首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CLIP identifies Nova-regulated RNA networks in the brain   总被引:1,自引:0,他引:1  
  相似文献   

2.
Heterogeneous nuclear ribonucleoproteins: role in RNA splicing   总被引:107,自引:0,他引:107  
Splicing in vitro of a messenger RNA (mRNA) precursor (pre-mRNA) is inhibited by a monoclonal antibody to the C proteins (anti-C) of the heterogeneous nuclear RNA (hnRNA)-ribonucleoprotein (hnRNP) particles. This antibody, 4F4, inhibits an early step of the reaction: cleavage at the 3' end of the upstream exon and the formation of the intron lariat. In contrast, boiled 4F4, or a different monoclonal antibody (designated 2B12) to the C proteins, or antibodies to other hnRNP proteins (120 and 68 kilodaltons) and nonimmune mouse antibodies have no inhibitory effect. The 4F4 antibody does not prevent the adenosine triphosphate-dependent formation of a 60S splicing complex (spliceosome). Furthermore, the 60S splicing complex contains C proteins, and it can be immunoprecipitated with 4F4. Depletion of C proteins from the splicing extract by immunoadsorption with either of the two monoclonal antibodies to the C proteins (4F4 or 2B12) results in the loss of splicing activity, whereas mock-depletion with nonimmune mouse antibodies bodies has no effect. A 60S splicing complex does not form in a C protein-depleted nuclear extract. These results indicate an essential role for proteins of the hnRNP complex in the splicing of mRNA precursors.  相似文献   

3.
The removal of introns from eukaryotic messenger RNA precursors shares mechanistic characteristics with the self-splicing of certain introns, prompting speculation that the catalytic reactions of nuclear pre-messenger RNA splicing are fundamentally RNA-based. The participation of five small nuclear RNAs (snRNAs) in splicing is now well documented. Genetic analysis in yeast has revealed the requirement, in addition, for several dozen proteins. Some of these are tightly bound to snRNAs to form small nuclear ribonucleoproteins (snRNPs); such proteins may promote interactions between snRNAs or between an snRNA and the intron. Other, non-snRNP proteins appear to associate transiently with the spliceosome. Some of these factors, which include RNA-dependent adenosine triphosphatases, may promote the accurate recognition of introns.  相似文献   

4.
5.
In eukaryotic cells alternative splicing of messenger RNA precursors (pre-mRNA's) is a means of regulating gene expression. Although a number of the components that participate in regulating some alternative splicing events have been identified by molecular genetic procedures, the elucidation of the biochemical mechanisms governing alternative splicing requires in vitro reaction systems. The tissue specificity of P element transposition in Drosophila depends on the germline restriction of pre-mRNA splicing of the P element third intron (IVS3). Drosophila P element IVS3 pre-mRNA substrates were spliced accurately in vitro in heterologous human cell extracts but not in Drosophila somatic cell splicing extracts. Components in Drosophila somatic cell extracts that specifically inhibited IVS3 splicing in vitro were detected by a complementation assay. Biochemical assays for Drosophila RNA binding proteins were then used to detect a 97-kilodalton protein that interacts specifically with 5' exon sequences previously implicated in the control of IVS3 splicing in vivo. Inhibition of IVS3 splicing in vitro could be correlated with binding of the 97-kD protein to 5' exon sequences, suggesting that one aspect of IVS3 tissue-specific splicing involves somatic repression by specific RNA-protein interactions.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1), in contrast with most other retroviruses, encodes trans-regulatory proteins for virus gene expression. It is shown in this study, by means of an in vitro splicing system, that nuclear extracts obtained from cells infected with HIV-1 contain a factor (or factors) that specifically inhibits splicing of a synthetic SP6/HIV pre-messenger RNA (pre-mRNA)-containing donor and acceptor splice sites in the coding region for the envelope protein. It is also shown that the SP6/HIV pre-mRNA is not capable of assembly in a ribonucleoprotein complex, spliceosome, in extracts from infected cells. These findings raise the possibility that specific inhibition of pre-mRNA splicing in the envelope protein coding region by HIV-1 trans-regulatory factors might be one control mechanism for efficient production of structural viral proteins and virion assembly.  相似文献   

7.
Synthetic genetic devices that interface with native cellular pathways can be used to change natural networks to implement new forms of control and behavior. The engineering of gene networks has been limited by an inability to interface with native components. We describe a class of RNA control devices that overcome these limitations by coupling increased abundance of particular proteins to targeted gene expression events through the regulation of alternative RNA splicing. We engineered RNA devices that detect signaling through the nuclear factor κB and Wnt signaling pathways in human cells and rewire these pathways to produce new behaviors, thereby linking disease markers to noninvasive sensing and reprogrammed cellular fates. Our work provides a genetic platform that can build programmable sensing-actuation devices enabling autonomous control over cellular behavior.  相似文献   

8.
The spliceosome, a ribonucleoprotein complex that includes proteins and small nuclear RNAs (snRNAs), catalyzes RNA splicing through intron excision and exon ligation to produce mature messenger RNAs, which, in turn serve as templates for protein translation. We identified four point mutations in the U4atac snRNA component of the minor spliceosome in patients with brain and bone malformations and unexplained postnatal death [microcephalic osteodysplastic primordial dwarfism type 1 (MOPD 1) or Taybi-Linder syndrome (TALS); Mendelian Inheritance in Man ID no. 210710]. Expression of a subgroup of genes, possibly linked to the disease phenotype, and minor intron splicing were affected in cell lines derived from TALS patients. Our findings demonstrate a crucial role of the minor spliceosome component U4atac snRNA in early human development and postnatal survival.  相似文献   

9.
Cellular factors controlling alternative splicing of precursor messenger RNA are largely unknown, even though this process plays a central role in specifying the diversity of proteins in the eukaryotic cell. For the identification of such factors, a segment of the rat preprotachykinin gene was used in which differential expression of neuropeptides gamma and K is dependent on alternative splicing of the fourth exon (E4). Sequence variants of the three-exon segment, (E3-E4-E5) were created, resulting in a sensitive assay for factors mediating the splicing switch between E4-skipping and E4-inclusion. A dinucleotide mutation in the 5' splice site of E4 that increase base-pairing of this site to U1 small nuclear RNA resulted in uniform selection of E4, whereas a control mutation that destroyed base-pairing resulted in uniform E4-skipping. Affinity selection of spliceosomes formed on these functionally distinct substrates revealed that the extreme difference in splicing was mediated by differential binding of the U1 small nuclear ribonucleoprotein particle (snRNP) to the 5' splice site of E4. These data show that, apart from its established role in selecting 5' splice sites, U1 snRNP plays a fundamental role in 3' exon selection and provides insight into possible mechanisms of alternative splicing.  相似文献   

10.
U6 is one of the five small nuclear RNA's (snRNA's) that are required for splicing of nuclear precursor messenger RNA (pre-mRNA). The size and sequence of U6 RNA are conserved among organisms as diverse as yeast and man, and so it has been proposed that U6 RNA functions as a catalytic element in splicing. A procedure for in vitro reconstitution of functional yeast U6 small nuclear ribonucleoproteins (snRNP's) with synthetic U6 RNA was applied in an attempt to elucidate the function of yeast U6 RNA. Two domains in U6 RNA were identified, each of which is required for in vitro splicing. Single nucleotide substitutions in these two domains block splicing either at the first or the second step. Invariably, U6 RNA mutants that block the first step of splicing do not enter the spliceosome. On the other hand, those that block the second step of splicing form a spliceosome but block cleavage at the 3' splice site of the intron. In both domains, the positions of base changes that block the second step of splicing correspond exactly to the site of insertion of pre-mRNA-type introns into the U6 gene of two yeast species, providing a possible explanation for the mechanism of how these introns originated and adding further evidence for the proposed catalytic role of U6 RNA.  相似文献   

11.
Members of the DExH/D superfamily of nucleic acid-activated nucleotide triphosphatases are essential for virtually all aspects of RNA metabolism, including pre-messenger RNA splicing, RNA interference, translation, and nucleocytoplasmic trafficking. Physiological substrates for these enzymes are thought to be regions of double-stranded RNA, because several DExH/D proteins catalyze strand separation in vitro. These "RNA helicases" can also disrupt RNA-protein interactions, but it is unclear whether this activity is coupled to duplex unwinding. Here we demonstrate that two unrelated DExH/D proteins catalyze protein displacement independently of duplex unwinding. Therefore, the essential functions of DExH/D proteins are not confined to RNA duplexes but can be exerted on a wide range of ribonucleoprotein substrates.  相似文献   

12.
13.
Alternative pre-messenger RNA (pre-mRNA) splicing plays important roles in development, physiology, and disease, and more than half of human genes are alternatively spliced. To understand the biological roles and regulation of alternative splicing across different tissues and stages of development, systematic methods are needed. Here, we demonstrate the use of microarrays to monitor splicing at every exon-exon junction in more than 10,000 multi-exon human genes in 52 tissues and cell lines. These genome-wide data provide experimental evidence and tissue distributions for thousands of known and novel alternative splicing events. Adding to previous studies, the results indicate that at least 74% of human multi-exon genes are alternatively spliced.  相似文献   

14.
One of the functions of U1 small nuclear ribonucleoprotein (snRNP) in the splicing reaction of pre-mRNA molecules is the recognition of the 5' splice site. U1 snRNP proteins as well as base-pair interactions between U1 snRNA and the 5' splice site are important for the formation of the snRNP-pre-mRNA complex. To determine which proteins are needed for complex formation, the ability of U1 snRNPs gradually depleted of the U1-specific proteins C, A, and 70k to bind to an RNA molecule containing a 5' splice site sequence was studied in a nitrocellulose filter binding assay. The most significant effect was always observed when protein C was removed, either alone or together with other U1-specific proteins; the binding was reduced by 50 to 60%. Complementation of protein C-deficient U1 snRNPs with purified C protein restored their 5' splice site binding activity. These data suggest that protein C may potentiate the base-pair interaction between U1 RNA and the 5' splice site.  相似文献   

15.
The in vitro splicing reactions of pre-messenger RNA (pre-mRNA) in a yeast extract were analyzed by glycerol gradient centrifugation. Labeled pre-mRNA appears in a 40S peak only if the pre-mRNA undergoes the first of the two partial splicing reactions. RNA analysis after extraction of glycerol gradient fractions shows that lariat-form intermediates, molecules that occur only in mRNA splicing, are found almost exclusively in this 40S complex. Another reaction intermediate, cut 5' exon RNA, can also be found concentrated in this complex. The complex is stable even in 400 mM KCl, although at this salt concentration, it sediments at 35S and is clearly distinguishable from 40S ribosomal subunits. This complex, termed a "spliceosome," is thought to contain components necessary for mRNA splicing; its existence can explain how separated exons on pre-mRNA are brought into contact.  相似文献   

16.
Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.  相似文献   

17.
Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting   总被引:91,自引:0,他引:91  
  相似文献   

18.
mrs2(mitochondrial RNA splicing2)基因是植物线粒体中Ⅱ类内含子自我剪接缺陷的抑制基因,同时参与了植物中镁离子的运输。本研究利用已经分离的植物的mrs2基因,鉴别出MRS2结构域,同时对拟南芥和水稻中的mrs2基因家族的成员进行了鉴定;利用这些基因编码的蛋白质序列构建了系统发生树,并进行了序列保守性分析,最后查找了相关基因的EST表达信息。结果表明:①系统发生分析表明拟南芥和水稻的mrs2基因的结构在拟南芥和水稻分离之前已经形成,并在分离之后按照物种特异性的方式进行了扩张;②MEME分析表明植物的Mrs2蛋白质具有高度保守的基序,并且在蛋白质中的排列顺序也大致相似;③mrs2基因在拟南芥和水稻中的表达有差异,但在部分表达上仍保持了一致性。  相似文献   

19.
Signal transducing guanine nucleotide binding (G) proteins are heterotrimers with different alpha subunits that confer specificity for interactions with receptors and effectors. Eight to ten such G proteins couple a large number of receptors for hormones and neurotransmitters to at least eight different effectors. Although one G protein can interact with several receptors, a given G protein was thought to interact with but one effector. The recent finding that voltage-gated calcium channels are stimulated by purified Gs, which stimulates adenylyl cyclase, challenged this concept. However, purified Gs may have four distinct alpha-subunit polypeptides, produced by alternative splicing of messenger RNA. By using recombinant DNA techniques, three of the splice variants were synthesized in Escherichia coli and each variant was shown to stimulate both adenylyl cyclase and calcium channels. Thus, a single G protein alpha subunit may regulate more than one effector function.  相似文献   

20.
Translation of unspliced transcripts after heat shock   总被引:19,自引:0,他引:19  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号