首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
灌溉对大麦/玉米带田土壤硝态氮累积和淋失的影响   总被引:7,自引:3,他引:7  
以甘肃省河西走廊灌区为试验地点,分别在0、150、300 kg/hm2氮水平和816、1632 m3/hm2灌水量下,对3次灌水前、后大麦/玉米带田0~200 cm土壤NO-3-N含量变化和灌水后135 cm处渗漏液NO-3-N浓度进行了测定。结果表明:灌水明显影响土壤硝态氮累积量,随灌水次数增加,土壤硝态氮累积量降低,而且在高灌水条件下土壤硝态氮累积量变化比低灌水量时大。从渗漏液硝态氮浓度来看,大麦带和玉米带都是以第1次灌水最高,浓度分别为8.04~17.21和3.30~14.57 mg/L。3次灌水土壤硝态氮淋失量,玉米带以N 150 kg/hm2和灌水量1632 m3/hm2最高,平均为4.31 kg/hm2;大麦带以N 150 kg/hm2及灌水量1632 m3/hm2和N 150 kg/hm2及灌水量816 m3/hm2比较高,平均为6.82 kg/hm2。  相似文献   

2.
为研究流域硝态氮来源、输出特征及驱动因素,应用SWAT模型对三峡库区梅溪河和大宁河流域径流和硝态氮负荷进行模拟,进而解析流域水文过程及硝态氮来源,并基于随机森林模型量化了不同影响因素(气候、土地利用、土壤类型、地形)对径流和硝态氮负荷的影响程度。结果表明:(1)不同土地利用类型间硝态氮负荷差异显著,年负荷强度表现为园地(20.41 kg/hm2)>旱地(12.51 kg/hm2)>水田(10.31 kg/hm2)>建设用地(7.09 kg/hm2)>林地(0.62 kg/hm2)>草地(0.46 kg/hm2),旱地是梅溪河(80%)和大宁河流域(67%)硝态氮输出的主要来源;(2)梅溪河和大宁河流域基流系数分别为67%和62%,基流是硝态氮主要运移途径,分别贡献68%和60%的硝态氮输出;(3)径流分配和硝态氮输出具有明显季节变异性,旱季基流对2个流域径流和硝态氮的贡献均在70%以上,雨季地表径流输出的硝态氮分别占36%和42%;(4)降雨量是影响总径流的主要因素,土壤类型是影响地表径流和基流的主要因素;土地利用是影响不同径流途径硝态氮的主要因素,其次是土壤类型,二者相对重要性之和大于70%。综上,环境土地利用冲突是造成硝态氮流失的根本原因,源头控制仍是三峡库区面源污染防控的关键环节;在地表径流控制的基础上亟待纳入旱地和园地基流途径控制策略。  相似文献   

3.
针对温室大棚盐渍化土壤灌水洗盐而导致的农业面源污染问题,以常规肥水管理方式为对照,在上海崇明东滩温室大棚采用土壤次生盐渍化监测、灌水洗盐过程模拟和农作物生产试验等方法研究精确滴灌施肥技术在降低土壤次生盐渍化程度和减少农田氮磷流失中的作用。结果表明,滴灌施肥技术可有效降低农田表层土壤的盐分积累速度,以此降低洗盐频次,进而显著削减温室大棚因灌水洗盐而引起的氮磷流失负荷。当滴灌施肥区洗盐频次降低为常规区的一半时,总氮、总磷、硝氮和氨氮的年流失负荷较常规方式削减45%-53%,而作物产量基本可以保持;当洗盐频次降低为常规区的1/4时,总氮、总磷、硝氮和氨氮的年流失负荷的削减率达58%-75%,但后茬作物减产明显。  相似文献   

4.
为了提高氮肥和水分利用效率,该文在甘肃河西灌区试验地点,采用田间小区试验,研究了不同氮水平(0、225、450 kg/hm2)和灌水量(750、1125、1500 m 3/hm2)对小麦/玉米间作土壤硝态氮累积和水氮利用效率的影响。结果表明,不同氮肥和灌水量对小麦带土壤硝态氮含量和累积量影响较小,对玉米带影响显著。随氮肥用量增加,玉米带土壤硝态氮含量和累积量增加,随灌水量和氮肥用量增加,0~60 cm土壤硝态氮相对累积量增加,60~140 cm土层降低。氮肥当季利用率、氮肥生产率、氮肥产投比都是以225 kg/hm2氮水平较高,但不同灌水量差别不大。WUE(水分利用效率)以W750N225最高,W1500N0最低,随灌水量增加WUE降低。  相似文献   

5.
农业氮磷养分流失已经成为地下水污染的重要原因之一,为了探究和比较麦稻两熟农田和杨树林地氮磷流失对地下水的影响,本文在洪泽湖河湖交汇区设置农田和杨树林监测小区和监测井,进行了为期1年的地表养分流失和地下水水质监测。结果表明:1)林地雨前雨后表层土壤含水量均小于麦田,麦田土壤含水量较雨前平均提高8.95%,林地提高4.05%。2)麦田和杨树林地表层土壤硝态氮、铵态氮及有效磷流失总量分别为63.53 mg·kg-1、5.61 mg·kg-1及57.43 mg·kg-1和16.78 mg·kg-1、2.45 mg·kg-1及0.73 mg·kg-1,稻季田面水硝态氮、铵态氮、可溶性磷和颗粒态磷流失总量为8.32 mg·L-1、27.44 mg·L-1、2.39 mg·L-1和2.99 mg·L-1,监测期内杨树林氮磷流失总量明显低于农田。3)农田表层养分流失量与降雨量存在密切关系,基本随降雨量增大呈对数增长,而杨树林几乎不受降雨影响。4)农田产生径流的理论最小降雨量(麦田:3.3 mm;稻田:4.2 mm)远小于杨树林地(22.8 mm),麦田铵态氮、正磷酸盐浓度,稻田和杨树林地总氮、硝态氮、铵态氮、总磷、可溶性磷、正磷酸盐浓度与降雨量存在显著相关性。5)农田径流中养分浓度与地下水氮磷含量存在显著相关性(P<0.05),而杨树林地地下水氮磷含量保持在相对稳定水平,与径流中养分浓度无明显相关性。与农田相比,林地能够更好地控制径流养分流失,缓解地下水污染,有利于农业面源污染的控制。  相似文献   

6.
减量施肥对湖垸旱地作物产量及氮磷径流损失的影响   总被引:12,自引:0,他引:12  
为探明洞庭湖区旱地生产中的氮磷盈余问题, 利用在该区域连续两年的玉米 油菜轮作田间小区试验, 研究了常规施肥[玉米: 400 kg(N)·hm-2, 90 kg(P2O5)·hm-2, 135 kg(K2O)·hm-2; 油菜: 180 kg(N)·hm-2, 65 kg(P2O5)·hm-2, 60 kg(K2O)·hm-2]、常规施肥减氮15%、减氮30%、缓控释肥减氮30%+减磷20%、常规施肥减磷20%共5个处理下, 玉米和油菜产量、氮磷肥利用率、氮磷径流损失量以及土壤氮磷养分的变化。结果表明, 在研究区域现有施肥水平下(常规施肥), 减量施肥对玉米和油菜产量没有显著影响; 缓控释肥减氮30%+减磷20%处理下玉米和油菜对氮磷养分的利用率显著提高, 其中氮素利用率较常规施肥处理两年平均提高7.96%和4.89%、磷素利用率提高2.02%和2.56%; 同时, 减量施肥各处理下氮磷径流损失量与常规处理比较, 分别减少3.54%~29.36%和7.14%~35.71%; 试验期内, 减量施肥下土壤全量氮磷及硝态氮含量与常规施肥处理无显著差异。根据本研究结果, 各施肥处理中, 以缓控释肥减氮30%+减磷20%处理效果更佳。研究结果可以为该地区旱地作物合理施肥、区域农业面源污染防控和洞庭湖区水环境保护提供参考依据。  相似文献   

7.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

8.
针对设施蔬菜土壤硝态氮累积与淋失严重的问题,以宁夏引黄灌区设施黄瓜-茄子为供试作物,研究减施氮肥与添加秸秆对设施菜田硝态氮累积与淋失的影响。采用田间试验、取样、室内分析与生物统计的方法,设置农民常规施肥(CON)、氮肥减量28%(RF)和氮肥减量39%+秸秆添加(BMP)3个处理,开展不同氮肥管理措施对设施黄瓜-茄子种植体系土壤硝态氮累积与淋失的影响。结果表明,与CON相比,RF和BMP处理能有效降低0~120 cm土层土壤硝态氮储量,2016年黄瓜、2017年茄子和2018年茄子季土体硝态氮储量分别降低2.2%~9.4%、3.9%~6.1%和5.2%~12.8%,相应的硝态氮淋失量分别降低了55.6%~69.7%、59.4%~74.8%和35.4%~48.9%。BMP与RF处理相比,分别降低了2.3%~8.1%的硝态氮储量和20.9%~38.1%的硝态氮淋失量。土体硝态氮储量与淋失量呈显著正相关(R2=0.6973)。因此,在宁夏引黄灌区设施菜田农民习惯施肥的基础上,采用氮肥减施结合秸秆添加(BMP),即黄瓜氮肥减施39%,氮肥纯养分量为275 kg/hm2,配合添加玉米秸秆30.0 t/hm2,茄子氮肥减施39%,氮肥纯养分量为319 kg/hm2,配合添加玉米秸秆30.0 t/hm2,在获得高产的同时能降低土壤硝态氮累积和淋失,降低农田土壤面源污染风险,并提高经济效益,值得在宁夏引黄灌区设施菜田大面积推广应用。  相似文献   

9.
天然降雨条件下水稻田氮磷径流流失特征研究   总被引:44,自引:15,他引:44  
采用具有单排单灌的试验小区,对水稻田在多次天然降雨条件下形成的径流中氮磷的流失特征进行了研究。结果表明,几次降雨径流的累积量中总氮的最高浓度达到22.15mg/L,总磷的浓度达4.84mg/L,可溶态氮是天然降雨径流流失氮素的主要形态,约占总氮的70%~92%,尤其是硝态氮,约占总氮的40%~80%,而径流流失中氨态氮的浓度较小,仅占总氮浓度的3.4%~27%,颗粒态磷在径流流失磷素中占到较大的比重,可达76%~79%;几次降雨事件中总氮的累积流失负荷约在0.23~0.80kg/hm2,总磷的累积流失负荷约在0.07~0.15kg/hm2,两者都小于当季施肥量的1%;降雨和施肥是影响氮磷素径流输出的主要因子,对降雨、施肥量、氮磷素输出负荷运用二元一次方程进行拟合,结果表明相关性达到了显著性水平。  相似文献   

10.
在封丘农田生态系统国家试验站, 通过多组水肥组合试验, 研究了冬小麦-夏玉米轮作下, 水、肥对作物产量、硝态氮在土壤剖面中的分布特征及其淋失风险的影响。结果表明, 适宜灌溉情况下, 氮磷配施是提高作物产量的关键, 氮钾配施与磷钾配施增产效果不明显。统计结果表明, 各因素对小麦产量影响次序依次为氮肥≥磷肥>灌溉>钾肥, 对玉米产量的影响次序为氮肥>磷肥>钾肥>灌溉, 只有氮磷对作物产量的影响达到统计学上的显著性差异。随着施氮量和灌溉量的增加, 硝态氮累积峰峰值增加, 峰厚度加厚, 出现位置加深, 且根区外硝态氮含量亦显著增加, 极大地提高了硝态氮的淋失风险。适宜氮肥用量与适宜灌溉是减轻硝态氮淋失风险的关键, 氮磷配施可有效降低深层土壤硝态氮累积。研究区域适宜氮肥用量为每年400 kg(N)·hm-2,适宜磷肥用量为每年225 kg( P2O5)·hm-2, 一般降雨年型全年灌溉量以280 mm 左右为宜。  相似文献   

11.
绿肥覆盖对紫色土坡耕地柑橘园氮磷流失的阻控效应研究   总被引:1,自引:0,他引:1  
为探明紫色土坡耕地不同绿肥覆盖对柑橘园径流和养分流失的阻控效应,在田间径流小区设置黑麦草(Lolium perenne L.)、光叶苕子(Vicia villosa Roth var.)、二月兰(Orychophragmus violaceus)和清耕对照4个处理,定量监测了在自然降雨条件下不同处理的径流及氮磷养分流失量。结果表明,与清耕对照相比,周年内绿肥覆盖可显著降低8.7%~27.0%的地表径流量、30.1%~50.6%总氮流失量和32.4%~62.9%总磷流失量。绿肥覆盖对径流和养分的阻控效应在不同品种间存在差异,整体表现为黑麦草>光叶苕子>二月兰。与清耕对照相比,黑麦草覆盖使径流中总氮、可溶性氮、硝态氮和铵态氮的流失总量分别减少50.6%,47.0%,49.5%和48.1%;总磷、可溶性磷和磷酸盐流失总量分别减少62.9%,62.6%和62.6%。此外,绿肥覆盖对不同形态养分的阻控效应也有所不同,其径流液中以可溶性氮和颗粒态磷的流失占比最大,分别占总氮和总磷的59.6%~67.0%和68.6%~71.8%。综上,绿肥覆盖栽培能有效降低紫色土坡耕地柑橘园径流及氮磷的流失,其中以覆盖栽培黑麦草和光叶苕子较好。研究结果为紫色土坡耕地柑橘园水土保育和面源污染防治提供了依据。  相似文献   

12.
在非完全淹水稻田中,研究了不同施氮水平分次施氮对植株氮吸收、土壤中氮素的积累和渗漏水氮素污染的影响,结果发现:水稻植株氮积累量随施氮水平的增加迅速提高,但施氮超过225kg/hm2后,水稻吸氮基本保持不变;土壤中的氮累积情况表明,小于75kg/hm2的施氮不利于土壤肥力的保持,超过225kg/hm2后土壤氮累积严重;渗漏水平均含氮浓度与施氮水平密切相关,相关系数为0.943。分次施氮的效果表明,植株吸氮高峰集中在拔节期至孕穗期,土壤氮累积在基肥施后迅速增加,渗漏水含氮量的高峰集中在每次施肥后的小段时间内,特别是基肥施后达到其最大值。这说明通常施用占总施氮量50%以上的稻田基肥可能是引起土壤氮累积、流失和地下水污染的重要原因,应宜减少。  相似文献   

13.
安徽省园地氮磷径流流失   总被引:2,自引:0,他引:2  
茶园、桑园和葡萄园在安徽省分布面积较广,果园的施肥量一般较大,但利用率低,很大一部分氮、磷随地表径流流入水体,给水体污染带来严重威胁。研究安徽省园地径流氮磷流失规律,对于控制安徽省农业面源污染具有重要意义。研究采用径流池收集降雨径流的方法测算出安徽省园地在常规施肥条件下,总氮的年径流流失量为1.85~13.70kg/hm2,其中茶园为2.127kg/hm2,桑园为8.380kg/hm2,葡萄园为7.940kg/hm2;总磷的年径流流失量为0.202~1.770kg/hm2,其中茶园为0.261kg/hm2,桑园为0.263kg/hm2,葡萄园为1.148kg/hm2;总氮的径流流失率在0.049%~0.453%之间,总磷的径流流失率在0.046%~0.416%之间;且铵态氮和硝态氮是园地中氮素径流流失的主要形态,约占总氮的58%,大多数园地中磷素主要以可溶磷的形态径流流失,但在桑园中却只有29.77%的磷素以可溶磷的形态流失。  相似文献   

14.
[目的] 探究持续性秸秆还田减施化肥对水稻产量和氮磷随径流流失的影响,为当地农业资源循环再利用和防控农业面源污染提供科学依据。[方法] 在四川省广汉市开展连续3 a (2018—2020年)的田间小区试验,设置常规施肥处理(T1)和秸秆还田+常规施肥减氮28.57%,减磷25.11%(T2)2种施肥方式,分别测定了地表径流中氮磷浓度、流失量,水稻秸秆、籽粒的产量和氮磷吸收量、水稻收获时土壤养分。[结果] 随着秸秆还田年限的增加,T2可达到显著的增产效果,其中2020年T2比T1增产16.93%。与T1相比,T2的总氮和硝态氮流失量分别增加6.25%~14.97%,6.99%~15.03%,可溶性总氮、总磷和可溶性总磷流失量分别降低0.94%~6.03%,4.66%~10.32%和5.77%~21.15%。土壤中全磷、速效磷、硝态氮和铵态氮含量的年际变化显著(p<0.05)。与T1相比,T2处理显著降低了土壤8.79%的全磷和30.56%的速效磷。[结论] 持续秸秆还田与减施化肥在保证作物产量的同时,减少了化肥投入量,降低了磷素的径流流失量,但增加了氮素径流流失的风险,在实际农业生产中应进一步优化处理。  相似文献   

15.
为研究施用不同肥料类型(尿素、鸡粪)及用量(349.6,174.8 kg/hm2)下坡面氮素流失规律,采用人工模拟降雨试验方法,探究二者氮素流失差异的原因,并阐述肥料用量对氮素流失量的影响。结果表明:施肥后坡面氮素流失以泥沙全氮流失为主,占比可达78.16%~93.46%;径流硝态氮浓度高于铵态氮浓度,且径流总氮流失以硝态氮流失为主要形式,流失量占径流总氮流失量的38.53%~48.62%。肥料类型对坡面泥沙全氮浓度影响不明显,施用鸡粪处理泥沙硝态氮浓度和铵态氮浓度较高。等氮施用鸡粪可以减少坡面径流总氮、硝态氮和铵态氮流失浓度,分别减少68.64%~74.23%,70.09%~72.54%,27.90%~39.45%。等氮鸡粪替代尿素可以减少坡面氮素流失总量的11.07%~15.81%,减少径流总氮形式流失量70.55%~73.36%。坡面施氮量增加,氮素流失浓度增加,氮素流失总量也随之增加,可增加6.00%~11.00%。全量鸡粪替代半量尿素可减少坡面氮素流失总量,其效果较半量鸡粪处理下降10.40%。农业施用氮肥时,应合理选择施用量,并少量多次施用。尽量选择有机肥替代传统氮肥,以减少地表径流氮素浓度。做好水土保持工作,以降低水土流失携带大量的氮素对环境所造成的威胁。  相似文献   

16.
采用田间小区定位试验研究自然降雨条件下稻麦两熟农田"稻季-麦季-稻季"茬口衔接期养分径流流失规律。结果表明:麦季常规施肥条件下麦稻茬口衔接期径流水量达77.59m3/hm2,径流侵蚀泥沙量达48.30kg/hm2,麦季少免耕处理较常规施肥处理增加径流水量达41.41%;径流水氮磷浓度分别达2.22,0.46mg/L,径流侵蚀泥沙氮磷浓度分别达1.15,1.65g/kg;麦稻茬口衔接期氮素径流流失量达227.84g/hm2,以径流水流失为主,占氮素总径流流失量的75%以上;磷素径流流失量达115.57g/hm2,以径流侵蚀泥沙流失为主,占磷素径流流失总量59%以上;麦季秸秆还田、秸秆还田减肥处理减少麦稻茬口衔接期氮素和磷素径流流失量分别达6.04%~9.74%和5.73%~11.54%,而麦季少免耕处理则增加21.75%和13.42%。  相似文献   

17.
川中紫色土区旱坡地非点源氮输出特征与污染负荷   总被引:10,自引:1,他引:10  
通过在中国科学院盐亭农业生态站进行定位监测研究,探讨了川中紫色土区旱坡地氮素的农业非点源输出规律。研究表明:紫色土早坡地非点源氮输出以无机氮和颗粒态为主,全氮输出量不高。川中丘陵农田生态系统的旱地径流中,颗粒态氮占比例最大,达到35%,硝态氮和氨态氮的输出水平相反,各径流场的NH4 -N浓度略高于NO3--N的浓度。旱地径流全年总氮污染输出为0.95 kg/(hm2.a),全年通过径流输出的氮素占化肥施用量的0.56%。旱地地表径流中总氮平均浓度顺坡种植>平板种植>聚土垄作。小流域非点源氮污染负荷的季节变化与流域降水的季节变化基本一致,非点源氮污染约从6月开始上升,一直持续到10月,集中在降雨丰富的时段。夏季2个月(7~8月)是非点源污染的高发季节,非点源氮污染负荷的绝大部分发生于该时期,这与年雨量的60%集中于该季节而降水多以暴雨形式出现有关。通过土地利用类型的优化配置,合理采用水土保持耕作法,控制施肥量和适宜的农田耕作方式,可减少地表径流和地下淋洗中氮的含量,减轻农业非点源物质对环境的压力,保护农业生态环境。  相似文献   

18.
苕溪流域茶园不同种植模式下地表径流氮磷流失特征   总被引:9,自引:3,他引:6  
为探讨苕溪流域不同种植模式下茶园地表径流氮磷养分流失特征,于2010年5-10月对等高种植和顺坡种植2种种植模式下茶园地表径流水样进行取样测定,分析径流水样中的氮磷元素各指标的含量、形态特征及其随时间的变化规律。结果表明:无论是顺坡种植还是等高种植,茶园径流中氮素各指标含量的峰值均出现在6月底或7月初,茶园径流中磷素各指标含量的峰值出现在6月底、7月初或9月初。在整个监测时期内,等高种植茶园径流中总氮、硝氮、铵氮含量分别比顺坡种植茶园低8.54%~43.01%,4.05%~46.70%,5.92%~33.19%,但2种种植模式间不存在显著差异;等高种植茶园径流水中总磷、可溶态总磷、颗粒态磷的含量分别比顺坡种植低8.51%~31.07%,0.39%~17.91%,8.45%~36.86%,2种种植模式之间径流水中总磷、颗粒态磷含量存在极显著差异,可溶态磷含量不存在显著差异。无论是顺坡种植还是等高种植,硝态氮均为茶园氮素地表径流流失的主要形态,颗粒态磷则是茶园磷素地表径流流失的主要形态。总的来说,等高种植模式能有效地截留茶园氮磷营养元素,防止其随地表径流流失。  相似文献   

19.
永定河流域农业土壤氮磷损失的计算及分析   总被引:2,自引:2,他引:0  
为了解决当前农业生产过程中氮磷损失量计算过程中存在的不确定性问题,该文结合硝酸盐、铵盐与土壤颗粒结合类型的差异,从氮循环的角度定量评价降雨径流作用下的土壤氮损失量;结合磷元素的运移与土壤类型密切相关的特性,通过对土壤中的溶解态、颗粒态磷质量分数进行计算,确定农田径流量对应下的土壤磷损失量。永定河流域化学肥料施用量过大,致使土壤总氮损失量为96kg/hm2,总磷损失量为9kg/hm2,研究区内部的氮磷损失量数值差异较大。由于流域氮磷损失量计算方法充分考虑了流域土壤及施肥特性,因此,计算结果具有一定的合理性和适用性。本研究为土壤氮磷损失计算以及流域农业生产面源污染的源头控制提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号