共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic inheritance of resistance to Bacillus thuringiensis var kurstaki (BTK) was examined in a diamondback moth (Plutella xylostella) population collected from the Melaka region of Malaysia. A BTK‐selected sub‐population (BTK‐SEL) which was more than 100‐fold resistant to BTK compared with a susceptible (ROTH) population of P xylostella was used with standard reciprocal crosses and back‐crosses between ROTH and BTK‐SEL. Logit regression analysis of F 1 reciprocal crosses indicated that BTK resistance was inherited as an incompletely recessive autosomal trait and controlled by a single locus. In contrast, other studies have shown that resistance to Cry1Ac is inherited as an incompletely dominant autosomal trait in a Cry1Ac‐selected sub‐population of the same Melaka population. The frequency of the allele responsible for resistance decreased without exposure to insecticide in the laboratory. © 2000 Society of Chemical Industry 相似文献
2.
2008-2012年, 采用浸叶法连续5年测定了云南省2个主要蔬菜种植区通海县和弥渡县的小菜蛾田间种群对Bt制剂的抗药性,并进行了盆栽药效评价。结果表明,两地区小菜蛾对Bt制剂均表现为低抗或无抗性,抗药性无明显上升趋势。比较了在光照培养箱和自然条件下3种不同Bt制剂对通海和弥渡县小菜蛾盆栽药效,药后第5天通海和弥渡小菜蛾种群在恒温(25±1 ℃,RH65%~70%)和自然条件下(12~28 ℃,RH50%~75%)的校正死亡率分别为88.3%~95.5%和80.2%~90.6%、78.8%~89.1%和73.4%~85.7%,两者差异不显著。云南小菜蛾种群对Bt制剂均有较高的敏感性,可在十字花科蔬菜生产中有选择地使用。 相似文献
3.
Amparo C. Martínez-Ramírez Baltasar Escriche M. Dolores Real Francisco J. Silva Juan Ferr 《Pest management science》1995,43(2):115-120
Inheritance of resistance to the Bacillus thuringiensis Berl. CryIA(b) crystal protein was studied in Plutella xylostella L. (diamondback moth). A field population 50-fold more resistant to CryIA(b) than a control susceptible strain was used. Dose-mortality curves of the resistant population, the susceptible strain and the F1 from the two reciprocal crosses were compared. Resistance transmission to the F1 was dependent on the sex of the resistant progenitor. Sex ratio of the survivors to high doses of CryIA(b) in the F1 of the two reciprocal crosses did not corroborate the preliminary hypothesis of resistance being due to a recessive sex-linked allele. Since, in a previous work, the loss of CryIA(b) binding capacity of resistant insects had been demonstrated, binding to midgut tissue sections from F1 individuals was also analysed. The presence of binding in all of the F1 preparations showed that, at least, a recessive autosomal allele was responsible for the loss of binding capacity in the resistant population. 相似文献
4.
A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac. 相似文献
5.
6.
Base‐line susceptibility for six‐day‐old larvae of the diamondback moth, Plutella xylostella, against Bacillus thuringiensis var kurstaki (Biobit®) was studied by a cabbage leaf disc dip bioassay technique. Diamondback moth from 13 locations in seven different states spread over a distance of about 3000 km longitudinally was used for these studies. Forty‐eight‐hour LC50 values varied from 1.0 to 10.97 mg AI litre−1. Further investigations on the development of resistance under laboratory conditions showed an increase in LC50 from 2.76 (for unselected F1 generation) to 5.28 mg AI litre−1 (for selected F9 generation), using a selection concentration of 6.4 mg AI litre−1. This suggested a possibility of the development of resistance under field conditions if there were to be extensive and indiscriminate use of B thuringiensis. These findings are discussed in relation to integrated pest management and the mechanisms of resistance in resistance management tactics. © 2000 Society of Chemical Industry 相似文献
7.
Genetics of spinosad resistance in a multi-resistant field-selected population of Plutella xylostella 总被引:2,自引:0,他引:2
Resistance to the bacteria-derived insecticides spinosad (Conserve), abamectin (Vertimec), Bacillus thuringiensis var kurstaki (Btk) (Dipel), B thuringiensis var aizawai (Bta) (Xentari), B thuringiensis crystal endotoxins Cry1Ac and Cry1Ca, and to the synthetic insecticide fipronil was estimated in a freshly-collected field population (CH1 strain) of Plutella xylostella (L) from the Cameron Highlands, Malaysia. Laboratory bioassays at G1 indicated significant levels of resistance to spinosad, abamectin, Cry1Ac, Btk, Cry1Ca, fipronil and Bta when compared with a laboratory insecticide-susceptible population. Logit regression analysis of F1 reciprocal crosses indicated that resistance to spinosad in the CH1 population was inherited as a co-dominant trait. At the highest dose of spinosad tested, resistance was close to completely recessive, while at the lowest dose it was incompletely dominant. A direct test of monogenic inheritance based on a back-cross of F1 progeny with CH1 suggested that resistance to spinosad was controlled by a single locus. 相似文献
8.
9.
使用苏云金芽胞杆菌库斯塔克亚种(Btk)可湿性粉剂对小菜蛾进行继代汰选获得F80代和F100代抗性品系。通过分别测定Cry1Ab、Cry1Ac、Cry1Ah和Cry1Ca四种杀虫晶体蛋白对小菜蛾Btk抗性品系F80代和F100代的室内毒力,明确了小菜蛾Btk抗性品系对四种Bt杀虫晶体蛋白抗性发展规律。研究结果表明,汰选至F80代时,Cry1Ca对小菜蛾的毒力最高,LC50约12.1mg/L,其次为Cry1Ac,LC50约47.7mg/L;而汰选至F100代时,仍以Cry1Ca对小菜蛾的毒力最高,LC50约21.4 mg/L,其次为Cry1Ab,LC50约72.2 mg/L。与相对敏感品系相比,小菜蛾抗性品系对Cry1Ac的抗性发展较快(抗性倍数高达67.3~106.8倍),对Cry1Ab的次之(抗性倍数高达60.0~66.1倍),而对Cry1Ca和Cry1Ah的抗性发展较慢(抗性倍数分别为3.4~6.0倍和1.6~2.5倍)。以上结果说明,在主效杀虫基因为Cry1Ac的Btk药剂选择压力下,小菜蛾对四种Bt杀虫晶体蛋白的抗性发展速度差异较大,且Cry1Ac和Cry1Ab存在交互抗性风险... 相似文献
10.
11.
12.
13.
14.
15.
16.
Cross-resistance patterns and fitness in fufenozide-resistant diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) 总被引:1,自引:0,他引:1
BACKGROUND: Fufenozide is a novel non‐steroidal ecdysone agonist with good efficacy against diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae). At present, it is widely applied for the control of a range of lepidopterous pests in China. This study compared the activities of fufenozide and 12 other insecticides against unselected and fufenozide‐selected strains of DBM to examine potential patterns of cross‐resistance. The relative fitness of the fufenozide‐selected strain was assessed to provide information pertinent to insecticide resistance management. RESULTS: Compared with the susceptible strain (JSS), the fufenozide‐resistant strain (JSR) showed high cross‐resistance to dibenzoylhydrazines and benzoylphenylureas, low cross‐resistance to abamectin and no cross‐resistance to organophosphates, carbamates and pyrethroids. JSR had a lower reproductive ability and a relative fitness of 0.5 compared with JSS. CONCLUSION: P. xylostella has the potential to develop resistance to fufenozide, albeit at the expense of fitness. Cross‐resistance between the same and other classes of insecticides is of concern, and should be a key consideration when implementing fufenozide‐based control strategies for this species. Copyright © 2011 Society of Chemical Industry 相似文献
17.
BACKGROUND: The rynodine receptors (RyRs) are the main targets of diamide insecticides such as chlorantraniliprole. To provide the basis for a good understanding of the molecular mechanisms of diamide insecticide resistance, an RyR gene from Plutella xylostella was cloned and characterised in the present paper. RESULTS: A full‐length cDNA sequence of RyR was cloned from P. xylostella through RT‐PCR and rapid amplification of cDNA ends (RACE). The gene (named PxRyR1) is 15 753 bp long, with an open reading frame of 15 354 bp, encoding a predicted RyR of 5117 amino acids. An alternative splicing of the PxRyR1 was also cloned and named PxRyR2. The PxRyR1 shares 77–93% identity with other insect RyRs. Quantitative real‐time PCR analysis showed that the PxRyR was expressed at a high level in second‐instar larvae and adults, at a low level in prepupae and pupae and abundantly in the body wall muscle and head (respectively 6.00 and 3.12 times the expression in the gut). Western blot analysis with anti‐RyR antibodies showed that the RyR was mainly present in the body wall muscle and head, but barely present in the haemocyte and gut. CONCLUSIONS: There are at least two alternative splices of PxRyR expressed in all developmental stages and tissues in P. xylostella at various levels. The results provided the basis for further understanding of the mechanisms of resistance to diamide insecticides in P. xylostella. Copyright © 2012 Society of Chemical Industry 相似文献
18.
19.