首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
生物质炭对土壤温室气体排放影响机制探讨   总被引:4,自引:0,他引:4  
生物质炭可降低土壤中温室气体的排放,减缓全球气候变暖的进程。目前有关生物质炭对土壤温室气体减排的机制研究较少,文章从对土壤元素的吸附、改善土壤理化性质和影响土壤功能微生物种群结构与活性三个方面探讨了生物质炭影响温室气体排放的机制。  相似文献   

2.
为了解不同比例生物质炭的添加对猪粪和稻草堆肥过程中氮素损失及温室气体排放的影响,监测了堆置过程中铵态氮、硝态氮、氨挥发及温室气体的变化。试验设猪粪秸秆对照(B0)以及猪粪秸秆中添加5%(B1)、10%(B2)、15%(B3)生物质炭共4个处理。结果表明:添加生物质炭能够提高堆体温度,缩短堆肥周期,B3处理的堆体比B0处理提前3 d进入高温期;高温期B0、B1、B2、B3各处理堆体中NH+4含量分别比初始值增加6.6%、41.8%、51.9%、48.6%。与B0相比,添加生物质炭能够显著增加高温期堆体NH+4含量,减少高温期NH+4向NH3的转化,显著降低堆肥过程中的氨挥发,其中B1、B2、B3氨挥发累计量比B0分别减少23.1%、68.6%、78.4%;B2处理与B0相比能够显著减少CO_2排放总量,而B1、B3处理效果不显著,但能够显著减少堆肥过程中CH4的排放;与B0相比,添加生物质炭处理CH4排放总量降低16.3%~23.5%,且可显著降低堆肥过程中N_2O的排放,其中B2、B3的N2O排放总量比B0减少70.7%。  相似文献   

3.
生物质炭对城市污泥堆肥过程中氮素转化的影响   总被引:1,自引:0,他引:1  
为揭示生物质炭在城市污泥堆肥发酵中的应用潜力,提高城市污泥的堆肥效率和堆肥品质,以城市污泥和稻壳为堆肥原料,分别添加0,3%、5%、10%的生物质炭,采用高温好氧堆肥工艺,通过测定堆肥过程中温度、pH及硝态氮、铵态氮及总氮含量等的变化,研究了添加不同比例生物质炭对城市污泥好氧堆肥过程中氮素转化的影响。结果表明:生物质炭的添加可提高堆肥过程中氮的利用率,促进堆肥进程。各处理的堆体发酵中温度达50℃以上时间均保持了7d以上,都达到国家堆肥的无害化标准;添加生物质炭可使城市污泥的好氧发酵期提前;随着堆肥过程的进行,各处理中总氮含量均呈下降趋势,pH呈先上升后下降而后趋势于平稳上的趋势,硝态氮呈先上升后趋势于平缓的趋势,铵态氮和温度都呈先上升后下降趋势,各处理间存在差异,但趋势相同。综合各项指标,与其它处理相比处理2即当生物质炭添加量为5%时,整个堆肥过程表现较好。  相似文献   

4.
为促进城市污泥土地化利用,将生物质炭与城市污泥分别以0、3%、5%、10%的比例添加在城市污泥的好氧静态堆肥试验中,研究不同配比下堆肥反应过程中含水率、总有机碳、腐殖质酸、胡敏酸、富里酸含量的动态变化。结果表明:与对照相比,添加生物质炭可有效增加堆肥产品中水分含量,促进堆肥进程。各处理在堆肥末期含水率、总有机碳含量均呈下降趋势,但处理2(生物质炭添加量为5%,稻壳/城市污泥(4∶1)添加量为95%)的含水率较对照高5.8百分点,总有机碳含量较对照高40g·kg~(-1);各处理在堆肥结束期其腐殖质炭含量及胡敏酸炭含量明显增多,增加量由大至小依次为处理2处理3处理1对照。综合各项指标,与其它处理相比,处理2即当生物质炭添加量为5%时,更能促进整个堆肥过程中微生物的活性,更能保证堆肥产品质量。  相似文献   

5.
生物质炭在城市污泥好氧堆肥中的研究进展   总被引:1,自引:0,他引:1  
生物质炭含有丰富的营养元素,具有孔隙发达、吸附性强、比表面积大等特点,为解决近年来城市污泥堆肥处理研究中的热点问题,介绍了生物质炭的基本特性,综述了生物质炭在城市污泥好氧堆肥过程中对堆体基本性质、堆肥效果及产品安全等方面的研究进展,生物质炭能提高城市污泥堆肥效率,降低其堆肥产品中重金属的生物有效性,但在大规模应用前还需要做进一步深入细致的研究。  相似文献   

6.
生物质炭添加对农田温室气体净排放的影响综述   总被引:8,自引:1,他引:8  
农田是温室气体的重要排放源,降低农田温室气体排放对减缓全球气候变化具有重要意义。生物质炭是生物质在缺氧条件下热解产生的固体物质,因其含碳量高、难于分解、比表面积大、疏松多孔等特性,已成为农田温室气体减排研究中人们关注和研究的热点。通过综述农田添加生物质炭对温室气体CO2、CH4和N2O排放的影响及其机制,以及对温室气体净排放[包括净增温潜势(NGWP)、温室气体净排放(NGHGE)和温室气体排放强度(GHGI)]的影响等方面的国内外研究进展,并结合目前国内外生物质炭的研究现状,提出了未来生物质炭在农田温室气体减排领域的研究方向,旨在为生物质炭在农田温室气体减排中的应用提供思路和参考。  相似文献   

7.
以我国华北平原冬小麦-夏玉米轮作农田为研究对象,在常规施肥的情况下,研究了4种不同剂量棉花秸秆生物质炭[CK、C1(2.25 t/hm2生物质炭)、C2(4.5 t/hm2生物质炭)、C3(9.0 t/hm2生物质炭)]对土壤理化性质及温室气体(CH4、N2O)通量的影响,结合作物产量评估了不同处理对全球温室效应和温室气体强度的影响。结果表明:添加生物质炭不能显著影响土壤CH4的累积排放量。在夏玉米季,仅C2和C3处理可以显著降低土壤N2O累积排放量,分别为37.19%和48.58%;在冬小麦季,添加生物质炭处理均可以显著降低土壤N2O的排放,达24.26%~48.02%。路径分析结果表明,土壤NH4+-N含量是土壤N2O排放通量的主要影响因子。在夏玉米季,C2和C3处理可以显著增加玉米产量,分别达9.46%和10.99%;在冬小麦季,仅C3处理可以显著增加小麦产量,达7.13%。添加4.5 t/hm2和9 t/hm2的生物质炭处理可以显著降低全球增温潜势和温室气体强度,而添加2.25 t/hm2的生物质炭处理仅在冬小麦季可以显著降低全球增温潜势和温室气体强度。综上所述,将棉花秸秆转化为生物质炭用于华北平原农田,既能增加作物产量,又能降低温室气体排放。  相似文献   

8.
牛粪不同堆肥模式对温室气体排放的影响   总被引:1,自引:0,他引:1  
采用静态箱-气相色谱法研究了自然状态下牛粪(C)、牛粪+秸秆(CSt)、牛粪+土(CSo)、牛粪+秸秆+土(CSt So)4种堆肥模式对温室气体排放的影响,以期为温室气体减排和堆肥模式优化提供参考。结果表明:堆肥期间堆温和温室内气温随时间推进均呈升—降—升的趋势,同一观测时间点气温高于堆温,总体上CSt、CSt So处理的堆温略高于C、CSo处理,表明加入秸秆具有提高堆温的效果。随时间推进,C处理的CO_2、CH_4和N_2O排放通量总体均呈增加的趋势,第6~7周排放通量较大;CSt、CSo、CSt So处理的3种温室气体排放通量总体均呈先升后降的趋势,CO_2和CH_4排放通量最大值总体出现在第2周,N_2O排放通量在第5~6周时较大。CO_2平均排放通量表现为CStCSt SoCSoC,除C处理与CSo处理无显著差异外,其他处理间差异显著;CH_4平均排放通量表现为CCStCSt SoCSo,C处理与CSt、CSo、CSt So处理之间及CSt、CSo处理之间差异显著;N_2O平均排放通量表现为CSoCStCSt SoC,CSo处理与C处理差异显著。CSt、CSo、CSt So处理的全球增温潜势(GWP)分别是C处理的3.25、2.61、2.59倍,主要是由于CSt、CSo、CSt So处理的CO_2和N_2O排放总量显著高于C处理,其对GWP的贡献率均高达97%以上。综合考虑广大农村堆料实际组分及温室气体减排,建议采用CSt So堆肥模式,但应适当增加牛粪和土的用量。  相似文献   

9.
不同堆肥处理猪粪温室气体排放与影响因子初步研究   总被引:23,自引:2,他引:23  
利用封闭式测定箱对两种不同堆肥处理方式的猪粪产生的气体进行了取样,然后通过气相色谱分析仪对其所含二氧化碳(CO2)、氧化亚氮(N2O)、甲烷(CH4)进行了测定分析。参考其处理系统获得的温度、湿度、氧气浓度数据,结果表明,在相同条件下,二氧化碳的排放与猪粪内部的氧气状况密切相关,通风良好则排放量就大;而甲烷恰相反,缺氧与较高的湿度会促使甲烷排放;氧化亚氮是其硝化与反硝化过程的产物,若干湿交替,则会增加氧化亚氮的排放量,但其影响因子更为复杂。  相似文献   

10.
为优化羊粪堆肥腐熟度与温室气体减排协同的技术工艺参数,以2种不同热解温度制备的稻壳生物炭为堆肥辅料,与羊粪、食用菌渣混合,进行了43 d的堆肥试验。设置了3个处理,羊粪与食用菌渣质量比9∶1混合体作为预备物料,在预备物料上分别添加450、650℃热解的稻壳生物炭(占预备物料质量百分比15%)为BC450、BC650处理,在预备物料上添加未热解炭化的稻壳(与稻壳生物炭同等体积)为CK处理。监测了堆肥温度、腐熟度指标(NH4+-N/NO3--N、EC值、种子发芽指数)、温室气体(CH4、CO2、N2O)排放的变化动态,分析了不同热解温度稻壳生物炭对堆肥腐熟度与温室气体减排的协同效果。结果表明:添加450、650℃热解的稻壳生物炭,缩短了堆肥体NH4+-N/NO3--N、T值、EC值及种子发芽指数达到腐熟度推荐值的所需时间,与CK处理相比,BC450、B...  相似文献   

11.
花生壳生物炭用量对猪粪堆肥温室气体和NH3排放的影响   总被引:3,自引:0,他引:3  
为研究不同花生壳生物炭添加比例对猪粪堆肥过程中温室气体和NH3排放的影响。利用强制通风静态堆肥技术,研究0(对照)、3%、6%和9%花生壳生物炭添加比例(质量比)对猪粪堆肥过程CO_2、CH_4、N_2O和NH_3排放和堆肥性质的影响。结果表明:添加生物炭能够延长堆肥高温期持续天数,使pH提高0.09~0.13个单位,EC提高11.7%~50.6%;各堆肥处理CO_2、CH_4和N_2O排放速率均随发酵时间的延长呈先升高后降低的趋势,且CO_2、CH_4和N_2O排放速率均与pH具有显著的相关性;随生物炭用量的增加,猪粪堆肥过程中CO_2排放速率表现为先升高后降低的变化趋势,其中以3%生物炭添加比例处理最高,其平均CO_2排放速率比对照增加12.9%;N_2O排放和NH_3挥发均以9%生物炭添加比例处理最低,分别比对照降低12.5%和29.9%。综上,在整个堆肥过程中,花生壳生物炭的添加降低了N_2O和CH_4的累积排放量,且随花生壳生物炭添加比例的增加,温室气体减排效应增大。  相似文献   

12.
双氰胺和氢醌添加对堆肥温室气体排放的影响   总被引:1,自引:2,他引:1  
为实现畜禽粪便堆肥过程温室气体和NH3的同步减排,在添加一定氢醌的基础上,探究双氰胺添加比例和添加时间对堆肥温室气体和NH3排放的影响。以猪粪和玉米秸秆为堆肥原料,设置5个堆肥处理:对照处理,添加0.03%氢醌处理,在氢醌的基础上第19 d添加0.1%的双氰胺处理、第0 d添加0.2%的双氰胺处理和第0 d与19 d各添加0.1%的双氰胺处理。在60 L的发酵罐中进行40 d的堆肥试验。结果表明:添加干质量0.1%~0.2%的双氰胺和0.03%的氢醌并未对猪粪堆肥腐熟度造成影响;氢醌作为脲酶抑制剂对堆肥NH3和温室气体排放影响较小,在此基础上添加双氰胺可减少8.88%~12.94%的NH3排放、6.79%~13.55%的CH4排放和24.71%~35.83%的N2O排放,总温室效应可降低18.61%~19.97%。考虑到经济成本和减排效果,建议在堆肥降温期添加双氰胺。  相似文献   

13.
畜禽粪便堆肥过程中碳氮损失及温室气体排放综述   总被引:2,自引:1,他引:2  
堆肥是畜禽粪便资源化利用的重要技术,但堆肥过程中碳氮损失会降低产品的农用价值并造成温室气体排放。堆肥过程中的污染气体排放受多种因素影响,本文综述了堆肥原料类型、辅料类型、初始C/N、含水率和通风速率对畜禽粪便堆肥过程碳氮损失和温室气体(CH4、NH3、N2O)排放的影响。结果发现:48.7%的C和27.7%的N在堆肥过程中损失,其中CH4-C损失平均占初始总碳的0.5%,NH3-N和N2O-N损失分别占初始总氮的18.9%和1.1%。不同种类粪便堆肥碳氮损失差异明显,猪粪和鸡粪堆肥的温室气体排放量高于牛粪和羊粪。选择富含C的辅料与畜禽粪便联合堆肥均可促进有机物降解,其中以稻草或锯末为辅料时的温室气体排放量较低。初始C/N对堆肥过程N损失影响较大,总氮、NH3和N2O的损失均随C/N的增加而降低,其中C/N为20~25时最适宜N素保留。初始含水率显著影响CH4和N2O的排放,其排放量随含水率的增加呈显著上升趋势,以含水率为60%~65%最为适宜。通风速率(以堆肥干基计)为0.1~0.2 L·kg-1·min-1时,CH4排放和总碳损失较低;通风速率为0.1~0.3 L·kg-1·min-1时,N2O、NH3和总氮损失较低。因此,为降低畜禽粪便堆肥过程碳氮损失和温室气体排放量,建议采用的工艺参数为:通风速率0.1~0.3 L·kg-1·min-1、含水率60%~65%、C/N为20~25。  相似文献   

14.
畜禽废弃物堆肥氨气与温室气体协同减排研究   总被引:3,自引:1,他引:3  
畜禽废弃物堆肥过程氨气与温室气体排放机理及减排技术是国内外学者的研究热点。堆肥过程中碳氮转化与氨气和温室气体的排放是相互关联的,而目前的研究主要关注氨气减排,尚缺乏对氨气与温室气体协同减排的系统性研究。因此,本研究通过系统梳理已发表的文献,分析了畜禽废弃物堆肥过程中氨气和温室气体的产排机制和协同关系,阐述了影响因素、调控策略和减排潜力,探讨了氨气和温室气体协同减排的技术途径,展望了氨气和温室气体协同减排机理与策略研究的重点和方向,旨在为畜禽废弃物堆肥过程中氨气和温室气体的协同减排提供理论依据和技术途径。研究表明,畜禽废弃物堆肥过程中氨气和温室气体的协同减排机理和调控途径尚不清楚,应加强在调节物料性质和优化供气策略的基础上,通过使用物理、化学和生物添加剂以实现堆肥过程氨气和温室气体的协同减排机理和技术研究。  相似文献   

15.
为揭示外源物质生物炭、硝化抑制剂、脲酶抑制剂复配对温室气体排放的影响,采用室内培养试验,比较外源物质不同组合[对照(CK)、生物炭(BC)、硝化抑制剂(NP)、脲酶抑制剂(NB)、生物炭+硝化抑制剂(BCNP)、生物炭+脲酶抑制剂(BCNB)、硝化抑制剂+脲酶抑制剂(NPB)、生物炭+硝化抑制剂+脲酶抑制剂(BCNPB)]对温室气体排放的影响,同时监测土壤pH、NH+4-N、NO-3-N等影响因子的变化规律。结果表明:与CK相比,各处理均抑制了土壤N2O排放,其中NPB处理抑制效果最显著;所有处理均促进了土壤CO2排放;除BC处理为负效应外,土壤CH4排放效应与CO2结果类似;除BCNB处理外,其他处理对全球增温潜势有一定的抑制作用,其中NPB处理的抑制效果最佳。培养结束时,与CK相比,除NP处理提高了土壤pH外,其他6个处理均降低了土壤pH;在无机氮含量方面,与CK相比,各处理均增加了土壤NH+4-N含量,BCNPB、NP、NPB处理减少了NO-3-N含量,NB、BC、BCNP、BCNB处理增加了NO-3-N含量。综合考虑全球增温趋势和土壤性质,本试验条件下硝化抑制剂+脲酶抑制剂处理为抑制温室气体排放的最优外源物质处理。  相似文献   

16.
为探究在不同优化减氮条件下施用生物炭对双季稻土壤温室气体排放和水稻产量的影响,采用静态箱-气相色谱法监测水稻生长期间土壤CH4和N2O排放通量,测定土壤理化指标及水稻产量。试验设置5个处理:常规施氮(CF)、优化减氮15%(OF15%)、优化减氮15%+生物炭(OF15%+B)、优化减氮30%(OF30%)、优化减氮30%+生物炭(OF30%+B)。结果表明:与CF相比,各处理均降低了双季稻土壤CH4和N2O的累积排放量,降幅分别为9.59%~39.60%和20.12%~41.61%;其中OF30%+B与OF15%+B处理CH4的减排效果最佳,分别达39.60%与31.53%;OF30%+B处理N2O的减排效果最佳,达到41.61%,其次为OF30%和OF15%+B处理,分别达34.56%与28.14%。各处理均降低双季稻系统土壤温室气体产生的全球增温潜势,降幅为9.54%~39.27%;OF15%+B产量最高,与CF相比增加了2.83%,而OF30%与O...  相似文献   

17.
为探讨花生壳生物炭用于农田土壤改良的效果,采用盆栽试验,结合静态箱-气相色谱法研究了施用不同剂量(0、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土的理化性质及温室气体排放变化特征的影响。结果表明,施用生物炭对潮土温室气体排放的影响较大,且两种土壤表现出不同的排放特征。总体上,潮土N_2O累积排放量显著高于红壤,与单施氮肥处理相比,随生物炭添加量的增加,潮土N_2O累积排放量显著降低,降幅达6.5%~26.6%;红壤N_2O累积排放量则随生物炭添加量的增加呈上升趋势,与单施氮肥处理相比,红壤N_2O累积排放量增幅为14.7%~54.3%。与对照相比,施用生物炭显著增加潮土CO_2排放,其累积排放量增幅最大为25.9%;而对红壤CO_2累积排放量则没有显著影响。此外,在施用不同剂量生物炭处理下,两种土壤CH_4排放无规律性变化,CH_4排放累积量总体在0左右。与空白对照和单施氮肥处理相比,随生物炭添加量的增加,两种土壤的固碳量显著增加,潮土增加了57.1%~78.7%,红壤增加了11.2%~59.9%;同时随生物炭的施用,潮土温室气体排放强度显著提高68.0%~76.8%,而生物炭添加量对红壤的温室气体排放强度无显著影响。分析认为,对潮土施用生物炭通过改变土壤容重、有机碳、无机氮等养分含量,显著提高温室气体排放强度,抑制供试作物生长,增强其净综合温室效应;而对红壤添加生物炭则可促进作物生长,其温室气体排放强度无显著增加,提升土壤固碳量,具有较好的生态效应。  相似文献   

18.
以脱水污泥和玉米秸秆堆肥为对照,采用实验室规模系统,研究了外源添加微生物菌剂(VT菌剂)和含磷添加剂(过磷酸钙和磷石膏)对污泥堆肥腐熟度、污染气体排放以及产品品质的影响。结果表明:菌剂添加显著促进堆肥腐熟,最终种子发芽率指数为126%~158%。菌剂和两种含磷添加剂混合添加可更大程度降低污染气体的排放,其中菌剂和过磷酸钙联合添加可减少63.3%的NH3和42.8%的H2S排放量,菌剂和磷石膏联合添加可减少97.6%的NH3和54.4%的H2S排放量。添加剂处理均可降低CH4的排放。添加菌剂可以降低30.7%的N2O排放,但是菌剂与过磷酸钙和磷石膏联合添加会增加堆肥前期的N2O排放。含磷添加剂处理可提高18.3%~22.9%的总养分(TN+P2O5+K2O)含量。研究表明,VT菌剂和含磷添加剂联合使用是提高堆肥产品品质、减少堆肥过程污染气体排放的有效方法。  相似文献   

19.
市政污泥生物质炭重金属含量及其形态特征   总被引:3,自引:0,他引:3  
为了探索污泥资源化利用的新途径,在200、300、500和700℃下裂解温度下,将干燥的市政污泥制备成生物质炭,分析其主要重金属形态及其含量,了解裂解温度对污泥生物质炭重金属形态及其含量的影响.结果表明:高温裂解处理不仅影响污泥生物质炭重金属总量,而且还影响其形态.随着裂解温度提高,污泥生物质炭中重金属含量增加;低温(200℃)裂解处理导致汞损失殆尽,但提高了酸溶态As、Cd、Mn和Zn的含量;裂解温度超过300℃,重金属残渣态含量大幅度增加,比例占50%以上,可氧化态、酸溶态和可还原态重金属含量均随裂解温度的提高而降低.结果显示,尽管污泥生物质炭重金属含量比干燥污泥高一些,但大部分转化为生物有效性极低的残渣态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号