首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
中国农田土壤有机碳贮存的空间特征   总被引:2,自引:0,他引:2  
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among quantified to characterize the spatial pattern of cropland SOC storage in China regions of China were systematically to examine the relationship between mean annual temperature, precipitation, soil texture features arid SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.  相似文献   

2.
Soil organic matter (SOM) content is one of the main factors to be considered in the evaluation of soil health and fertility. As timing, human and monetary resources often limit the amount of available data, geostatistical techniques provide a valid scientific approach to cope with spatial variability, to interpolate existing data and to predict values at unsampled locations for accurate SOM status survey. Using geostatistical and geographic information system (GIS) approaches, the spatial variability of some physical and chemical soil parameters was investigated under Mediterranean climatic condition in the Abruzzo region of central Italy, where soil erosion processes accelerated by human induced factors are the main causes of soil degradation associated with low SOM content. Experimental semivariograms were established to determine the spatial dependence of the soil variables under investigation. The results of 250 soil sampling point data were interpolated by means of ordinary kriging coupled with a GIS to produce contour maps distribution of soil texture, SOM content related to texture, and C/N ratio. The resulting spatial interpolation of the dataset highlighted a low content of SOM in relation with soil texture in most of the surveyed area (87%) and an optimal C/N ratio for only half of the investigated surface area. Spatial location of degraded area and the assessment of its magnitude can provide decision makers with an accurate support to design appropriate soil conservation strategies and then facilitate a regional planning of agri-environmental measures in the framework of the European Common Agricultural Policy.  相似文献   

3.
中国滇池流域土地利用方式对土壤侵蚀和养分状况的影响   总被引:2,自引:0,他引:2  
Soil erosion and loss of soil nutrients have been a crucial environment threat in Southwest China. The land use and its impact on soil qualities continue to be highlighted. The present study was conducted to compare soil erosion under four land use types(i.e.,forestland, abandoned farmland, tillage, and grassland) and their effects on soil organic carbon(SOC), total nitrogen(TN) and total phosphorus(TP) in the Shuanglong catchment of the Dianchi Lake watershed, China. There were large variations in the erosion rate and the nutrient distributions across the four land use types. The erosion rates estimated by137 Cs averaged 2 133 t km-2year-1under tillage and abandoned farmland over the erosion rate of non-cultivated sites, and the grasslands showed a net deposition. For all sites, the nutrient contents basically decreased with the soil depth. Compared with tillage and abandoned farmland, grassland had the highest SOC and TN contents within 0–40 cm soil layer, followed by forestland. The significant correlations between137 Cs, SOC and TN were observed. The nutrient loss caused by erosion in tillage was the highest. These results suggested that grassland and forestland would be beneficial for SOC and TN sequestration over a long-term period because of their ability to reduce the loss of nutrients by soil erosion. Our study demonstrated that reduction of nutrient loss in the red soil area could be made through well-managed vegetation restoration measures.  相似文献   

4.
B. ZHONG  Y. J. XU 《土壤圈》2011,21(4):491-501
Estimation of soil organic carbon (SOC) pools and fluxes bears large uncertainties because SOC stocks vary greatly over geographical space and through time.Although development of the U.S.Soil Survey Geographic Database (SSURGO),currently the most detailed level with a map scale ranging from 1:12 000 to 1:63 360,has involved substantial government funds and coordinated network efforts,very few studies have utilized it for soil carbon assessment at the large landscape scale.The objectives of this study were to 1) compare estimates in soil organic matter among SSURGO,the State Soil Geographic Database (STATSGO),and referenced field measurements at the soil map unit;2) examine the influence of missing data on SOC estimation by SSURGO and STATSGO;3) quantify spatial differences in SOC estimation between SSURGO and STATSGO,specifically for the state of Louisiana;and 4) assess scale effects on soil organic carbon density (SOCD) estimates from a soil map unit to a watershed and a river basin scale.SOC was estimated using soil attributes of SSURGO and STATSGO including soil organic matter (SOM) content,soil layer depth,and bulk density.Paired t-test,correlation,and regression analyses were performed to investigate various relations of SOC and SOM among the datasets.There were positive relations of SOC estimates between SSURGO and STATSGO at the soil map unit (R2=0.56,n=86,t=1.65,P=0.102;depth:30 cm).However,the SOC estimated by STATSGO were 9%,33% and 36% lower for the upper 30-cm,the upper 1-m,and the maximal depth (up to 2.75 m) soils,respectively,than those from SSURGO.The difference tended to increase as the spatial scale changes from the soil map unit to the watershed and river basin scales.Compared with the referenced field measurements,the estimates in SOM by SSURGO showed a closer match than those of STATSGO,indicating that the former was more accurate than the latter in SOC estimation,both in spatial and temporal resolutions.Further applications of SSURGO in SOC estimation for the entire United States could improve the accuracy of soil carbon accounting in regional and national carbon balances.  相似文献   

5.
Major chemical properties of tea-growing soils are of paramount importance for better management in a sustainable fashion.Therefore,this study was carried out to understand the major soil chemical properties of major tea(Camellia sinensis L.)-growing areas,Dibrugarh and Tinsukia districts,in the state of Assam,India.A total of 991 surface soil samples were collected from 15 large tea estates(TEs) for analysis of their major chemical properties.Soil pH ranged from 3.61 to 6.81.Total organic carbon and total nitrogen ranged from 2.4 to 47.3 and 0.24 to 3.60 g kg-1,respectively.All soils were sufficiently rich in plant-available potassium(as K2O),which ranged from 127.71 to 252.33 mg kg-1,exceeding the amount prescribed for optimum tea yield of > 100 mg kg-1.Plant-available sulfur among soil samples widely varied from 4 to 129 mg kg-1.Results of hierarchical clustering analysis for homogenous grouping of the 15 TEs based on soil chemical properties showed that the 15 TEs could be classified into three distinct groups which consisted of6,8 and 1 TEs,respectively.Based on the Kolmogorov-Smirnov(K-S) test,the best fitted theoretical probability distributions were found out for different soil chemical properties.It could be concluded that a balanced fertilizer application would be needed as a part of tea improvement program using soil chemical test.  相似文献   

6.
Thermally modified organic materials commonly known as biochar have gained popularity of being used as a soil amendment.Little information, however, is available on the role of biochar in alleviating the negative impacts of saline water on soil productivity and plant growth. This study, therefore, was conducted to investigate the effects of Conocarpus biochar(BC) and organic farm residues(FR) at different application rates of 0.0%(control), 4.0% and 8.0%(weight/weight) on yield and quality of tomatoes grown on a sandy soil under drip irrigation with saline or non-saline water. The availability of P, K, Fe, Mn, Zn and Cu to plants was also investigated. The results demonstrated clearly that addition of BC or FR increased the vegetative growth, yield and quality parameters in all irrigation treatments. It was found that salt stress adversely affected soil productivity, as indicated by the lower vegetative growth and yield components of tomato plants. However, this suppressing effect on the vegetative growth and yield tended to decline with application of FR or BC, especially at the high application rate and in the presence of biochar. Under saline irrigation system, for instance, the total tomato yield increased over the control by 14.0%–43.3% with BC and by 3.9%–35.6% with FR. These could be attributed to enhancement effects of FR or BC on soil properties, as indicated by increases in soil organic matter content and nutrient availability. Therefore, biochar may be effectively used as a soil amendment for enhancing the productivity of salt-affected sandy soils under arid conditions.  相似文献   

7.
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC) and N (SMBN) in 16 loessial soils sampled from Ansai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg C g-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.  相似文献   

8.
Rice-wheat rotation and poplar afforestation are two typical land use types in the coastal reclaimed flatlands of eastern China.This study investigated two rice-wheat rotation lands(one reclaimed from 1995 to 2004 and cultivated since 2005, RW1, and the other reclaimed from 1975 to 1995 and cultivated since 1996, RW2) and a poplar woodland(reclaimed from 1995 to 2004 and planted in2004, PW1) to determine the effects of land use types and years of cultivation on soil microbial biomass and mineralizable carbon(C) in this coastal salt-affected region. The results showed that the soil in PW1 remained highly salinized, whereas desalinization was observed in RW1. The total organic C(TOC) in the top soil of PW1 and RW1 did not show significant differences, whereas at a soil depth of 20–30 cm, the TOC of RW1 was approximately 40%–67% higher than that of PW1. The TOC of 0–30-cm soil in RW2 was approximately 37% higher than that in RW1. Microbial biomass C(MBC) and mineralizable C(MNC) exhibited the trend of RW2 RW1 PW1. Sufficient nutrition with more abundant C substrates resulted in higher MBC and MNC, and soil respiration rates were negatively correlated with C/N in RW1 and RW2. Nutrient deficiency and high salinity played key roles in limiting MBC in PW1. These suggested that rice-wheat rotation was more beneficial than poplar afforestation for C accumulation and microbial biomass growth in the coastal salt-affected soils.  相似文献   

9.
印度热带森林干旱扰动土壤的微生物碳, 氮, 磷的研究   总被引:1,自引:0,他引:1  
Variations in microbial biomass C (MB-C),N (MB-N) and P (MB-P) along a gradient of different dominant vegeta- tion covers (natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems) in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22 to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g ?1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period (summer season) and the minimum in wet period (rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant (P 0.001) among sites and seasons.The MB-C (P 0.0001),MB-N (P 0.001) and MB-P (P 0.0001) were positively correlated with organic C,while the relationship between soil moisture and MB-C,MB-N and MB-P (P 0.001,P 0.01 and P 0.0001,respectively) was negative.The decreasing order of MB-C,MB-N and MB-P along study ecosystems was natural forest mixed deciduous forest savanna grassland.The results suggested that deforestation and land use practices (conversion of forest into savanna and grassland) caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites (grassland and savanna) compared to undisturbed forest ecosystems.  相似文献   

10.
A number of process-based models have been developed for quantifying carbon(C)sequestration in agro-ecosystems.The DeNitrification-DeComposition(DNDC)model was used to simulate and quantify long-term(1980-2008)soil organic carbon(SOC)dynamics in the important rice-producing province,Jiangsu,China.Changes in SOC storages were estimated from two soil databases differing in spatial resolution:a county database consisting of 68 polygons and a soil patch-based database of 701 polygons for all 3.7 Mha of rice fields in Jiangsu.The simulated SOC storage with the coarse resolution county database ranged between 131.0-320.6 Tg C in 1980 and 170.3-305.1 Tg C in 2008,respectively,while that estimated with the fine resolution database was 201.6 and 216.2 Tg C in 1980 and 2008,respectively.The results modeled with the soil databases differing in spatial resolution indicated that using the soil input data with higher resolution substantially increased the accuracy of the modeled results;and when lacking detailed soil datasets,the DNDC model,parameterized with the most sensitive factor(MSF) method to cope with attribute uncertainty,could still produce acceptable results although with deviations of up to 60% for the case study reported in this paper.  相似文献   

11.
云雾山草地土壤氮素及有机碳空间变异特征   总被引:2,自引:0,他引:2  
《水土保持研究》2007,14(4):82-86
  相似文献   

12.
采用地统计学的方法,研究了科尔沁沙地沙质草场土壤含水量对干旱和降雨响应的空间变异规律。结果表明,干旱时沙质草场表层(0~20cm)、亚表层(20~40cm)土壤含水量可很好地拟合成球状模型和指数模型,在1~2.26m,1~6.63m的中等尺度范围内表现出很高的空间自相关性,空间自相关度分别为0.92,0.87.分维数均表现出较弱的空间依赖性.分别为1.99,1.94,两层土壤含水量变异特征差异小,土壤水分的空间变异性强,破碎化程度高。降雨后沙质草场土壤表层、亚表层土壤含水量可很好地拟合成指数模型和球状模型,也具有空间结构特征,空间自相关度分别为0.62,0.98,变程分别为181.80m,4.55m,分维数为1.91,1.99,再有土壤水分空间格局图分析,表层土壤含水量空间变异性小,亚表层空间变异性大,两层土壤含水量变异特征存在明显差异。干旱时与降雨后沙质草场表层土壤水分统计特征、变异函数模型和参数、分维数和土壤水分空间格局分布图存在显著的差异,而亚表层差异较小。一定强度的降雨在短期内只能削弱处于干旱时沙质草场表层土壤水分的空间变异性,使其表层土壤水分破碎化程度、空间变异性减弱,而对土壤深层的水分补充和影响有限。  相似文献   

13.
石羊河流域干旱荒漠区人工梭梭林对土壤碳库的影响   总被引:3,自引:0,他引:3  
采用野外调查与室内分析相结合的方法,研究石羊河流域民勤干旱沙区种植人工梭梭林4,13,36年后的土壤有机碳(Soil organic carbon,SOC)、无机碳(Soil inorganic carbon,SIC)、全氮(Total nitrogen,TN)和总碳(soil total carbon,TC)含量及储量变化特征。结果表明:流动沙地种植梭梭后,0-50cm层灌丛下和行间SOC和TN含量总体随造林年限增加而增加,5-50cm层灌丛下SIC含量在13年梭梭林地最高。36,13年林地0-50cm层灌丛下SOC和TN储量均高于行间,而13年灌丛下SIC储量低于行间,4年灌丛下5-50cm层SOC、TN和SIC储量均低于行间。0-50cm层土壤有机碳、无机碳、全氮储量增幅分别为102.44%,24.66%,54.55%,36年林地SOC和TN储量随土层加深先降低后增加,但4,13年和流动沙地SOC、SIC和TN储量均随土层加深而增加。土壤有机碳占总碳比例随造林年限增加而增加。相关分析结果表明,土壤颗粒组成、造林年限、土层深度等与土壤有机碳和全氮储量显著相关(P0.01)。民勤干旱沙区造林提高了土壤碳库截存量,并且随林龄增长而增长。  相似文献   

14.
为揭示半干旱区沙质草地生态系统中表层土壤C、N组分对长期氮添加和地上凋落物处理的响应特征,以科尔沁沙地西南部国家野外科学观测研究站建立的长期(9年)氮添加和凋落物处理样地为平台,测定并分析该样地表层土壤环境因子、铵态氮、硝态氮、总有机碳、不同碳氮组分。结果表明:(1)持续9年的氮添加和地上凋落物处理对表层土壤环境因子和不同碳氮组分无交互作用;(2)氮添加处理显著降低土壤pH(p<0.01),增加土壤中硝态氮的含量(p<0.05),其增长幅度为37.57%,并显著增加溶解性有机氮(DON)和易变活性氮(LON)的含量(p<0.01,p<0.05);(3)地上凋落物去除显著降低土壤总有机碳(TOC)、易变缓性碳(IOC)、微生物生物量碳(MBC)和微生物生物量氮(MBN)含量(p<0.05);(4)经过9年氮添加和地上凋落物处理,半干旱区沙质草地表层土壤中不同碳氮组分与土壤环境因子间相关性并不密切。即长期氮添加和地上凋落物处理会改变表层土壤不同碳、氮组分的含量,但并未显著改变各碳、氮组分的比值。研究结果为揭示长期氮添加和地上凋落物处理对半干旱区沙质草地土壤C、N贮存和预测未来土壤生物地球化学元素动态研究提供参考资料。  相似文献   

15.
四川盆地水稻土有机碳与全氮的时空变异及影响因素研究   总被引:3,自引:1,他引:2  
利用全国第二次土壤普查数据与2008年采样数据对四川盆地水稻土有机碳和全氮的含量水平变化进行了研究。结果表明:研究区1982年和2008年3种水稻土亚类有机碳含量均呈现潜育型水稻土显著高于淹育型和潴育型水稻土。研究区1982年3种水稻土亚类全氮含量呈现潜育型水稻土显著高于淹育型水稻土,2008年则为潜育型水稻土显著高于淹育型和潴育型水稻土。26年间水稻土有机碳与全氮含量均增长明显,且淹育型与潜育型两种水稻土的增长幅度高于潴育型水稻土。1982年至2008年,平坝、冲沟和坡脚稻田中有机碳及全氮含量增长明显,且大致呈从平坝、冲沟到坡中上部递减;冲积物和泥岩发育的水稻土有机碳及全氮因易于积累而含量更高;质地黏重的土壤有机碳与全氮的含量较高,同时也比质地偏轻的土壤更利于碳、氮的积累;冬水田与稻–油轮作的农田土壤有机碳与全氮的含量与增长幅度显著高于稻–麦轮作田。  相似文献   

16.
[目的]探讨不同草地利用方式下粒度与有机碳含量及相关性,揭示草地退化过程当中土壤有机碳的损失速率,为科尔沁沙地生态环境恢复治理提供科学依据。[方法]以科尔沁沙地乌力吉木伦河流域流动和半固定风沙土为研究对象,对流域内围封草地、不同退化程度的盐碱化样地和人工种植牧草样地等不同草地利用方式下粒度与有机碳含量及相关性进行了探索研究。[结果]围封措施在控制土壤侵蚀和提高土壤有机碳含量方面均起到显著的作用;流域内0—20 cm土层各样地粒度组成以粉粒和砂粒为主,由于翻耕的因素,燕麦和苜蓿样地表层土壤粗粒化明显且比其他样地具有更高的峰值和中值粒径;研究区内100μm粒径左右颗粒为易受侵蚀颗粒;土壤中小于100μm颗粒组分每被吹蚀1%,其有机碳含量将损失0.120 4 g/kg。[结论]在丘间平地分布的盐碱化草甸土地,根据实际情况结合围封措施和种植牧草能防止土壤侵蚀且有效提高有机碳含量。  相似文献   

17.
18.
土壤在调节森林生态系统碳氮循环,提高碳、氮储量及维持生态平衡等方面起着关键作用。华南地区森林土壤有机碳和全氮储量估算以及有机碳和全氮含量和密度的垂直变化和空间分布特征研究可为森林土壤碳、氮储量预测及碳氮库管理提供数据支撑。基于2005—2023年华南地区森林土壤有机碳和全氮含量历史文献数据,通过构建森林土壤密度与有机质回归模型,估算土壤有机碳和全氮密度及储量;采用统计学与地统计学方法探讨华南地区0~60 cm土层森林土壤有机碳和全氮含量及密度的变化特征,并分析其影响因素。结果表明:(1)华南地区0~60 cm土层森林土壤有机碳密度均值和储量分别为3.53 kg·m-2、2452.13 Tg C,全氮密度均值和储量分别为0.27 kg·m-2、194.30 Tg N;各省份土壤有机碳和全氮密度及储量表现为广西>广东>海南;(2)普通克里金插值结果显示,各土层土壤有机碳和全氮密度均表现出明显的空间异质性,且空间分布特征相似,总体表现为全区北部和中部偏西较高、南部沿海地区低;(3)海拔、土壤密度和全磷是影响华南地区土壤有机碳和全氮密度及储量变化的关键因子。综上,利用有机密度模型计算缺失土壤密度,基于土壤类型法估算森林土壤碳、氮密度及储量,能有效预测土壤碳、氮储量及管理碳氮库;华南地区0~60 cm土层森林土壤碳氮密度存在明显的空间分布规律,其在各省份间差异显著。  相似文献   

19.
    
Carbon sequestration via sound agronomic practices can assist in combating global warming. Three long-term experiments (Experiment 502, Experiment 222, and The Magruder Plots) were used to evaluate the effect of fertilizer nitrogen (N) application on soil organic carbon (SOC), total nitrogen (TN), and pH in continuous winter wheat. Soil samples (0–15 cm) were obtained after harvest in 2014, analyzed, and compared to soil test results from these experiments in 1993. Soil pH decreased with increasing N fertilization, and more so at high rates. Nitrogen application significantly increased TN in Experiment 502 from 1993 to 2014, and TN tended to be high at high N rates. Fertilizer N significantly increased SOC, especially when N rates exceeded 90 kg ha?1. The highest SOC (13.1 g kg?1) occurred when 134 kg N ha?1 was applied annually. Long-term N application at high rates increased TN and SOC in the surface soil.  相似文献   

20.
锡林河流域土壤有机碳空间变异分析   总被引:1,自引:0,他引:1  
为了探索锡林河流域土壤有机碳的空间变异规律,基于半方差函数理论和普通克里格插值研究了0-10 cm,20-30 cm,40-50 cm土壤有机碳变异特征及分布格局。结果表明,(1)0-10 cm,20-30 cm,40-50 cm层土壤有机碳的最优拟合模型依次是高斯模型、高斯模型、指数模型。(2)随着土层深度的增加,土壤有机碳空间分布相关性增强,0-10 cm层土壤有机碳存在中等空间分布相关性,20-30 cm与40-50 cm层土壤有机碳具有强烈的空间分布相关性,自相关距离分别为25.81 km,20.26 km,45.00 km。(3)各向异性分析表明:各方向土壤有机碳变异程度随着土层深度增加而减弱,同层不同方向半方差变化明显,各向异性显著,不同层西南-东北45°方向以及东南-西北135°方向半方差变化最为明显,而各层45°方向变异程度却表现出相似性。(4)各层土壤有机碳分布具有一致性,流域南部边缘到东部以及东北部为土壤有机碳含量较高区域,北部、西北部以及上游的中南部是全流域土壤有机碳含量最低的区域,西部以及西南部土壤有机碳含量处于相对中等水平,流域地形与植被分布特征决定了土壤有机碳这种分布特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号