首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerated degradation of vernolate, EPTC and butylate but not of cycloate was detected in soils from three locations in Israel which were treated annually with vernolate. Repeated application of EPTC to soils with and without a history of vernolate application, under laboratory conditions, resulted in a progressive increase in its rate of dissipation with each application. Accelerated degradation of EPTC was also rapidly induced by mixing small amounts (5%) of soil with a history of vernolate treatment with soil that had never received vernolate. Liberation of 14CO2 from [14C]EPTC was more rapid in vernolate-treated soils than in untreated soils, indicating a development of microbial populations in soil capable of rapidly degrading the EPTC. Degradation of [14C]EPTC was faster in soil previously cropped with maize than in non-cropped soil, but slower in soils cropped with cotton or peanuts.  相似文献   

2.
Tri-allate degraded faster in soil from a site (T1) that had received 1·7 kg ha?1 of tri-allate annually for 23 years than in soil from an adjacent site (TO) that had received no pesticide application. Soil from the untreated site, which had been removed to a glasshouse and treated three times per annum with tri-allate at 1·7 kg ha?1 for 7 years (T2), also showed faster degradation. Soil previously treated with tri-allate showed an increased degradation rate for carbofuran and EPTC but not for aldicarb. A further experiment, 2 years after the last treatment with tri-allate, showed that the enhanced degradation effect was still present. Degradation rates were always in the order T1 > T2 > T0 for tri-allate, EPTC and carbofuran. Half-life for degradation was reduced for tri-allate and carbofuran by approximately 40% in the previously treated soils and for EPTC by approximately 80% when compared with the previously untreated soil.  相似文献   

3.
The behaviour and fate of chlorsulfuron in aqueous and soil systems were examined in laboratory studies. Aqueous hydrolysis was pH-dependent and followed pseudo-first-order degradation kinetics at 25°C, with faster hydrolysis occurring at pH 5 (half-life 24 days) than at either pH 7 or 9 (half-lives >365 days). Degradation occurred primarily by cleavage of the sulfonylurea bridge to form the major metabolites chlorobenzenesulfonamide (2-chlorobenzenesulfonamide) and triazine amine (4-methoxy-6-methyl-1,3,5-triazin-2-amine). This route is a major degradation pathway in water and soil systems. Aqueous photolysis (corrected for hydrolysis) proceeded much more slowly (half-life 198 days) than aqueous hydrolysis and is not expected to contribute significantly to overall degradation. Hydrolysis in soil thin-layer plates exposed to light (half-life 80 days), however, progressed at a much faster rate than in dark controls (half life 130 days), which suggests that a mechanism other than direct photolysis may have been operative. An aerobic soil metabolism study (25°C) in a Keyport silt loam soil (pH 6·4, 2·8% OM) showed that degradation was rapid (half-life 20 days). Dissipation in an anaerobic sediment/water system (initial pH of water phase 6·7, final pH 7·4) progressed much more slowly (half-life >365 days) than in aerobic soil systems. Major degradation products in aerobic soil included the chlorobenzenesulfonamide and triazine amine as in the aqueous hydrolysis study. Neither of these degradation products exhibited phytotoxicity to a variety of crop and weed species in a glasshouse experiment, and both exhibited an acute toxicological profile similar to that of chlorsulfuron in a battery of standard tests. Demethylation of the 4-methoxy group on the triazine moiety and subsequent cleavage of the triazine ring is another pathway found in both aqueous solution and soils, though different bonds on the triazine amine appear to be cleaved in the two systems. Hydroxylation of the benzenesulfonamide moiety is a minor degradation pathway found in soils. Two soils amended with 0·1 and 1·0 mg kg-1 chlorsulfuron showed slight stimulation of nitrification. The 1·0 mg kg-1 concentration of chlorsulfuron resulted in minor stimulation and inhibition of 14C-cellulose and 14C-protein degradation, respectively, in the same soils. Batch equilibrium adsorption studies conducted on four soils showed that adsorption was low in this system (Koc 13–54). Soil thin-layer chromatography of chlorsulfuron (Rf=0·55–0·86) and its major degradation products demonstrated that the chlorobenzenesulfonamide (Rf=0·34–0·68) had slightly less mobility and that the triazine amine (Rf=0·035–0·40) was much less mobile than chlorsulfuron. In an aged column leaching study, subsamples of a Fallsington sandy loam (pHwater 5·6, OM 1·4%) or a Flanagan silt loam (pHwater 6·4, OM 4·0%) were treated with chlorsulfuron, aged moist for 30 days in a glasshouse and then placed upon a prewet column of the same soil type prior to initiation of leaching. This treatment resulted in the retention of much more total radioactivity (including degradation products) than by a prewet column, where initiation of leaching began immediately after chlorsulfuron application, without aging (primarily chlorsulfuron parent). © 1998 SCI  相似文献   

4.
磺酰脲类除草剂代表性产品氯磺隆曾为超高效的麦田选择性除草剂,后因降解速率慢、残留期长导致对后茬作物产生药害而被禁用。经过对氯磺隆苯环5位基团的构效关系研究发现,5-二甲氨基取代氯磺隆 ( Ia ) 和5-二乙氨基取代氯磺隆 ( Ib ) 不仅能够保持超高效除草活性,而且其在酸性土壤和碱性土壤中的降解速度显著提高。为了进一步研究其应用价值,以油菜为指示作物研究了化合物 Ia 和 Ib 在温室土壤 (河北沧州,pH 8.46) 中的降解动态,并就其对后茬作物小麦和玉米的安全性进行了测试。结果表明:随着时间的推移,分别经有效剂量60 g/hm2的 Ia 和 Ib 处理的土壤对油菜的生长抑制呈逐渐缓解趋势,而经氯磺隆处理的土壤70 d后对油菜的抑制率仍大于70%。作物安全性测试结果表明:化合物 Ia 和 Ib 在有效剂量 15~60 g/hm2下,对茎叶处理的小麦生长无显著抑制作用;此外,化合物 Ia 在有效剂量30~120 g/hm2下对茎叶处理的玉米还展现出一定的生长促进作用。研究结果表明,化合物 Ia 和 Ib 具有较好的开发价值和应用前景,值得进一步研究。  相似文献   

5.
Four experiments were conducted at six week intervals to determine the seasonal activity and persistence of soil-incorporated EPTC (5-ethyl N,N-dipropyl(thiocarbamate)) for Cyperus rotundus L. control and tolerance of okra (Hibiscus esculentus L.), cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.), red beet (Beta vulgaris L.) and carrot (Daucus carota L.) during the dry and wet seasons in Viçosa, Brazil. Satisfactory control of C. rotundus was obtained at 2 kg/ha EPTC during the dry season and 4 kg/ha or more during the wet season. Only red beet and carrot tolerated these doses of EPTC when the crops were planted five days after application. However, selective control of C. rotundus was obtained when the planting date of lettuce was delayed for three or six weeks after EPTC application. EPTC controlled C. rotundus at half the dose that was required to control three species of annual grass that germinated near the soil surface. EPTC persisted longer when applied to air dry soil and incorporated with a rototiller than when incorporated into moist or wet soil.  相似文献   

6.
Glasshouse studies showed that low doses of paraquat inhibited the germination of Lolium perenne L. broadcast directly onto the paraquat-sprayed surfaces of a sphagnum and a peat soil, but that higher doses were necessary to produce phytotoxic symptoms on mineral soils, a compost and a loam. On all soils residual activity increased rapidly with increasing dose once the minimum phytotoxic dose was reached. On a sandy soil, residual activity increased almost linearly from the lowest to the highest dose applied. At 9·0, 4·5 and 2·24 kg/ha phytotoxicity on a compost was not affected by changes in the volume of application, but at 1·68 kg/ha and lower, reducing the volume from 562 1/ha to 281 and 112 1/ha resulted in increased phytotoxicity. Phytotoxic residues were eluted from paraquat-treated compost surfaces by percolating de-ionized water up soil columns but residual activity was not removed from the eluted surfaces. Surface irrigation of paraquat-treated surfaces with water previously percolated through columns of untreated soil reduced residual activity by 45%.  相似文献   

7.
The effect of metham-sodium on Orobanche aegyptiaca Pers. was tested in the laboratory and in soil columns. The laboratory experiment was carried out on O. aegyptiaca seeds placed in Petri dishes and germinated with GR24, a synthetic strigol analogue. In soil columns, metham-sodium was applied by application of the chemical through the irrigation water to three different soils and its dissipation determined in three soil layers by gas chromatography, by a lettuce bio-assay to check the herbicide's phytotoxicity, and with a flax bioassay to check its effect on O. aegyptiaca. Results of the germination experiments showed an exponential decrease in O. aegyptiaca germination, parallel with the increase of metham-sodium concentration, with an average effective concentration (EC50) of 18 mg L?1. In a soil column, methylisothiocyanate (MIT, the metham active product) rapidly disappeared from the upper soil level (0–10 cm) within 24 h. Seven days after application only traces of MIT remained in all soil layers in all soils, except for the sandy Rehovot soil that contained low concentrations in the lower soil layer (20–30 cm). Flax bioassay confirmed the chemical analysis, showing that O. aegyptiaca tubercles developed only on plants grown in the upper soil layer of all three soils.  相似文献   

8.
Persistence of ethofumesate [(±)2-ethoxy-2.3-dihydro-3,3-dimethylbenzofuran-5-yl-methansulphonate] in soil was associated with soil temperature. Ethofumesate applied at 4.5 kg/ha in November persisted about twice as long in soil as that applied the following March. In another field study, 88–91% of the herbicide had dissipated after 24 weeks in sandy loam soil, compared to 72–77% in loam soil when it was applied at rates of 2.2, 3.4, 4.5, and 9.0 kg/ha. The rate of degradation was independent of the initial rate of chemical applied. The time required for 50% of the herbicide to dissipate in sandy loam and loam soils was 7.7 and 12.6 weeks, respectively. The movement of ethofumesate in these two soils over a 24-weeks sampling period was confined mainly to the upper 7.5 cm of the soil profile.  相似文献   

9.
Increasing adsorption of [14C]-labelled carbendazim in soil took place within a few weeks of incubation and was greatest in soil with a high organic matter content. Carbendazim was slowly decomposed in soil, mainly by soil microorganisms. After 250 days of incubation in two unsterilised soils, 13 and 5% respectively of added [14C]-carbendazim was recovered compared with 70 and 50% respectively from sterile soils; 4–8% of added carbendazim was recovered as 2-aminobenzimidazole (2-AB) from both unsterilised and sterile soil. After 270 days' incubation, 33 and 9% of 14C was recovered as 14CO2 from soil supplied with [14C]-carbendazim (20 and 100 mg/kg) respectively. Degradation started more rapidly when carbendazim was added to soil preincubated with the fungicide but the degradation rate was very low in all cases, indicating that the compound is a poor microbial energy source and that the degradation is a co-metabolic process. 2-AB was found as a degradation product although it appeared to be unstable in soil, decomposing rapidly after a lag period of about 3 weeks; small amounts remained in the soil for several months, however, presumably adsorbed on soil particles.  相似文献   

10.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. II. Prediction of the phytotoxicity of atrazine residues to following crops Total and plant-available atrazine residues in the top 10 cm soil were measured 120 days after application of 3 kg ai ha?1 to maize (Zea mays L.) at three sites in Rumania. At one site, similar measurements were made 3?5 years after application of 100 kg ai ha?1. Plant-available atrazine residues were estimated by extraction of soil samples with water, and by bioassay using Brassica rapa as the test plant. It was calculated that between 30 and 120μg atrazine 1?1 was potentially available to plants in the different soils. Dose-response relationships for atrazine and the most important rotational crops with maize in Rumania—sunflower, winter wheat, soybean and flax—were determined in hydroponic culture using herbicide concentrations corresponding with the plant-available fractions measured in the different soils. ED50 values were determined by probit analysis and the results showed that sunflower (ED50, 22μg 1?1) was the most sensitive crop, and soybean (ED50, 78μg 1?1) was the least. The residual phytotoxicity of atrazine to succeeding crops in the different soils was predicted using the appropriate availability and phytotoxicity data, and the results showed good agreement with those observed. The results suggest that measurements of plant-available herbicide residues afford a rapid method of assessing possible phytotoxicity to following crops.  相似文献   

11.
Crops and soils from field trials in 1967–1970 in several countries have been analysed for residues of the triazine herbicide cyanazine (‘BLADEX’
  • 1 Shell Registered Trade Mark.
  • a or ‘FORTROL’a' 2-chloro-4-(1-cyano-1-methylethylamino)-6-ethylamino-1,3,5-triazine) and for its degradation products 2-chloro-4-(1-carbarmoyl-1-methylethylamino)-6-ethylamino-1,3,5-triazine ( II ), 2-chloro-4-(1-cyano-1-methylethylamino)-6-amino-1,3,5-triazine ( V ) and 2-chloro-4-(1-carbonyl-1-methylethylamino)-6-amino-1,3,5-triazine ( VI ). The time for the concentration of cyanazine in soils to fall to half the initial value was in the range 1.3 to 5 weeks with a mean value of 2.4 weeks. The rate of loss was not affected by sparse crop cover and there was some indication that the rate was greater under moist soil conditions. Residues of up to 0.5 part/million of ( II ) and up to 0.08 part/million of ( VI ) were detected in soils at 4 weeks from cyanazine application at 2 kg/ha. The residues of cyanazine and the degradation products declined rapidly and were 0.07 part/million or less at 16 weeks from treatment. Repeated annual applications did not lead to a detectable build up of residues in soil. Neither residues of cyanazine nor those of ( II ), ( V ) or ( VI ) could be detected in a wide range of crops harvested from soil treated in accordance with the likely recommendations and the limits of detectability were 0.01 to 0.04 part/million.  相似文献   

    12.
    The efficacies of nine structural analogues of the herbicide antidote naphthalene-1,8-dicarboxylic acid anhydride (naphthalic anhydride, NA) for the protection of maize (Zea mays L. cv. DeKalb XL72AA and DeKalb XL67) against injury by the herbicide S-ethyl dipropyl(thiocarbamate) (EPTC) were elevated under greenhouse conditions. The chemical analogues of NA tested were: acenaphthenequinone (ACQ); 4-aminonaphthalene-1,8-dicarboxylic acid anhydride (NH2NA); 1,8:4,5-naphthalenetetracarboxylic acid dianhydride (NDiA); naphthalene- 1,8-carboximide (NHNA); 4-chloronaphthalene-1,8-dicarboxylic acid anhydride (C1NA); biphenyl-2,2′-dicarboxylic acid anhydride (diphenic anhydride; DA); 2-phenylglutaric anhydride (PGA); phthalic anhydride (PHA); phenalen-1-one (PA). Pre-plant incorporated applications of EPTC at 2.2, 4.5, 6.7, and 9.0 kg ha?1 were highly toxic to XL67 maize. Appreciable injury to XL72AA maize by EPTC was observed only with the high rates of EPTC (6.7 and 9.0 kg ha?1). Of the analogues tested PGA and PA were very toxic and inhibited germination of both maize hybrids. NA, ACQ, NH2NA, NDiA, NHNA, C1NA, DA, and PHA applied as seed dressings at 5.0 and 10 g per kg of seed offered satisfactory protection to XL72AA maize against EPTC rates higher than 6.7 kg ha?1. The same antidotes significantly antagonised the EPTC activity against XL67 maize but the overall protection obtained was partial and not agronomically important. The presence of the dicarboxylic anhydride group and of at least one aromatic ring attached directly to the anhydride appeared to be essential for the exhibition of protective activity by the structural analogues of NA. NA was slightly toxic to both hybrids of maize and chlorination of NA increased the phytotoxicity of this molecule. A genetic component that is present in the thiocarbamate-tolerant XL72AA hybrid but absent from the thiocarbamate-susceptible XL67 hybrid of maize appeared to be important for the phytotoxic activity of EPTC and may be involved in the protective activity of NA and its structural analogues.  相似文献   

    13.
    Experiments were done to observe the pattern of early root development of radish (Raphanus raphatnistrum L.) and perennial ryegrass (Lolium perenne L.), the mobility of chlortoluron following application to the soil surface, the effect of protecting the subterranean shoots of four plant species on their response to chlortoluron and terbutryne and the relative quantities of 14C-labelled chlortoluron taken up by radish and Avenu fatua from root and shoot zone exposure. Both chlortoluron and terbutryne appear to be able to enter the plants examined, Alopecurus myosuroides, Stellaria media, perennial ryegrass and radish, through roots and shoots. It is suggested that shoot uptake is relatively more important for plants like perennial ryegrass than for those whose roots develop more quickly and invade the soil above the seed, such as radish. The quantities of radioactive chlortoluron taken up from soil containing 400 ng g?1 showed that less than 3 ng per plant could reduce A. fatua fresh weight by 17–40% while over 30 ng per plans had little effect on radish. By comparison 2 kg ha?1 chlortoluron applied to the soil surface of pots which were sub-irrigated for 3 weeks gave a concentration of 170 ng g?1 in the layer of soil 10–12 mm from the surface. It is suggested that for shallow germinating species with herbicides of physical and phytotoxic properties similar to chlortoluron, the solvent action of rainfall, together with diffusion, is enough to allow the transport of toxic quantities to the target plant although any leaching action is likely to increase activity.  相似文献   

    14.
    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate] is an organophosphorus insecticide applied to soil to control pests both in agricultural and in urban developments. Typical agricultural soil applications (0.56 to 5.6 kg ha?1) result in initial soil surface residues of 0.3 to 32 μg g?1. In contrast, termiticidal soil barrier treatments, a common urban use pattern, often result in initial soil residues of 1000 μg g?1 or greater. The purpose of the present investigation was to understand better the degradation of chlorpyrifos in soil at termiticidal application rates and factors affecting its behaviour. Therefore, studies with [14C]chlorpyrifos were conducted under a variety of conditions in the laboratory. Initially, the degradation of chlorpyrifos at 1000 μg g?1 initial concentration was examined in five different soils from termite-infested regions (Arizona, Florida, Hawaii, Texas) under standard conditions (25°C, field moisture capacity, darkness). Degradation half-lives in these soils ranged from 175 to 1576 days. The major metabolite formed in chlorpyrifos-treated soils was 3,5,6-trichloro-2-pyrid-inol, which represented up to 61% of applied radiocarbon after 13 months of incubation. Minor quantities of [14C]carbon dioxide (< 5%) and soil-bound residues (? 12%) were also present at that time. Subsequently, a factorial experiment examining chlorpyrifos degradation as affected by initial concentration (10, 100, 1000 μg g?1), soil moisture (field moisture capacity, 1.5 MPa, air dry), and temperature 15, 25, 35°C) was conducted in the two soils which had displayed the most (Texas) and least (Florida) rapid rates of degradation. Chlorpyrifos degradation was significantly retarded at the 1000 μg g?1 rate as compared to the 10 μg g?1 rate. Temperature also had a dramatic effect on degradation rate, which approximately doubled with each 10°C increase in temperature. Results suggest that the extended (3–24 + years) termiticidal efficacy of chlorpyrifos observed in the field may be due both to the high initial concentrations employed (termite LC 50 = 0.2– 2 μg g?1) and the extended persistence which results from employment of these rates. The study also highlights the importance of investigating the behaviour of a pesticide under the diversity of agricultural and urban use scenarios in which it is employed.  相似文献   

    15.
    The degradation of [14C] benzoyl prop ethyl (SUFFIX,a ethyl N-benzoyl-N-(3,4-dichlorophenyl)-2-aminopropionate) in four soils has been studied under laboratory conditions. The major degradation product of benzoylprop ethyl at up to 4 months after treatment was its corresponding carboxylic acid (II). On further storage this compound became firmly bound to soil before it underwent a slow debenzoylation process which led to the formation of a number of products including N-3,4-dichlorophenylalanine (IV), benzoic acid, 3,4-dichloroaniline (DCA), which was mainly present complexed with humic acids, and other polar products. Although these polar products were not identified, they were probably degradation products of DCA, since they were also formed when DCA was added to soil. No 3,3′,4,4′-tetrachloroazobenzene (TCAB) was detected in any of the soils at limits of detectability ranging from 0.01-0.001 parts/million. Since N-3,4-dichlorophenylalanine (IV) and 3,4-dichloroaniline were transient degradation products of benzoylprop ethyl, the metabolism in soil of radiolabelled samples of these compounds was also studied. In these laboratory experiments the persistence of the herbicide increased as the organic matter content of the soil increased and the time for depletion of half of the applied benzoylprop ethyl varied from 1 week in sandy loam and clay loam soils to 12 weeks in a peat soil.  相似文献   

    16.
    The influence of foliar sprays of EPTC, fluorodifen and monuron on transpiration and photosynthetic oxygen output of Eupatorium odoratum plants is demonstrated. Foliar sprays with 100 ppm EPTC or monuron led to a significant decrease in transpiration for a continuous period of 14 days. Treatment with 100 ppm fluorodifen led to a noticeable increase in transpiration during the first eight days. All three herbicides significantly reduced photosynthetic oxygen output from the Eupaiorium plants. EPTC and monuron however, gave greatest effect. Reduction in transpiration from the plants was due to stomatal closure while reduction in photosynthetic oxygen output was due to both stomatal closure and probably also inhibition of the Hill reaction.  相似文献   

    17.
    BACKGROUND: Azoxystrobin [methyl (E)‐2‐{2‐[6‐(2‐cyanophenoxy)pyrimidin‐4‐yloxy]phenyl}‐3‐methoxyacrylate], a strobilurin fungicide, is a broad‐spectrum, systemic and soil‐applied fungicide. Azoxystrobin has been registered for rice cultivation in India, but no information is available on its leaching behaviour in Indian soils. Therefore, leaching behaviour of azoxystrobin was studied in packed and intact soil columns under different irrigation regimes. RESULTS: Azoxystrobin did not leach out of the 300 mm long columns after 126 and 362 mm rainfall. After percolating water equivalent to 362 mm rainfall, azoxystrobin leached down to 10–15 cm (packed columns) and 15–20 cm (intact columns) depth. Azoxystrobin was not detected in the leachate from the packed column leached with 94.5 mL water every week (140 mm rainfall per month) during the 28 weeks of the study period. However, azoxystrobin acid, formed by azoxystrobin degradation, was detected in the leachate after 18 weeks. At the end of the study, azoxystrobin had leached down to 5–10 cm depth, and only 60% of initially applied azoxystrobin was recovered from the soil. CONCLUSION: The results indicate that azoxystrobin is fairly immobile in sandy loam soil, but azoxystrobin acid, a major metabolite of azoxystrobin, is quite mobile and may pose a threat of soil and groundwater contamination. Copyright © 2009 Society of Chemical Industry  相似文献   

    18.
    The hydrolysis of triasulfuron, metsulfuron‐methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH‐sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2–6.2) than under neutral and moderately alkaline conditions (8.2–9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo‐first‐order kinetics. There were no significant differences (P = 0.05) in the rate constants (k, day−1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the ‘rate constant’ on pH. The hydrolysis involving attack by neutral water was at least 100‐fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O‐demethylation of metsulfuron‐methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural alkaline soils. © 2000 Society of Chemical Industry  相似文献   

    19.
    Chlortoluron hadàhalf-tire in soil of 4–6 weeks. The only metabolite identified was monomethyl chlortoluron, half-life 8 weeks. 3-Chloro-4-methylphenylurea hadàsimilar half-life but was not detected in soils treated with chlortoluron or monomethyl chlortoluron suggesting that 3-chloro-4-methylaniline was formed directly from monomethyl chlortoluron. This aniline hadàhalf-life of 1–2 days in soil, initial concentrations above 5 ppm yielding dimers and trimers predominantly C — N linked. Neither the aniline nor polymeric products were detected in chlortoluron treated soils, presumably because slow formation of the aniline was followed by rapid degradation which kept concentration low.  相似文献   

    20.
    The effect of herbicide placemem in the soil on control of Cyperus rotundus L. was studied in the greenhouse with EPTC, alaehlor, norfiurazon, perlluidone, napropamide, trifluralin, and naptalam, EPTC was the mosl active herbicide, increasing the number of sprouts per tuber but inhibitmg bud development at an early stage of growth. The effect was greatest when EPTC was incorporated with the soil around the tubers. The effects of alaehlor were similar, but higher doses were required. Another active herbicide, norfiurazon, was taken up by the roots but its effect was to produce small, chlorotic leaves, Perfluidone was mosl effective when incorporated into the soil around the tubers or when placed in a layer 1 cm above them. Very little effect of napropamide trifluralin and naptalam was observed. In studies of growth and deveiopmenl with different planting depths, C. rotumtus produced basal bulbs, roots and most of its early reproductive parts in a layer of soil 1–3 cm from the surface, irrespective of the depth at which the tubers were planted. Shoots etncrged from 35 im deep but not from 50 cm.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号