首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mesoscale features such as fronts and eddies can act to retain larval walleye pollock ( Theragra chalcogramma ) within the continental shelf zone in the western Gulf of Alaska. During two May cruises, we observed unusual patterns of backscattering with a 38 kHz acoustic system. Characteristics of this signal were a strong scattering layer at the surface and in midwater, with the water column between nearly void of sound scattering organisms. This signal appeared in several transects where satellite remote sensing indicated the presence of an eddy. Analysis of concomitant water properties and ADCP (153 kHz) data confirmed the existence of an anomalous physical feature at this location. Biological properties (chlorophyll and zooplankton) showed marked changes across the edge of the feature. Larval pollock densities were estimated to be an order of magnitude higher within this feature compared to those outside. Acoustic backscatter signals can be used to identify and characterize mesoscale biophysical features in the ocean, thereby enabling real-time studies of these features.  相似文献   

2.
Using observations from 38 ichthyoplankton surveys conducted near Shelikof Strait, Alaska between 1979 and 1992, we characterized the horizontal distribution and spatial patchiness of the early life stages of walleye pollock ( Theragra chalcogtamma ). Lloyd's index of patchiness ranged from 3.9-6.1 for eggs and 3.9–16.2 for larvae. This index was size (age) dependent: low for eggs, high for newly hatched larvae, then decreasing through late larval stage. By the early juvenile stage, patchiness increased as pollock began to school. The percentage of larvae in a patch (defined as the percentage of larvae present at stations where larval counts exceeded the mean by one standard deviation during the given survey) varied greatly (26–92%). Larval distributions were used to deduce physical mechanisms responsible for patches. Three categories of patches were identified: those created by interaction of larvae with time-dependent currents, those in the vicinity of Sutwik Island, and those associated with eddies. Simulation experiments were utilized to examine processes influencing patch formation and the role of larval swimming. Between 5 and 6 weeks after hatching, larvae have swimming abilities that enable them to maintain a patch already created by physical mechanisms.  相似文献   

3.
A coupled biophysical model is used to hindcast the early life history of a population of walleye pollock ( Theragra chalcogramma ), to assess possible physical causes of interannual variability in recruitment. The modelling approach combines a primitive equation, rigid'lid hydrodynamic model with a probabilistic, individual-based biological model of growth, development, and mortality. Individuals are tracked through space using daily velocity fields generated from the hydrodynamic model, along with self-directed vertical migrations appropriate to each life stage in the biological model. The hydrodynamic model is driven with wind and runoff time series appropriate to each year. Biological model output compares favourably with observed spatial distributions for specific years. Lloyd's index of patchiness, calculated from model output, was similar to values calculated from field data. Five noncontiguous years were chosen for hindcasts to span a wide range of meteorological conditions (winds, runoff) and recruitment success. Interannual comparisons suggest that two years of above average recruitment (1978 and 1988), and one year of below average recruitment (1991), experienced flow fields which carried many individuals into the Alaskan Stream. At the same time, the vigorous flow fields generated in each of these years carried some individuals onto the shelf area to the south-west of the spawning site. A year with low runoff and weak winds (1989) exhibited weak circulation, with extended retention of larvae near the spawning site. A year with high runoff (1987) was notable for the strength and frequency of mesoscale eddy activity. Eddies appear capable of both enhancing patchiness of early larvae (through retention) and dissipating patchiness of juveniles (through mesoscale mixing). Larvae retained in an eddy feature exhibit a narrower range of sizes than the population outside that feature.  相似文献   

4.
Interannual variability in growth of larval walleye pollock Theragra chalcogramma was examined from 1983 to 1991 and of juveniles from 1985 to 1990. ANCOVA was used to assess differences in population growth rates, and an alternate method was developed to examine variations between annual length-at-age data and average 'expected' values over different age groupings. For larvae, the years 1986, 1987, 1989 and 1990 had higher than average length-at-age, and 1988 and 1991 had lower than average values. Relationships between growth and SST and larval density were not clear. A tentative relationship between copepod nauplii abundance and larval length-at-age was noted. The consequence of larval growth to larval mortality, late larval abundance or recruitment was not clear. We conclude that larval mortality rates are highly variable and tend to mask effects of moderate variability in growth on later abundance. For juveniles, 1987 had significantly lower than average length-at-age and 1988 had higher than average values. Although there are few years of data, they tend to support the importance of juvenile growth in the recruitment process. Conditions for the large 1988 year class are documented and discussed, including warm SST, calm winds, relatively low larval growth rates, low abundances of potential predators on larvae, low larval mortality rates, and high juvenile growth rates.  相似文献   

5.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

6.
Relationships between abundance of post‐larval and juvenile carangid (jacks) fishes and physical oceanographic conditions were examined in the northern Gulf of Mexico (GoM) in 2011 with high freshwater input from the Mississippi River. Generalized additive models (GAMs) were used to explore complex relationships between carangid abundance and physical oceanographic data of sea surface temperature (SST), sea surface height anomaly (SSHA) and salinity. The five most abundant carangid species collected were: Selene setapinnis (34%); Caranx crysos (30%); Caranx hippos (10%); Chloroscombrus chrysurus (9%) and Trachurus lathami (8%). Post‐larval carangids (median standard length [SL] = 10 mm) were less abundant during the spring and early summer, but more abundant during the late summer and fall, suggesting summer to fall spawning for most species. Juvenile carangid (median SL = 23 mm) abundance also increased between the mid‐summer and early fall. Most species showed increased abundance at lower salinities and higher temperatures, suggesting entrainment of post‐larval fishes or feeding aggregations of juveniles at frontal convergence zones between the expansive river plume and dynamic mesoscale eddy water masses. However, responses were species‐ and life‐stage specific, which may indicate fine‐scale habitat partitioning between species. Ordination methods also revealed higher carangid abundances at lower salinities for both post‐larval and juvenile life stages, with species‐ and life‐stage specific responses to SST and SSHA, further suggesting habitat separation between species. Results indicate strong links between physical oceanographic features and carangid distributions in the dynamic northern GoM.  相似文献   

7.
An advective model was used to simulate the drift of larval walleye pollock ( Theragra chalcogramma ) over a 40-day period (late April through early June) near Shelikof Strait, Alaska. This model was used: (i) to assess how much of the observed change in larval positions during that period can be explained by transport at fixed depth; (ii) to demonstrate that observed change can be related to mean large-scale meteorological forcing; and (iii) to investigate accumulation of larvae in specific areas near the coast. Based on availability of larval and circulation data, three years were studied: 1988, 1989 and 1991. Velocity fields generated from a hydrodynamic model driven by winds and runoff were used to advect particles seeded in accordance with observed larval distributions in late April of each year. The modelled larvae were tracked at 40 m depth, corresponding to the mean depth of sampled larvae and the depth of neutrally buoyant drifters employed in field studies. Specific features observed in late May larval surveys were reproduced by the model, such as the accumulation of larvae in a shoal area downstream of the strait. Differences among the modelled years include extensive flushing of larvae to the south-west in 1988 and 1991, vs. limited flushing in 1989. These differences appear related to the mean large-scale atmospheric pressure patterns for April-May of those years.  相似文献   

8.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

9.
The spatial and temporal occurrence of pelagic fish stages and their biological variability may affect their dispersal and survival, and ultimately fish recruitment. We collected Atlantic cod larvae at one station inside and at one station outside the Gullmar Fjord, eastern Skagerrak, in order to investigate small-scale larval group differentiation. Rectangular midwater trawl hauls were taken every 6 h (during 24 h) from three separate depth intervals between the surface and 70 m depth. About 80% and 20% of all larvae occurred above the halocline at the Fjord station and the Coastal station, respectively. Hatching (at both stations) occurred from the 3rd week in February to the 1st week in May, indicating that cod larvae were present for at least 5 months (from late February to early August). The length and hatch date frequency distributions of larvae from the surface layer were unimodal inside the fjord but bimodal outside the fjord. Analyses of seven microsatellite DNA loci indicated that larvae collected inside the fjord (where local spawning occurs) were genetically distinct from larvae sampled on the outside (FST = 0.0026). The two age cohorts outside the fjord were not, however, genetically different, nor were larvae collected at different depths. We conclude that small-scale variability of vertical concentration and larval life history variability should have consequences for interpreting models of larval dispersal and survival, and subpopulation structure analyses.  相似文献   

10.
We examine the distribution and mortality of walleye pollock ( Theragra chakogramma ) eggs in the western Gulf of Alaska. Most pollock eggs were found in mid-water, with low proportions in the neustonic and epibenthic layers during all years of sampling. A silhouette camera towed through a high egg density region provided new information on small-scale spatial distributions and provided density estimates at two depth layers similar to those of depth-discrete net sampling. Annual egg production curves and natural mortalities were estimated for 1987-92 based on the abundance of several cohorts relative to their production rate. Production during 1989 and 1990 was lower than in the other four years but 1988 was the only year to show markedly different (higher) mortality than the rest. Fertilization rate was generally very high (>99%) but several collections early in the season contained a substantial fraction of unfertilized eggs. Invertebrate egg predation was mainly due to euphausiids and was variable among locations and years. Egg cannibalism by adult pollock on the spawning grounds was inconsequential (< 1% for all years) compared to invertebrate predation.  相似文献   

11.
We conducted larval and adult fish surveys on the southern flank of Georges Bank during the spring of two years (1990 and 1995) with contrasting physical conditions. We employed canonical correspondence analysis (CCA) to examine the relationships between physical variables and the spatial distribution of pelagic fish and ichthyoplankton. Surface temperature bottom temperature, and vertical stratification were significant factors affecting larval fish distributions, and there were groups of species with similar responses to these variables. There were also consistent relationships between physical variables and pelagic fish and squid abundances and spatial distributions. Pelagic fish and ichthyoplankton with similar responses to hydrographic variables had high spatial overlap, and variation in hydrographic regimes modulated the strength of this interaction. Pelagic fish and squids are potentially important predators of both larval and juvenile fish on Georges Bank. Hydrographic structure modulates the degree of spatial overlap and therefore likely influences the strength of predator–prey interactions.  相似文献   

12.
A three-dimensional biophysical nutrient–phytoplankton–zooplankton model was used to investigate the spatial and temporal dynamics of food resources for young walleye pollock in the western Gulf of Alaska, to further understanding of recruitment processes for pollock. We modeled nitrogen, phytoplankton, a large herbivorous grazer parameterized as Neocalanus spp. (the biomass dominant copepod in the Gulf), and the 13 stages (egg, naupliar and copepodite) of Pseudocalanus spp. (a major constituent of the diet of pollock) so that the appropriate size class of food for each size of larval pollock was represented. Model results identified an area between the Semidi and Shumagin Islands that may not be suitable as a nursery area early in the year due to low prey abundance. Modeled mesoscale eddies, previously hypothesized to be important for larval pollock retention in Shelikof Strait, contained higher prey concentrations than the surrounding waters when they were cyclonic. This work also help to understand the consistency of pollock spawning in time and space in Shelikof Strait, by examining the timing and location of prey availability which, along with transport, narrows the window for optimal spawning.  相似文献   

13.
ABSTRACT: Stocks of walleye pollock Theragra chalcogramma collected from: (i) the Sea of Japan (off Rebun Island and Kumaishi); (ii) the Pacific coast (off Shikabe and eastern Hokkaido); and (iii) Nemuro Strait off Hokkaido, northern Japan, were examined for anisakid nematodes during December 1999 to February 2000, and the prevalence and abundance of Anisakis simplex and Contracaecum osculatum larvae were compared among the various sampling sites for fish of the same size and age. Anisakis simplex was generally more abundant than C. osculatum . Infection by A. simplex varied between the aforementioned stocks of walleye pollock as well as within stocks, whereby fish from off Rebun Island and Nemuro Strait were infected the most, followed by those from off the Pacific coast and Kumaishi. Infection by C. osculatum differed between the host stocks, and C. osculatum was the most abundant among the fish from Nemuro Strait. The infection variations seemed to be due to differences in host growth rate, host feeding habit, and the distribution of marine mammal final hosts. The results indicate that these two larval nematodes are useful biological indicators for the population study of walleye pollock in Japanese waters.  相似文献   

14.
Surveys for lobster larvae in offshore waters of the north‐eastern Gulf of Maine in 1983, 1987 and 1989 confirm that local hatching occurs mainly at depths <100 m over the banks, including Georges and Browns Banks. Detailed studies in the vicinity of Georges Bank in late July of both 1987 and 1989 indicate that the first and second moult stages were located primarily over the bank whereas stages III and IV lobster were collected both over and off the bank. At times stage IV lobster were more abundant off the bank than over it. The condition of stage III and IV lobster, as measured by a lipid index, was better off than over Georges Bank in 1988 and 1989 indicating a possible physiological advantage to being off the bank. In addition, the higher surface temperatures off Georges Bank would shorten larval development time to settlement. To determine the probable hatch sites of stage IV lobster collected off of Browns Bank in 1983 and off of Georges in 1987 and 1989, a 3‐D circulation model of the Gulf of Maine was used to simulate larval lobster drift backwards in time. In all cases, areas off Cape Cod, MA, and off Penobscot Bay, ME were suggested as the source of the larvae, although most of the larval trajectories never reached these near‐shore waters that are well‐known, larval hatching areas. The model‐projected larval release times match most closely the observed inshore hatch off Massachusetts but model uncertainties mean that coastal Maine cannot be ruled out as a source. Georges Bank is also a potential source because the present model does not take into account short‐term wind events, off‐bank eddy transport or the possibility of directed off‐bank larval swimming. Examination of weather records prior to and during our 1988 and 1989 sampling periods indicates that winds were not of sufficient intensity and duration to induce larval transport off Georges Bank. The shedding of eddies from the northern flank of Georges Bank into the Gulf of Maine are a relatively common phenomenon during summer but not enough is known about them to evaluate their contribution to possible cross‐bank transport of lobster larvae. Directed larval swimming is another possible source for the stage IV lobster found near Georges Bank. Plankton distributions across the northern frontal zone of Georges Bank in 1988 were used as proxies for the scarce larval lobsters. The more surface distribution of the microplankton, in particular, supports the possibility that wind and eddy events may be important in the transport of stage III and IV lobsters off of Georges Bank. Further studies are needed to evaluate these possible additional sources of advanced stage lobster larvae found off of the offshore banks.  相似文献   

15.
16.
Acoustic trawl surveys were conducted in 2000 and 2001 in two troughs located off the eastern coast of Kodiak Island in the Gulf of Alaska as part of a multiyear, multidisciplinary experiment to examine the influence of environmental conditions on the spatial distribution of adult and juvenile walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Continuous underway sea surface temperature samples and water column profiles collected in 2000 and 2001 showed the presence of a sharp shelf‐break front in Chiniak Trough and a mid‐trough front in Barnabas Trough. At distances <22 km from shore, the water column was well mixed, whereas a well‐defined mixed layer was present beyond approximately 22 km from shore. Satellite drifter tracks in Barnabas Trough entered along the upstream edge of the trough and appeared to follow the frontal boundary across the middle portion of the trough. A storm in 2001 weakened stratification and cooled surface water temperature by 1.6–2.1°C. Wind mixing associated with the storm event mixed subsurface chlorophyll a to the surface and enhanced nutrients in the surface waters. The storm event revealed spatial partitioning of summer production in Barnabas Trough, with production concentrated in regions inside the mid‐trough front. In contrast, post‐storm summer production was distributed throughout Chiniak Trough. The spatial distribution of walleye pollock and capelin differed and appeared to be related to differences in habitat characteristics. Acoustic survey data identified four acoustic sign types: age‐1 pollock, adult pollock, capelin, capelin–age‐0 pollock mix. The spatial distribution of these four sign types appears to be influenced by the oceanographic and topographic features of the two troughs. Adult pollock were broadly distributed throughout Chiniak Trough, whereas adult pollock were aggregated on the coastal side of the frontal system in Barnabas Trough. In 2000, capelin occurred with age‐0 pollock. In Chiniak Trough, capelin were most abundant along steep topographic gradients at the edges of the trough and in a deep region near Cape Chiniak, whereas the capelin–age‐0 mix (2000) or capelin (2001) concentrations were observed in slope water intrusions over the outer shelf in Barnabas Trough. Results suggest that habitat selection of walleye pollock and capelin are controlled by different processes. Capelin distributions appear to be limited by oceanographic conditions while other factors appear to be more important for pollock.  相似文献   

17.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

18.
Coupled three-dimensional (3-D) physical oceanographic modelling and field sampling programmes were carried out in May 1988 and August 1991 to investigate the potential drift of larval cod ( Gadus morhua L.) in the Bornholm Basin of the Baltic Sea. The goals were to predict the transport of cod larvae, thus aiding the identification of physical processes influencing larval retention/dispersal. Numerical simulations were performed using a 3-D eddy-resolving baroclinic model based on the Bryan–Cox–Semtner code adapted for the Baltic Sea. Within the Bornholm Basin, the model was initialized with ground truth data of physical parameters obtained on the research cruises, and all simulations were forced with actual wind data. Outside the basin, generalized hydrographic features of the Baltic Sea were utilized by incorporation of simulated hydrographic fields from previous model runs typical for the time periods considered. Larval drift was simulated either by incorporation of passive drifters, or as the initial horizontal distribution of larvae implemented into the model. Drift model simulations of larval transport agreed relatively well with field observations. The influence of variations in the vertical distribution on a smaller scale, i.e. vertical deviations of ± 6 m from the observed mean centre of mass, on the drift was examined, revealing no significant differences in the drift of larvae depending on their vertical distribution. The different wind forcing during the investigated time periods was linked to a retention situation in May 1988 and to a dispersal situation in August 1991. Finally, observed spatial distribution patterns of 1-group cod based on Baltic Young Fish Surveys (BYFS) were compared with their predicted transport in the larval phase and examined with respect to recruitment.  相似文献   

19.
Swordfish Xiphias gladius (Linnaeus, 1758) are a circumglobal pelagic fish targeted by multiple lucrative fisheries. Determining the distribution of swordfish larvae is important for indicating reproductive activity and understanding the early life history of swordfish. We identify and characterize larval swordfish distributions during peak swordfish spawning throughout the Gulf of Mexico and western Caribbean Sea with generalized additive models (GAMs) using catches of swordfish larvae during ichthyoplankton surveys in April and May of 2010, 2011, and 2012. The best fit GAM, as determined by stepwise, backward Akaike Information Criterion selection, included both physiochemical (temperature at 5 m, sea surface height anomaly (SSHA), eddy kinetic energy (EKE)), temporal (lunar illumination, hour of sampling) and spatial (location) variables, while near surface chlorophyll a concentration residuals remained as a random effect. The highest probability of larval swordfish catch occurred at sub‐surface temperatures, SSHA, and EKE values indicative of boundary currents. Standard lengths of larvae were larger further downstream in the boundary currents, despite high variability in length with location due to multiple spawning locations of swordfish near these currents. Probability of larval swordfish catch also peaked during the crescent and gibbous moons, indicating a lunar periodicity to swordfish spawning. These results suggest that swordfish may spawn during select moon phases near boundary currents that transport their larvae to larval and juvenile habitat including the northern Gulf of Mexico and coastal waters of the southeast United States.  相似文献   

20.
The small‐scale distribution and retention mechanisms of white perch (Morone americana) and striped bass (M. saxatilis) early‐life stages were investigated in the upper Chesapeake Bay estuarine turbidity maximum (ETM). Physical measurements and biological collections were made at fixed‐location stations within the ETM during three research cruises in 1998 and two in 1999. Results were compared with mapping surveys of physical properties and organism distributions above, within, and below the ETM. Physical conditions at the fixed stations differed markedly among cruises and between years due to differences in freshwater flow and wind. In each year, striped bass and white perch larval concentrations were highest in waters of salinity 1–4. Larvae were more abundant in the ETM region in 1998, a high‐flow year, suggesting that the ETM provides favorable nursery habitat when low salinity waters and the ETM coincide in high freshwater‐flow conditions. In 1998, the earliest pelagic life stages of fish larvae (eggs, yolk‐sac larvae) and the copepod Eurytemora affinis, an important prey of feeding larvae, apparently were retained in deep, landward‐flowing water within the salt front and ETM region. Statistical analyses indicated that distributions of white perch and striped bass post‐yolk‐sac larvae were associated with E. affinis distributions and suggested that retention of larval fish could result from tracking prey. Comparing fixed‐station and mapping approaches demonstrates the importance of sampling at different spatial scales within the ETM region and suggests that larvae are faced with trade‐offs between selecting zones of high retention or high visual‐feeding success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号