首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To determine whether a shoe with an axialcontoured lateral branch would induce greater lateral roll of the forelimb hoof during the time between heel and toe lift-off at end of the stance phase (breakover). Animals-10 adult horses. PROCEDURE: A gyroscopic transducer was placed on the hoof of the right forelimb and connected to a transmitter. Data on hoof angular velocity were collected as each horse walked and trotted on a treadmill before (treatment 1, no trim-no shoe) and after 2 treatments by a farrier (treatment 2, trim-standard shoe; and treatment 3, trim-contoured shoe). Data were converted to hoof angles by mathematical integration. Breakover duration was divided into 4 segments, and hoof angles in 3 planes (pitch, roll, and yaw) were calculated at the end of each segment. Multivariable ANOVA was performed to detect differences among treatments and gaits. RESULTS: Trimming and shoeing with a shoe with contoured lateral branches induced greater mean lateral roll to the hoof of 3.2 degrees and 2.5 degrees during the first half of breakover when trotting, compared with values for no trim-no shoe and trim-standard shoe, respectively. This effect dissipated during the second half of breakover. When horses walked, lateral roll during breakover was not significantly enhanced by use of this shoe. CONCLUSIONS AND CLINICAL RELEVANCE: A shoe with an axial-contoured lateral branch induced greater lateral roll during breakover in trotting horses, but change in orientation of the hoof was small and limited to the first half of breakover.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Overload injuries in sport horses commonly occur; shoeing techniques are believed to be important in prevention of these injuries, but there is a paucity of scientific information identifying the potential connection. OBJECTIVES: To test a horseshoe with a modified rolled toe designed to ease the process of breakover and decrease loading of lesion-prone structures of the distal limb. METHODS: Twenty clinically sound Warmblood horses trotted over a track containing a pressure/force measuring system and 6 infrared cameras. The horses were measured with 2 types of shoes, standard flat shoes and shoes with a rolled toe. The shoeing procedure was randomised and horses had 2 days between measurements to adapt to the shoes. RESULTS: Limb placement and timing characteristics, e.g. breakover duration, did not change significantly. There was an improvement in the ease of movement to roll over the toe in the shoes with a rolled toe, due mainly to a smoother hoof-unrollment pattern. The peak indicative moment decreased substantially at the onset of breakover in the shoe with the rolled toe. CONCLUSIONS: With a rolled toe the process of hoof-unrollment is smoother, which improves the coordination of this process, and lowers peak loading of the distal limb during breakover. POTENTIAL RELEVANCE: This study stresses the importance of proper shoeing in sound horses, showing that shoe modifications can optimise the loading characteristics of the distal limb and therefore might be a means to prevent sport horses from overload injuries.  相似文献   

3.
AIM: To quantify the effect of plain, wedged and eggbar shoes on the distribution of pressure under the hoof of horses at the walk, at selected areas of interest (AOI), to find scientific evidence for the perceived efficacy of these shoes in the treatment of palmar heel pain. METHODS: Six clinically sound adult Warmblood mares weighing 551 (SD 25) kg were shod (forelegs) with either plain, eggbar or 6 degrees-wedge shoes using a latin-square experimental design. All horses were shod by the same farrier, and each balanced and aligned for its individual conformation. Data were collected on three walking strides for each foreleg using a 550 x 405-mm pressure plate to quantify the distribution of pressure under each type of shoe at five AOI. RESULTS: Landing of the hoof with all three shoes was predominantly from lateral to medial (range 7-15 msec). Irrespective of the type of shoe, the greatest pressure was found in the lateral and medial toe (lateral 39.7 (SE 0.6) N/cm2 and medial 35.0 (SE 0.5) N/cm2) and the point of the toe (33.3 (SE 0.5) N/cm2). The lowest peak pressure was in the heel (lateral 25.9 (SE 0.5) N/cm2 and medial 21.1 (SE 0.4) N/cm2; p<0.05). Eggbar and wedge shoes increased total stance time (938 (SE 8) msec and 952 (SE 6) msec, respectively) compared with plain shoes (898 (SE 14) msec) (p<0.05). The wedge shoe reduced breakover compared with the plain and eggbar shoes (13.8% vs 15.8% and 14.5%, respectively; p<0.05). The eggbar shoe had lower total shoe peak pressure (29.5 (SE 0.7) N/cm2) than plain (31.8 (SE 0.5) N/cm2) and wedge (30.9 (SE 0.6) N/cm2) shoes. CONCLUSIONS AND CLINICAL RELEVANCE: Both the eggbar and 6 degrees-wedge shoe offer advantages for palmar heel pain. In comparison to the plain shoe, the eggbar shoe had less peak pressure at the heel AOI, and across the entire shoe, due to the greater bearing surface and the effect of the longer heel. The 6 degrees-wedge shoe had greater loading on the lateral heel AOI, but promoted earlier breakover at the toe. Both shoes offer advantages for the horse with palmar heel pain, though choice of shoe will depend on clear identification of the causative factors, to provide therapeutic shoeing that maximises the individual horse's response.  相似文献   

4.
Using a system for motion analysis, linear correlation of speed and forelimb lameness was measured in 16 horses trotting on a treadmill at a minimum of three different trotting speeds. Forelimb lameness was determined as asymmetry of vertical head motion during left and right forelimb stance.In seven horses with a moderate forelimb lameness (head motion asymmetry >40%), lameness increased significantly with trotting speed. In a further seven horses with mild or subclinical forelimb lameness (head motion asymmetry <40%) and in two horses with a moderate forelimb lameness, no significant correlation between speed and motion asymmetry was found.The results indicate that moderate forelimb lameness measured as head motion asymmetry depends on the speed at which the measurements are taken. If head motion asymmetry is measured at two trotting speeds, it can be standardized to any speed within the trotting speed range.  相似文献   

5.
Orthopaedic shoeing applied for disorders such as navicular disease is mostly evaluated on hard track surfaces, but very often horses are ridden only on soft tracks. To compare the effects of normal shoes, eggbar shoes, and shoes with heel wedges (5 degrees) on the kinematics of the distal forelimb on hard and soft track surfaces, eleven sound Dutch Warmblood horses were led across three different tracks (an asphalt, a fibre/sand mix (= Agterberg), and a pure sand track) with three different shoe types (a normal shoe, an eggbar shoe, and a shoe with heel wedges). The hoof rotation and the maximal extension of the fetlock joint at midstance period were recorded by an infrared-light based gait analysis system (ProReflex) at walk and at trot. Statistical analysis revealed significant effects of track and shoe type, and a shoe-track interaction (p<0.05). On soft track surfaces, the equilibrium of the distal forelimb dictated a 1.5-4 degrees forward rotation of the normal or eggbar shod foot, the most on a sand track. The wedge effect on hoof rotation, however, was always significantly greater, but similar to that on the hard track surface (5 degrees forward rotation). The maximal fetlock extension was less on a soft surface, in particular on the sand track (p<0.05). This decrease was most pronounced when the horses were shod with heel wedges and was least pronounced with normal shoes. In conclusion, in particular the sand track allows a forward rotation of the hoof and thus relief of pressure in the navicular area, and a decrease in maximal fetlock extension and thus unloading of the fetlock joint. The extra forward rotation of the hoof induced by heel wedges on hard tracks was almost the same on soft track surfaces. Eggbars and fibre/sand mix tracks have intermediate effects on unloading of the distal forelimb.  相似文献   

6.
Point of breakover, defined as the portion of the hoof last in contact with the ground during the terminal stance phase of a limb, can be influenced by many factors including craniocaudal placement of the shoe. Shortening the point of breakover has been suggested to decrease strain on the deep digital flexor tendon and navicular bone as well as to improve the alignment of the second and third phalanx. The current experiment involved eight sound horses fitted with aluminum plates adhered to their front hooves, which were drilled and tapped to allow additional aluminum plates of various lengths to be attached (the longest plate was placed flush with the toe, while the shortest plate was moved 3.81 cm caudal to the toe). Horses were recorded on video while at the walk and trot over a distance of 70 meters for six repetitions to determine differences in gait kinematics. Results of this study show significant changes in stride kinematics caused by shortening the point of breakover. Retraction of the forelimbs was greatest when breakover was moved 1.27 cm back from the toe (P < .05), and minimum height of the fetlock at the trot was higher on all treatments where the breakover point was moved caudally (P < .05). Some improvements in gait quality were observed when breakover was shortened, although extreme caudal placement of the shoe (negative placement in relation to P3) resulted in a decrease in gait quality as seen by decreased retraction of the forelimb (P < .05) coupled with hoof height occurring earlier in the stride (P < .05).  相似文献   

7.
The shoe types most commonly applied to horses with navicular disease or other forms of palmar heel pain are shoes with heel wedges and eggbar shoes, although their efficacy has been a matter of debate among veterinarians and farriers for centuries. To quantify the effect of these different types of “navicular” shoeing on static hoof pressure distribution, 6 warmblood horses were shod with 6° wedge, eggbar, and plain shoes. While standing square with weight evenly distributed across both forelimbs, the center of pressure and pressures at selected areas of interest (AOI: toe, medial and lateral toe, medial and lateral heel) were measured using a Footscan (RsScan International, Belgium) pressure plate in a Latin square design using the plain shoe as a reference.Wedge shoes did not provide a significant shift in the center of pressure. The application of eggbar shoes did not alter the relative position of the center of pressure under the hoof. However, the absolute distance from the toe to the center of pressure was significantly larger with eggbar shoes (77 + 12 mm) compared with plain and wedged shoes (70 ± 8 mm, P < .05) resulting in an absolute, caudal shift of the center of pressure. When pressure (N/cm2) values at the five AOIs were averaged for each shoe type, the wedge and eggbar shoe recordings showed a significantly lower mean pressure than plain shoes (P < .05).In conclusion, mean AOI pressures decreased with wedge and eggbar shoes, and eggbar shoes provided a caudal shift in the center of pressure. These effects are believed to decrease the moment of the coffin joint and reduce the pressure on the navicular bone. Thus, the findings of this study might contribute to the scientific evidence of efficacy of the use of wedge and eggbar shoes in “navicular” lame horses.  相似文献   

8.
OBJECTIVE: To evaluate pelvic movement over a large number of strides in sound horses and in horses with induced hind limb lameness by applying methods to the pelvis that have been described for evaluating vertical head movement in horses with induced forelimb lameness. ANIMALS: 17 adult horses. PROCEDURE: Horses were filmed while trotting on a treadmill before and after induction of transient mild and moderate hind limb lamenesses. Vertical pelvic movement was measured by a signal decomposition method. The vertical pelvic signal was decomposed into a periodic component (A1) that occurred at half the stride frequency (representing vertical pelvic movement caused by lameness) and another periodic component (A2) that occurred at stride frequency (representing normal vertical pelvic movement of a trotting horse). Vertical pelvic and foot positions were correlated for each stride to compare the difference between the minimum and maximum heights of the pelvis during and after stance of the right hind limb to the minimum and maximum heights of the pelvis during and after stance of the left hind limb. RESULTS: Maximum pelvic height difference and lameness amplitude (A1) differed significantly between sound and mild or moderate hind limb lameness conditions. Mean A1 value for vertical pelvic movement in sound horses was less than that previously reported for vertical head movement. CONCLUSION AND CLINICAL RELEVANCE: Pelvic height differences and signal decomposition of pelvic movement can be used to objectively evaluate hind limb lameness in horses over a large number of strides in clinical and research settings.  相似文献   

9.
OBJECTIVE: To determine the mechanism that enables horses to partially counteract the shift of the center of pressure under the hoof induced by changes in hoof morphology attributable to growth and wear during a shoeing interval. ANIMALS: 18 clinically sound Warmblood horses. PROCEDURES: Horses were evaluated 2 days and 8 weeks after shoeing during trotting on a track containing pressure-force measuring plates and by use of a synchronous infrared gait analysis system set at a frequency of 240 Hz. All feet were trimmed toward straight alignment of the proximal, middle, and distal phalanges and shod with standard flat shoes. Results-Temporal characteristics such as stance time and the time between heel lift and toe off (ie, breakover duration) did not change significantly as a result of shoeing interval. Protraction and retraction angles of the limbs did not change. Compensation was achieved through an increase in the dorsal angle of the metacarpohalangeal or metarsophalangeal (fetlock) joint and a concomitant decrease of the dorsal angle of the hoof wall and fetlock. There was an additional compensatory mechanism in the hind limbs during the landing phase. CONCLUSIONS AND CLINICAL RELEVANCE: Horses compensate for changes in hoof morphology that develop during an 8-week shoeing interval such that they are able to maintain their neuromuscular pattern of movement. The compensation consists of slight alterations in the angles between the distal segments of the limb. Insight into natural compensation mechanisms for hoof imbalance will aid in the understanding and treatment of pathologic conditions in horses.  相似文献   

10.
OBJECTIVE: To calculate forces in the flexor tendons and the influence of heel wedges in affected and contralateral (compensating) forelimbs of horses with experimentally induced unilateral tendinitis of the superficial digital flexor (SDF) tendon. ANIMALS: 5 Warmblood horses. Procedure-Ground reaction force and kinematic data were obtained during a previous study while horses were trotting before and after induction of tendinitis in 1 forelimb SDF and after application of 6 degrees heel wedges to both forehooves. Forces in the SDF, deep digital flexor (DDF), and the suspensory ligament (SL) and strain in the accessory ligament (AL) of the DDF were calculated, using an in vitro model of the distal region of the forelimb. RESULTS: After induction of tendinitis, trotting speed slowed, and forces decreased in most tendons. In the affected limb, SL force decreased more than SDF and DDF forces. In the compensating limb, SDF force increased, and the other forces decreased. After application of heel wedges, SDF force in both limbs increased but not significantly. Furthermore, there was a decrease in DDF force and AL strain. CONCLUSIONS AND CLINICAL RELEVANCE: The increase in SDF force in the compensating forelimb of horses with unilateral SDF tendinitis may explain the high secondary injury rate in this tendon. The lack of decrease of SDF force in either limb after application of heel wedges suggests that heel wedges are not beneficial in horses with SDF tendinitis. Instead, heel wedges may exacerbate the existing lesion.  相似文献   

11.
Instrumented shoes were used to measure the vertical forces exerted by horses moving at a variety of gaits. Two types of shoes were used; one contained a single transducer positioned over the center of the frog and the second contained transducers located at the toe and both sides of the heel. Horses were shod with these instrumented shoes and walked and trotted over a force plate. Forces were simultaneously recorded from the transducers in the shoes and from the force plate. Comparisons were made between the amount and duration of the forces exerted on the transducers and the vertical and horizontal forces recorded from the force plate. Forces recorded from the single transducer shoes showed strong correlations with the forces recorded from the force plate for horses moving at the walk; however, at the trot only moderate correlations occurred between these forces. At both the walk and trot, forces recorded from each side of the heel and the total forces occurring on all three transducers from the front hooves of horses shod with three transducer shoes showed strong correlations to the vertical forces recorded from the force plate.Vertical forces were also recorded from the instrumented shoes as horses walked, trotted and galloped on a track straightaway. Forces recorded from normal horses shod with single transducer shoes on all four feet were greater on the forelimbs than the rear limbs at the walk and trot. At the gallop, forces were highest on the lead front followed by the nonlead front, lead rear and nonlead rearlimb, respectively. Forces recorded from a three transducer shoe on the right front hoof of a horse walking, trotting and galloping in a right lead were highest on the medial side of the heel and occurred during the middle of the support period. Peak forces on the toe occurred at or near the time of heel lift.The results of these studies indicate that these instrumented shoes have advantages over the methods previously used to measure locomotor forces. These instrumented shoes can be used to simultaneously record the temporal components and the amount and distribution of vertical forces exerted during consecutive strides of horses moving at a variety of gaits.  相似文献   

12.
OBJECTIVE: To test the sensitivity to measurement and modeling errors of a method for noninvasive calculation of flexor tendon forces in the equine forelimb and to calculate tendon forces for Dutch Warmblood horses during trotting. SAMPLE POPULATION: A normative set of kinematic and ground-reaction force (GRF) data obtained from horses during trotting in another study. PROCEDURE: Forces in the flexor tendons were calculated from the data set before and after addition of fixed relative and absolute errors. Amount of error was based on normal accuracy of the variables. A similar analysis was performed for a measure of strain of the accessory ligament of the deep digital flexor tendon. RESULTS: The only errors that had a substantial influence on accuracy were modeling errors in the mechanical properties of the suspensory ligament and measurement errors in the point of application of the GRF and position of the marker on the distal interphalangeal joint. Influence of the measurement errors could be minimized by applying usual correction methods. CONCLUSIONS AND CLINICAL RELEVANCE: After correction of measurement errors, the method can be used to calculate mean tendon forces for a group of horses and to evaluate the influence of factors such as surface properties, type of shoe, speed, and fatigue on tendon forces. The method could become an important tool for use in research on the cause, prevention, and treatment of tendon injuries in horses.  相似文献   

13.
OBJECTIVE: To compare a sensor-based accelerometer-gyroscopic (A-G) system with a video-based motion analysis system (VMAS) technique for detection and quantification of lameness in horses. ANIMALS: 8 adult horses. PROCEDURE: 2 horses were evaluated once, 2 had navicular disease and were evaluated before and after nerve blocks, and 4 had 2 levels of shoe-induced lameness, alternatively, in each of 4 limbs. Horses were instrumented with an accelerometer transducer on the head and pelvis, a gyroscopic transducer on the right forelimb and hind feet, and a receiver-transmitter. Signals from the A-G system were collected simultaneously with those from the VMAS for collection of head, pelvis, and right feet positions with horses trotting on a treadmill. Lameness was detected with an algorithm that quantified lameness as asymmetry of head and pelvic movements. Comparisons between the A-G and VMAS systems were made by use of correlation and agreement (kappa value) analyses. RESULTS: Correlation between the A-G and VMAS systems for quantification of lameness was linear and high (r2 = 0.9544 and 0.8235 for forelimb and hind limb, respectively). Quantification of hind limb lameness with the A-G system was higher than measured via VMAS. Agreement between the 2 methods for detection of lameness was excellent (kappa = 0.76) for the forelimb and good (kappa = 0.56) for the hind limb. CONCLUSIONS AND CLINICAL RELEVANCE: The A-G system detected and quantified forelimb and hind limb lameness in horses trotting on the treadmill. Because the data are collected wirelessly, this system might be used to objectively evaluate lameness in the field.  相似文献   

14.
REASONS FOR PERFORMING STUDY: Comprehensive understanding of the 3-dimensional (3D) kinematics of the distal forelimb and precise knowledge of alterations induced by dorsopalmar foot imbalance remains incomplete because in vivo studies performed with skin markers do not measure the actual movements of the 3 digital joints. OBJECTIVE: To quantify the effects of 6 degree heel or toe wedges on the 3D movements of the 4 distal segments of the forelimb in horses trotting on a treadmill. METHODS: Three healthy horses were equipped with ultrasonic markers fixed surgically to the 4 distal segments of the left forelimb. The 3D movements of these segments were recorded while horses were trotting on a treadmill. Rotations of the digital joints were calculated by use of a joint coordinate system. Data obtained with 6 degree heel or toe wedges were compared to those obtained with flat standard shoes. RESULTS: Use of heel wedges significantly increased maximal flexion and decreased maximal extension of the proximal (PIPJ) and distal (DIPJ) interphalangeal joints. Inverse effects (except for PIPJ maximal extension) were observed with the toe wedges. In both cases, neither flexion-extension of the metacarpophalangeal joint nor extrasagittal motions of the digital joints were statistically different between conditions. CONCLUSIONS: At a slow trot on a treadmill, heel and toe wedges affect the sagittal plane kinematics of the interphalangeal joints. POTENTIAL RELEVANCE: Better understanding of the actual effects of toe and heel wedges on the 3D kinematics of the 3 digital joints may help to improve clinical use of sagittal alteration of hoof balance in the treatment of distal forelimb injuries.  相似文献   

15.
OBJECTIVE: To evaluate nonsurgical management of type II fractures of the distal phalanx in Standardbred horses. DESIGN: Retrospective study of 48 affected horses. RESULTS: Most fractures occurred on the lateral palmar process of the left forelimb or the medial palmar process of the right forelimb; 81% of horses were considered sound enough to return to training and 63% raced. Of those returning to racing, 41% competed in > 10 races, 37% in 2 to 10 races and 22% in only 1 race. There was no difference in performance before and after fracture. Twenty-four of 25 horses had a bar shoe fitted for > 50% of the treatment phase. Of those horses returning to training without a bar shoe, 89% refractured at the same site. Sixty percent of horses returning to training with a bar shoe raced successfully. The total convalescent time, the time rested in a box and the time spelled in a paddock were similar for horses returning to racing and those that did not. The age of the horse had no effect on the ability to return to racing. CONCLUSION: The prognosis for type II fractures of the distal phalanx is guarded. It is advisable to fit a bar shoe on the horse during convalescence. Horses returning to training and racing with a bar shoe appear less likely to refracture the distal phalanx. Those horses that return to racing can perform at a level similar to that prior to fracture.  相似文献   

16.
Video (60 Hz) and force (2000 Hz) data were collected from 5 sound horses during walking. Forelimb data were analysed for 8 strides (4 left, 4 right) per horse to determine sagittal plane kinematics and ground reaction forces (GRFs). The results suggested that brachial rotation was responsible for protraction and retraction of the limb as a whole, while rotations of the scapula and antebrachium elevated the distal limb during breakover and early swing then lowered it in preparation for ground contact. The coffin joint was flexed maximally at the time of peak longitudinal braking force, which occurred during breakover of the contralateral forelimb. The metacarpus was vertical at 28% stride. This was considerably earlier than the change from a braking to a propulsive longitudinal force (34% stride), which coincided with maximal extension of the fetlock joint. The longitudinal propulsive force peaked just after contact of the contralateral forelimb. During the swing phase the joints distal to the shoulder showed a single flexion cycle that peaked at 76% stride at the carpus, 81% stride at the fetlock and 84% stride at the elbow and coffin joints. The coffin and shoulder joints began to extend in the terminal swing phase and continued to extend through ground contact and early stance. The results provide normative data that will be applied in detecting changes in kinematics and ground reaction forces that are associated with specific lamenesses.  相似文献   

17.
The objective of this study was to use a pressure plate to quantify the toe-heel load redistribution in the forelimbs of sound warmblood horses with normal shoes and shoes with a wide toe and narrow branches, used empirically in the treatment of superficial digital flexor tendon or suspensory ligament injuries. In a crossover-design study, six horses, randomly shod with normal shoes and shoes with a wide toe, were led over a dynamically calibrated pressure plate to record data from both forelimbs. There were no significant differences between both shoes in the toe-heel index of stance time, peak vertical force and vertical impulse. For the adapted shoe, the peak vertical pressure was slightly lower and was exerted slightly earlier in the stance phase, albeit not significantly. However, the significantly larger toe contact area of the adapted shoe resulted in a significantly lower total vertical pressure in the toe region. Hence, the pressure plate adequately visualised the individual loading of the toe and heel region, and clearly demonstrated the altered pressure distribution underneath the shoe with a wide toe. Although further research on a deformable surface is needed to confirm this hypothesis, the pressure redistribution from the toe to the heels could promote sinking of the heels in arena footing, thereby mimicking the biomechanical effects of a toe wedge and providing a rationale for its application in the treatment of SDFT or SL injuries. The pressure measuring equipment used in this study can offer to the clinician a diagnostic tool for the evaluation of the load distribution underneath the equine hoof and for the fine-tuning of corrective shoeing.  相似文献   

18.
The objective was to measure the net joint moments and joint powers for the joints of the equine forelimb during the walk. Videographic and force data were combined with morphometric information using an inverse dynamics method. During stance phase the predominant joint moment was on the palmar aspect of all forelimb joints except the shoulder, where the peak moment was considerably higher than at any other joint. The entire forelimb showed net energy absorption in both stance and swing phases. The elbow was the only joint that showed net generation of energy, which was used to maintain the limb in extension in early stance as the horse's body vaults over the limb and to drive protraction and retraction of the limb during swing. The carpus aligned the limb into a supportive strut, but did not play an important role in energy absorption or generation. A small burst of positive work on the flexor aspect at the start of breakover indicated that the carpus played an active role in initiating breakover during walking. The fetlock functioned elastically to store and release strain energy during stance. The coffin joint acted as an energy damper during most of stance with a small burst of energy generation on the flexor aspect as the joint flexed during breakover. The magnitude of the peak joint power during swing decreased in a proximal to distal sequence. It is concluded that the elbow joint is the main site of energy generation. The shoulder and coffin joints act as energy dampers during stance. The distal joints had very low joint powers and appeared to be driven by inertial forces during the swing phase. This information will be applied to describe how horses compensate for different lamenesses in terms of redistributing the functions of energy generation and absorption between joints.  相似文献   

19.
A variety of horseshoe designs are believed to 'ease' breakover, or the unloading of the foot once the heels leave the ground. In this study, conventional toe-clip shoes, quarter-clip shoes, fitted to the white line at the toe, and Natural Balance horseshoes were fitted to the front feet of 9 sound Irish Draught-cross type horses. Forceplate and video motion analyses were undertaken during trot locomotion to determine the moment arm of the ground reaction force on the distal interphalangeal (DIP) joint, the peak DIP joint moment and the peak compressive force on the navicular bone. DIP joint moment arm during breakover was reduced with both Natural Balance (mean +/- s.d. 77 +/- 7 mm) and quarter-clip shoes (78 +/- 9 mm) compared to the toe-clip shoes (86 +/- 6 mm) (P<0.01). Peak DIP joint moment was not significantly different (175 +/- 37,171 +/- 38 and 175 +/- 31 Nmm/kg, in Natural Balance, quarter-clip and toe-clip shoes, respectively) and neither was peak force on the navicular bone (5.52 +/- 1.52, 5.79 +/- 1.53 and 6.14 +/- 1.47 N/kg, respectively). Breakover duration (heel off to toe off) was not significantly reduced by the Natural Balance shoes (39 +/- 6 ms) or the quarter-clip shoes (40 +/- 6 ms) compared to toe-clip shoes (42 +/- 9 ms). This study has demonstrated that the use of Natural Balance shoes reduces the moment arm of the ground reaction force (GRF) during breakover but does not reduce the peak DIP joint moment or the force on the navicular bone.  相似文献   

20.
The location of the breakover of the hoof capsule can be positioned through shoe placement, shoe shape, or trimming on barefoot horses. Placing the breakover in relation to the tip of PIII is a more dependable location than placing breakover guided only by visual evaluation of the hoof capsule. The hoof-pastern axis and the position of the navicular bone will be affected by the distance from the apex of the frog to breakover. The resulting decrease in strain of the deep digital flexor tendon while standing and during movement will decrease inflammation and disease in the equine digit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号