出atpA基因,并进行生物信息学分析,采用实时荧光定量PCR技术进行基因表达模式检测。结果显示,MsatpA基因编码510个氨基酸,相对分子质量为55.71 KD,等电点为5.22。MsAtpA蛋白含有多个磷酸化位点且无跨膜结构和信号肽,二级结构中α-螺旋占比最高;亚细胞定位预测该基因编码的蛋白位于叶绿体中,与同为豆科苜蓿属的黄花苜蓿(Medicago falcata)、蒺藜苜蓿(Medicago truncatula)的AtpA氨基酸序列同源性较高。表达模式检测结果显示,MsatpA基因在叶中的表达量最高,根中最少;结荚期的基因表达量显著高于其他发育时期;MsatpA基因响应低温、高温、盐和渗透胁迫应答,且呈现出不同的表达特点。研究结果为紫花苜蓿atpA基因功能研究奠定基础。  相似文献   

6.
甘油-3-磷酸酰基转移酶(Glycerol-3-phosphate acyltransferase, GPAT)是甘油生物合成的限速酶,参与多种脂类的生物合成途径,在植物生长发育和抗逆过程中具有重要作用。为了解GPAT基因在紫花苜蓿(Medicago sativa)应对非生物胁迫过程中的作用,本研究利用生物信息学方法共鉴定出73个紫花苜蓿MsGPATs基因。研究表明,MsGPAT基因在染色体上不均匀分布,大多数基因存在大片段复制现象。系统进化树分析将其分为3个亚组。基因结构和蛋白质保守基序分析表明MsGPAT基因家族成员多数含有2~3个外显子或11~12个外显子,至少含有1个保守基序。顺式作用元件分析表明不同MsGPATs基因含有不同的光、生长素和胁迫应答元件。基因表达谱分析显示,分别有10,5,18个MsGPATs基因积极响应高盐、高碱和混合盐碱胁迫,可作为紫花苜蓿耐盐碱研究的候选基因。  相似文献   

7.
紫花苜蓿是目前全国乃至世界上种植最多的牧草,在畜牧业生产中发挥着重要的作用。γ-生育酚甲基转移酶(γ-TMT)是维生素E合成途径中一种重要的合成酶,催化γ-生育酚向α-生育酚的转化,改变维生素E组成,利于动物和人体的吸收。本实验通过RACE-PCR技术,得到紫花苜蓿γ-TMT基因的全长cDNA序列,命名为MsTMT。测序和生物信息学分析表明,此序列全长1 306 bp,包含1个长为939 bp的完整开放阅读框(ORF),编码312个氨基酸。MsTMT属于甲基转移酶家族(AdoMet-MTases),有1个腺苷脱氨基酶信号(SLSTDDP),包含有2个保守的S-腺苷甲硫氨酸结合结构域(XXDXGCGIG,VXXPGGXXIX)。Real-time PCR检测结果表明MsTMT基因在紫花苜蓿各组织中均有表达,叶片中表达量最高。受NaCl、PEG以及黑暗诱导后,该基因表达上调;低温胁迫后该基因表达下降;外源ABA不影响该基因的表达。  相似文献   

8.
4-香豆酸辅酶A连接酶(4-coumarate:coenzyme A ligase)是苯丙烷类代谢途径中的重要限速酶。在川桑基因组数据库的基础上利用全基因组筛选方法鉴别出6个Mn4CL同源基因,命名为Mn4CL1~Mn4CL6。蛋白质功能域分析发现6个Mn4CL蛋白均包含保守结构域BoxⅠ和BoxⅡ,都属于ANL酶超家族。系统发生分析表明,Mn4CL1、Mn4CL2、Mn4CL4与已报道的参与木质素生物合成的4CL聚类在一起,属于第Ⅰ类;Mn4CL3属于第Ⅱ类,参与黄酮类化合物的生物合成;Mn4CL5和Mn4CL6属于4CL类似蛋白。以此为基础,从湖桑32号叶片中克隆出一条长为1 641 bp的cDNA序列,命名为Mm4CL2,构建重组质粒pET-28a-Mm4CL2并成功诱导表达出Mm4CL2蛋白。初步的酶学活性分析发现Mm4CL2蛋白能够分别催化香豆酸、咖啡酸和阿魏酸形成其相应的肉桂酰CoA,而不能催化芥子酸。本研究初步鉴定出一个桑树4CL基因Mm4CL2,为基因工程定向选育低木质素的桑树品种提供了新的候选基因。  相似文献   

9.
以实验室前期对紫花苜蓿(Medicago sativa L.)不育系BSA-Seq分析为背景,为探究茉莉酸类对其育性的影响,本试验采用PCR法,成功从紫花苜蓿基因组中克隆了一个全长1 047 bp,功能为控制茉莉酸O-甲基转移酶合成的基因,命名为MsJMT。分析表达模式后发现,该基因编码氨基酸348个,编码蛋白为不稳定非分泌亲水蛋白。亚细胞定位结果为核质表达。构建基因进化树后,验证其氨基酸序列与5种豆科植物相似度达99%以上。利用qPCR技术分析其对紫花苜蓿花苞育性的时空表达差异,结果显示不育系全时期表达量比保持系高且在Ⅲ时期两者差异极显著(P<0.01)。而茉莉酸含量测定结果则相反,为不育系全时期低于保持系,且保持系Ⅲ时期含量最高。利用外源茉莉酸甲酯喷施处理Ⅲ时期花苞,结果为在0.5 mmol·L-1,1 mmol·L-1水平下花药提前开裂。研究结果表明MsJMT可能通过茉莉酸通路影响紫花苜蓿育性。  相似文献   

10.
SAUR(small auxin-up RNA)是植物早期响应生长素的一类基因,参与植物生长发育与非生物胁迫响应等一系列生物过程。在拟南芥、水稻、棉花等物种中已经对SAUR基因家族进行了系统鉴定与分析,但是,在世界上最重要的豆科牧草紫花苜蓿中关于SAUR基因家族的研究尚未开展。本研究利用生物信息学的方法在紫花苜蓿参考基因组共鉴定到433个MsSAUR成员,并对其基因组位置、基因结构、启动子顺式作用元件以及不同组织中的表达模式进行了分析。同时,利用紫花苜蓿在不同非生物胁迫下的转录组数据,发现有5、11、19以及12个MsSAUR成员分别响应干旱、盐、冷以及碱胁迫,MsSAUR14/94/254可以同时响应干旱和盐胁迫,MsSAUR297可以同时响应干旱、盐以及碱胁迫,MsSAUR306可以同时响应干旱、盐以及冷胁迫。本研究结果可为后期通过基因工程技术创制高产抗逆新种质提供重要的候选基因。  相似文献   

11.
紫花苜蓿(Medicago sativa)是世界上种植面积最大、应用最广泛的豆科牧草。由于其耐盐性中等,其在我国北方地区的产量和种植受到土壤盐渍化的限制。因此提高紫花苜蓿的耐盐性具有重要的科学和生产意义。为此,以龙牧801紫花苜蓿(M.sativa‘Longmu 801’)为试验材料,采用实时荧光定量PCR技术分析了不同浓度NaCl胁迫下9个盐胁迫蛋白质组筛选出的盐响应相关基因的表达模式。结果显示,处理时间和处理浓度对9个基因的相对表达量均有显著性影响,表明这9个基因均在紫花苜蓿盐胁迫应答中发挥着一定作用。处理1h时,G6PI、ABP19a、Trx-h1、PR bet 1、FBPA、6PGDH和ALDH这7个基因的相对表达量在不同NaCl胁迫浓度处理的紫花苜蓿中均显著上调,RRM和GDPD在NaCl处理2h后开始上调。除G6PI基因,其他8个基因在0.4%NaCl处理下相对表达量显著高于0.2%和0.8%NaCl处理。这些基因参与糖代谢、信号转导和胁迫响应。以上结果表明,紫花苜蓿的耐盐性极其复杂,涉及到多基因的表达和代谢通路的调控。研究结果有助于全面研究并了解紫花苜蓿的盐响应相关基因的表达模式,促进紫花苜蓿耐盐分子育种。  相似文献   

12.
胚胎晚期富集蛋白(LEA)广泛参与植物对多种逆境胁迫的反应。本研究利用同源克隆的方法,从紫花苜蓿中克隆了一个LEA4类基因的开放阅读框(ORF),命名为MsLEA4-4。该基因编码512个氨基酸,结构分析显示MsLEA4-4包含5个重复的由11个氨基酸TAQAAKEKTQQ组成的序列特征。利用实时荧光定量PCR检测了MsLEA4-4在不同逆境下的表达量,结果显示,该基因受干旱、NaCl、Cu2+、Zn2+和外源ABA诱导表达上调,其中NaCl胁迫2 h、Cu2+和Zn2+胁迫8 h,MsLEA4-4基因表达量最高;冷胁迫和干旱胁迫下,该基因的表达量随处理时间的延长呈逐渐上升趋势,表明该基因可能参与了紫花苜蓿的抗逆性调控。构建植物超表达载体pCAMBIA3301-MsLEA4-4,采用农杆菌介导法侵染拟南芥花序,通过草铵膦(PPT)筛选和分子检测,7株抗性苗呈阳性,表明目的基因已成功导入拟南芥基因组中。本研究为进一步探索MsLEA4-4基因在紫花苜蓿抗逆性调控中的作用奠定了基础。  相似文献   

13.
CPP (cysteine-rich polycomb-like protein)基因家族是一类小转录因子,广泛存在于除酵母与原核生物外的各种生物体中,在植物生长发育及响应胁迫过程中具有重要作用。截至目前,CPP基因家族已在多个物种中被鉴定和研究,但在豆科模式植物蒺藜苜蓿中还未见报道。本研究采用生物信息学的方法,在蒺藜苜蓿中共鉴定出9个CPP基因。通过与3个物种CPP基因的蛋白序列构建系统发育树,将CPP基因分为3类,MtCPP成员与大豆的亲缘关系更接近。保守结构域分析表明MtCPP转录因子都具有1~2个CXC保守结构域。染色体定位分析得出,9个CPP基因分布在6条染色体上,并鉴定出2对旁系同源基因,均来源于片段重复事件。通过基因芯片技术检测MtCPP基因的表达模式结果显示,MtCPP基因的表达具有一定的时空特异性。MtCPP基因启动子中含有大量与激素以及胁迫相关的顺式作用元件,并且MtCPP2MtCPP5MtCPP6MtCPP7基因具有响应干旱的表达特征,MtCPP2MtCPP8基因具有响应盐胁迫的功能。该研究可为后期深入解析MtCPP基因家族功能和筛选参与苜蓿抗逆的MtCPP基因奠定基础。  相似文献   

14.
短日照是苜蓿秋眠性的主要影响因子,故苜蓿秋眠被认为是一种光周期反应。光敏色素是光周期反应的主要受体,因而探究光敏色素与苜蓿秋眠性之间的关系可能是揭示苜蓿秋眠性机理的有效途径之一。紫花苜蓿光敏色素A、B基因尚未被克隆,本研究采用2种不同的试验策略,分别以mRNA和基因组DNA为起点,根据比较基因组学原理和生物信息学方法,利用RACE和染色体步移等手段,克隆得到了紫花苜蓿光敏色素A 全长和光敏色素B近全长基因序列,为进一步探讨两者在苜蓿生长发育,特别是苜蓿秋眠性的光周期调控机制中的作用奠定了基础, 并为克隆紫花苜蓿其他未知基因等研究提供思路和参考。  相似文献   

15.
紫花苜蓿离体培养植株再生及其RAPD分析   总被引:6,自引:4,他引:6  
对苜蓿(品种农宝)的下胚轴外植体进行离体培养建立了再生体系。结果表明,子叶和下胚轴切段在附加0.2~1.0 mg/L IAA和2.0 mg/L 6-BA或2.0 mg/L KT的MS培养基上培养,均能诱导出愈伤组织,但子叶所诱导的愈伤组织不具有分化能力。下胚轴切段培养5~7 d即可诱导出愈伤组织,并分化出绿色芽点,在原培养基上进而可分化出大量的丛生芽。在含0.2 mg/L IAA和2.0 mg/L 6-BA的MS培养基上,其分化率最高可达到42.6%。这些芽在含0.2 mg/L IAA和0.5 mg/L KT的MS培养基上长成2 cm左右的幼苗时,将其切下转至1/2 MS0培养基上,培养10 d即可诱导生根,得到再生植株。随机选取实生苗和下胚轴愈伤组织再生苗进行RAPD分析,结果表明,所用的50个随机引物中有5个扩增出差异性条带,甚至再生植株之间也有1条引物扩增的条带有差异,这说明经组织培养所得到的再生植株与实生苗相比,在DNA水平上发生了一定程度变异,并且这种变异也存在于再生植株之间。  相似文献   

16.
为探究安徽野生黄花苜蓿的产量和遗传背景,以安徽野生黄花苜蓿和紫花苜蓿巨能601为材料,测定产量性状,分析染色体核型,利用SSR分子标记鉴定基因型。结果表明:黄花苜蓿株高与紫花苜蓿没有显著差异,主茎节数显著多于紫花苜蓿,紫花苜蓿鲜草及干草产量都显著高于安徽野生黄花苜蓿。SSR分子标记检测表明安徽野生黄花苜蓿具有更高的纯合度,其纯合位点占总检测位点的60.20%,巨能601纯合位点仅占总检测位点的41.96%,有2、3和4个等位基因的位点分别占36.61%、13.39%和8.04%,2个品系的遗传相似性为63.39%。  相似文献   

17.
维生素E是一种人体必需,却不能自主合成的脂溶性维生素。尿黑酸植基转移酶(HPT)是维生素E生物合成途径的关键限速酶,直接影响植物体内维生素E的总量。本实验利用同源克隆的方法,根据截形苜蓿的序列从紫花苜蓿中克隆得到HPT基因的完整开放阅读框(ORF)。NCBI Blast分析结果表明,该基因编码412个氨基酸,属于异戊烯转移酶UbiA超家族。多序列比对结果表明,该序列与其他物种的HPT蛋白序列相似度高达80%,将其命名为MsHPT。进化树分析结果表明,MsHPT与截型苜蓿MtHPT亲缘关系最近,蛋白序列相似度为96.84%。通过染色体步移技术得到该基因的启动子序列,分析结果显示,该基因的启动子区域含有胁迫响应元件、激素响应元件(脱落酸、赤霉素和乙烯)以及大量的光响应元件。实时荧光定量PCR检测结果表明,MsHPT基因在紫花苜蓿各组织中均有表达,叶片中的表达量最高,根次之。经低温、NaCl、PEG、GA3和ABA诱导后该基因表达均上调,表明其可能参与了植物的抗逆性调控。扩增MsHPT基因的开放阅读框,对其进行双酶切后转入双元表达载体pBI121中,通过农杆菌介导的方式将该基因转入拟南芥。通过PCR鉴定,得到7株阳性苗。本研究为进一步探索MsHPT在紫花苜蓿维生素E的合成以及紫花苜蓿抗逆调控中的作用奠定了基础。  相似文献   

18.
CPA(cation proton antiporter)超家族通过转运质子和一价金属离子调节细胞内离子和pH稳定。阳离子质子转运体(cation/H+ exchanger,CHX)基因家族属于CPA2(cation proton antiporter 2)超家族,其N端有一个Na+/H+ exchanger结构域,对植物维持细胞离子平衡、花器官发育起着至关重要的作用。通过生物信息学手段,系统地分析了蒺藜苜蓿CHX家族基因,通过全基因组筛选共鉴定出47个MtCHXs;染色体定位分析表明蒺藜苜蓿CHX基因分布在8条不同的染色体上;同源性分析显示蒺藜苜蓿和拟南芥亲缘关系近,而与水稻亲缘关系远;进一步进化关系分析将47个MtCHXs基因分为5组,并且各组内成员在基因结构和基序上比较保守;顺式作用元件分析发现MtCHXs基因启动子包含大量光响应元件、激素响应元件以及干旱、低温、创伤响应元件;表达特性分析发现MtCHXs在生殖器官中高表达,并且响应干旱、低温等非生物胁迫。  相似文献   

19.
为明确杨凌区紫花苜蓿叶枯病病原菌种类及其生物学特性,为该病害在生产中的诊断及防治提供理论依据,本研究对采自陕西省杨凌区苜蓿叶枯病病样进行致病菌分离、纯化、分子鉴定、离体叶片及活体致病性测定,确定了引起陕西省杨凌区苜蓿叶枯病的病原菌为立枯丝核菌(Rhizoctonia solani)。对苜蓿叶枯病原菌生物学特性研究发现该菌最适pH值为7;黑暗条件下有利于该菌生长;可溶性淀粉是其较好的碳源,而对果糖利用效果最差;最适氮源为硝酸钾,而对硝酸铵利用效果最差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号